Chrono for Octave

version 0.3.1, January 2019

Andrew Janke

This manual is for Chrono, version 0.3.1.
Copyright (©) 2019 Andrew Janke

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the same conditions as for modified versions.

Short Contents

o 3 O Ot = W N

Introduction. e 1
Getting Started 2
Date Representation 3
Time ZOones . . .ov vt e 4
Durations.t 6
Missing Functionality i i L 7
Function Reference 8
COPYING « v vt e 22

Table of Contents

1 Introduction 1
2 Getting Started.................. ...l 2
3 Date Representation............................ 3
3.1 datetime ClasS.ottt 3
3.1.1 datenum Compatibility........o i 3

4 Time Zones 4
4.1 Defined TImMe ZONeSottt e 5
5 Durations 6
5.1 duration ClassS.oouiiiii 6
5.2 calendarDuration Classouiiiiiiion i 6
6 Missing Functionality 7
7 Function Reference.............................. 8
7.1 Functions by Category.........o.ouiiiiiiiiii .. 8
7.1.1 Date Representation..................ooiiiiiiiiiiiii.. 8
7.1.2 Durations.t 8

7.2 Functions Alphabetically i 9
7.2.1 calendarDurationcoiiiiii i 9
7.2.1.1 calendarDuration.calendarDuration.................... 9

7.2.1.2 calendarDuration.dsnat........... 9

7.2.1.3 calendarDuration.uminuscooviiiiinni... 10

7.2.1.4 calendarDuration.plus...................ooiiiiiia 10

7.2.1.5 calendarDuration.times 10

7.2.1.6 calendarDuration.minus.coouiiiinuenin... 10

7.2.1.7 calendarDuration.dispstrs...........o 10

7.2.1.8 calendarDuration.isnan, 10

7.2.2 calmonths 10
T.2.3 calyears ... 11
T.2.4 datetime 11
7.2.4.1 datetime.datetime 11

7.2.4.2 datetime.ofDatenum 12

7.2.4.3 datetime.ofDatestruct............ ... i 12

7.2.4.4 datetime.posix2datenuml 12

7.2.4.5 datetime.datenum2posix, 12

7.2.4.6 datetime.proxyKeys........... i 12

ii

7.2.4.7 datetime.ymd.......... . 12
7.2.4.8 datetime.hms...... 13
7.2.4.9 datetime.ymdhms................. i 13
7.2.4.10 datetime.timeofday oL 13
7.2.4.11 datetime.week 13
7.2.4.12 datetime.dispstrs ...t 13
7.2.4.13 datetime.datestr......... 13
7.2.4.14 datetime.datestrs......... 13
7.2.4.15 datetime.datestruct.......... 14
7.2.4.16 datetime.posixtime i 14
7.2.4.17 datetime.datenum i 14
7.2.4.18 datetime.dsnatc i 14
7.2.4.19 datetime.dsnan..............coiiiiiiiiiii . 14
7.2.4.20 datetimeldt 14
7.2.4.21 datetimele.......... 15
7.2.4.22 datetime.ne.t 15
7.2.4.23 datetime.eq.........oiiiiii 15
7.2.4.24 datetime.ge. ... 15
7.2.4.25 datetime.gb......... 15
7.2.4.26 datetime.plus.o 15
7.2.4.27 datetime.minusoouviniini i 16
7.2.4.28 datetimediff....... 16
7.2.4.29 datetime.isbetween i 16
7.2.4.30 datetime.linspace i 16
7.2.4.31 datetime.convertDatenumTimeZone................. 16
720 dayS. o 17
7.2.6 Auration....... ..ottt 17
7.2.6.1 duration.duration..............cooiiiiiiiiiiii. 17
7.2.6.2 duration.ofDays......... ... i 17
7.2.6.3 duration.years............ ..t 18
7.2.6.4 duration.hours.......... 18
7.2.6.5 duration.minutes..............co i 18
7.2.6.6 duration.secondsS.............iiiiiiiii 18
7.2.6.7 duration.milliseconds. 18
7.2.6.8 duration.dispstrs......... .. 18
7.2.6.9 duration.char.......... ... 18
7.2.6.10 duration.linspace il 19
T.2.77 NOUTS. .. 19
7.2.8 isdatetime....... ... 19
7.2.9 dsdurationiiiiii 19
7.2.10 millisecondsooi i 19
7211 MINULES . oot 19
T7.2.012 NaT . . . o 20
T.2.13 SECONAS. ..ottt 20
T7.2.14 tIMEZONES . o oottt e 20
T.2.10 JOATS .ottt 20

iii

8 Copying.......

8.1 Package Copyright
8.2 Manual Copyright

iv

1 Introduction

Time is an illusion. Lunchtime doubly so.
—Douglas Adams

This is the manual for the Chrono package version 0.3.1 for GNU Octave.

This document is a work in progress. You are invited to help improve it and submit
patches.

Chrono provides date/time functionality for Octave by supplying Matlab-compatible
implementations for the datetime, duration, and calendarDuration classes, along with
related functions.

Chrono’s classes are designed to be convenient to use while still being efficient. The data
representations used by Chrono are designed to be efficient and suitable for working with
large-ish data sets. A “large-ish” data set is one that can have millions of elements or rows,
but still fits in main computer memory. Chrono’s main relational and arithmetic operations
are all implemented using vectorized operations on primitive Octave data types.

Chrono was written by Andrew Janke <floss@apjanke.net>. Support can be found on
the Chrono project GitHub page (https://github.com/apjanke/octave-chrono).

mailto:floss@apjanke.net
https://github.com/apjanke/octave-chrono

2 Getting Started

The easiest way to obtain Chrono is by using Octave’s pkg package manager. To install the
a development prerelease of Chrono, run this in Octave:

pkg install https://github.com/apjanke/octave-chrono/releases/download/v0.3.1/chrono-0
(Check the releases page at https://github.com/apjanke/octave-chrono/releases
to find out what the actual latest release number is.)

For development, you can obtain the source code for Chrono from the project repo on
GitHub at https://github.com/apjanke/octave-chrono. Upon first installation, run
the octave_chrono_make_local script to build the octfiles so Chrono will work. Then add
the inst directory in the repo to your Octave path.

https://github.com/apjanke/octave-chrono/releases
https://github.com/apjanke/octave-chrono

3 Date Representation
Chrono provides the datetime class for representing points in time.

3.1 datetime Class

A datetime is an array object that represents points in time in the familiar Gregorian
calendar.

This is an attempt to reproduce the functionality of Matlab’s datetime. It also contains
some Octave-specific extensions.

The underlying representation is that of a datenum (a double containing the number of
days since the Matlab epoch), but encapsulating it in an object provides several benefits:
friendly human-readable display, type safety, automatic type conversion, and time zone
support. In addition to the underlying datenum array, a datetime inclues an optional
TimeZone property indicating what time zone the datetimes are in.

3.1.1 datenum Compatibility

While the underlying data representation of datetime is compatible with (in fact, identical
to) that of datenums, you cannot directly combine them via assignment, concatenation, or
most arithmetic operations.

This is because of the signature of the datetime constructor. When combining objects
and primitive types like double, the primitive type is promoted to an object by calling the
other object’s one-argument constructor on it. However, the one-argument numeric-input
consstructor for datetime does not accept datenums: it interprets its input as datevecs
instead. This is due to a design decision on Matlab’s part; for compatibility, Octave does
not alter that interface.

To combine datetimes with datenums, you can convert the datenums to datetimes
by calling datetime.ofDatenum or datetime (x, ’ConvertFrom’, ’datenum’), or you can
convert the datetimes to datenums by accessing its dnums field with x.dnums.
Examples:
dt = datetime(’2011-03-04’)
dn = datenum(’2017-01-01°)
[dt dn]
= error: datenum: expected date vector containing [YEAR, MONTH, DAY, HOUR, MINUTE
[dt datetime.ofDatenum(dn)]
= 04-Mar-2011 01-Jan-2017

Also, if you have a zoned datetime, you can’t combine it with a datenum, because
datenums do not carry time zone information.

4 Time Zones

Chrono has support for representing dates in time zones and for converting between time
zones.

A datetime may be "zoned" or "zoneless". A zoneless datetime does not have a time
zone associated with it. This is represented by an empty TimeZone property on the datetime
object. A zoneless datetime represents the local time in some unknown time zone, and
assumes a continuous time scale (no DST shifts).

A zoned datetime is associated with a time zone. It is represented by having the time
zone’s IANA zone identifier (e.g. UTC’ or ’America/New_York’) in its TimeZone property.
A zoned datetime represents the local time in that time zone.

By default, the datetime constructor creates unzoned datetimes. To make a zoned
datetime, either pass the ’TimeZone’ option to the constructor, or set the TimeZone prop-
erty after object creation. Setting the TimeZone property on a zoneless datetime declares
that it’s a local time in that time zone. Setting the TimeZone property on a zoned datetime
turns it back into a zoneless datetime without changing the local time it represents.

You can tell a zoned from a zoneless time zone in the object display because the time
zone is included for zoned datetimes.

% Create an unzoned datetime
d = datetime(’2011-03-04 06:00:00’)
= 04-Mar-2011 06:00:00

% Create a zoned datetime

d_ny = datetime(’2011-03-04 06:00:00°, ’TimeZone’, ’America/New_York’)
= 04-Mar-2011 06:00:00 America/New_York

% This is equivalent

d_ny = datetime(’2011-03-04 06:00:00°);

d_ny.TimeZone = ’America/New_York’
= 04-Mar-2011 06:00:00 America/New_York

% Convert it to Chicago time
d_chi.TimeZone = ’America/Chicago’
= 04-Mar-2011 05:00:00 America/Chicago
When you combine two zoned datetimes via concatenation, assignment, or arithmetic,
if their time zones differ, they are converted to the time zone of the left-hand input.

d_ny = datetime(’2011-03-04 06:00:00°, ’TimeZone’, ’America/New_York’)

d_la = datetime(’2011-03-04 06:00:00°, ’TimeZone’, ’America/Los_Angeles’)|]
d_la - d_ny
= 03:00:00

You cannot combine a zoned and an unzoned datetime. This results in an error being
raised.

Warning: Normalization of "nonexistent" times (like between 02:00 and 03:00
on a "spring forward" DST change day) is not implemented yet. The results of
converting a zoneless local time into a time zone where that local time did not
exist are currently undefined.

Chapter 4: Time Zones 5

4.1 Defined Time Zones

Chrono’s time zone data is drawn from the JANA Time Zone Database (https://www.
iana.org/time-zones), also known as the “Olson Database”. Chrono includes a copy of
this database in its distribution so it can work on Windows, which does not supply it like
Unix systems do.

You can use the timezones function to list the time zones known to Chrono. These will
be all the time zones in the IANA database on your system (for Linux and macOS) or in
the TANA time zone database redistributed with Chrono (for Windows).

Note: The IANA Time Zone Database only covers dates from about the year
1880 to 2038. Converting time zones for datetimes outside that range is cur-
rently unimplemented. (Chrono needs to add support for proleptic POSIX time
zone rules, which are used to govern behavior outside that date range.)

https://www.iana.org/time-zones
https://www.iana.org/time-zones

5 Durations

5.1 duration Class

A duration represents a period of time in fixed-length seconds (or minutes, hours, or
whatever you want to measure it in.)

A duration has a resolution of about a nanosecond for typical dates. The underlying
representation is a double representing the number of days elapsed, similar to a datenum,
except it’s interpreted as relative to some other reference point you provide, instead of being
relative to the Matlab/Octave epoch.

You can add or subtract a duration to a datetime to get another datetime. You can
also add or subtract durations to each other.

5.2 calendarDuration Class

A calendarDuration represents a period of time in variable-length calendar components.
For example, years and months can have varying numbers of days, and days in time zones
with Daylight Saving Time have varying numbers of hours. A calendarDuration does
arithmetic with "whole" calendar periods.

calendarDurations and durations cannot be directly combined, because they are not
semantically equivalent. (This may be relaxed in the future to allow durations to be
interpreted as numbers of days when combined with calendarDurations.)

d = datetime(’2011-03-04 00:00:00’)
= 04-Mar-2011

cdur = calendarDuration(1l, 3, 0)
= 1y 3mo

d2 = d + cdur
= 04-Jun-2012

6 Missing Functionality

Chrono is based on Matlab’s date/time API and supports most of its major functionality.
But not all of it is implemented yet. The missing parts are currently:

e POSIX time zone support for years outside the TANA time zone database coverage
o Week-of-year (ISO calendar) calculations

e Various ’ConvertFrom’ forms for datetime and duration

e Support for LDML formatting for datetime

e Various functions: between, caldiff, dateshift, week

e isdst, isweekend

e calendarDuration.split

e duration.Format support

e UTCOffset and DSTOffset fields in the output of timezones ()

e Plotting support

It is the author’s hope that all these will be implemented some day.

7 Function Reference

7.1 Functions by Category

7.1.1 Date Representation

Section 7.2.4 [datetime], page 11
‘datetime’ represents points in time using the Gregorian calendar.

Section 7.2.8 [isdatetime], page 19
True if input is a ’datetime’ array, false otherwise.

Section 7.2.12 [NaT], page 20
“Not-a-Time”.

7.1.2 Durations

Section 7.2.1 [calendarDuration], page 9
Durations of time using variable-length calendar periods, such as days, months,
and years, which may vary in length over time.

Section 7.2.2 [calmonths], page 10
Create a ’calendarDuration’ that is a given number of calendar months long.

Section 7.2.3 [calyears], page 11
Construct a ’calendarDuration’ a given number of years long.

Section 7.2.5 [days|, page 17
Duration in days.

Section 7.2.6 [duration], page 17
Represents durations or periods of time as an amount of fixed-length time (i.e.

Section 7.2.7 [hours|, page 19
Create a ’duration’ X hours long, or get the hours in a ’duration’ X.

Section 7.2.9 [isduration], page 19
True if input is a ’duration’ array, false otherwise.

Section 7.2.10 [milliseconds], page 19
Create a ’duration’ X milliseconds long, or get the milliseconds in a ’duration
X.

)

Section 7.2.11 [minutes], page 19
Create a ’duration’ X hours long, or get the hours in a ’duration’ X.

Section 7.2.13 [seconds], page 20
Create a ’duration’ X seconds long, or get the seconds in a ’duration’ X.

Section 7.2.14 [timezones], page 20
List all the time zones defined on this system.

Section 7.2.15 [years], page 20
Create a ’duration’ X years long, or get the years in a ’duration’ X.

Chapter 7: Function Reference 9

7.2 Functions Alphabetically

7.2.1 calendarDuration

calendarDuration [Class]
Durations of time using variable-length calendar periods, such as days, months, and
years, which may vary in length over time. (For example, a calendar month may have
28, 30, or 31 days.)

char Sign [Instance Variable of calendarDuration]
The sign (1 or -1) of this duration, which indicates whether it is a positive or negative
span of time.

char Years [Instance Variable of calendarDuration]
The number of whole calendar years in this duration. Must be integer-valued.

char Months [Instance Variable of calendarDuration]
The number of whole calendar months in this duration. Must be integer-valued.

char Days [Instance Variable of calendarDuration]
The number of whole calendar days in this duration. Must be integer-valued.

char Hours [Instance Variable of calendarDuration]
The number of whole hours in this duration. Must be integer-valued.

char Minutes [Instance Variable of calendarDuration]
The number of whole minutes in this duration. Must be integer-valued.

char Seconds [Instance Variable of calendarDuration]
The number of seconds in this duration. May contain fractional values.

char Format [Instance Variable of calendarDuration]
The format to display this calendarDuration in. Currently unsupported.

This is a single value that applies to the whole array.
7.2.1.1 calendarDuration.calendarDuration

obj = calendarDuration () [Constructor]
Constructs a new scalar calendarDuration of zero elapsed time.

obj = calendarDuration (Y, M, D) [Constructor]
obj = calendarDuration (Y, M, D, H, MI, S) [Constructor]
Constructs new calendarDuration arrays based on input values.

7.2.1.2 calendarDuration.isnat

out = isnat (obj) [Method|
True if input elements are NaT.

Returns logical array the same size as obj.

Chapter 7: Function Reference 10

7.2.1.3 calendarDuration.uminus

out

= uminus (obj) [Method|
Unary minus. Negates the sign of obj.

7.2.1.4 calendarDuration.plus

out

= plus (4, B) [Method]
Addition: add two calendarDurations.

All the calendar elements (properties) of the two inputs are added together. No
normalization is done across the elements, aside from the normalization of NaNs.

If B is numeric, it is converted to a calendarDuration using calendarDuration.ofDays.|]

Returns a calendarDuration.

7.2.1.5 calendarDuration.times

out

= times (obj, B) [Method]
Multiplication: Multiplies a calendarDuration by a numeric factor.

Returns a calendarDuration.

7.2.1.6 calendarDuration.minus

out

= times (4, B) [Method|
Subtraction: Subtracts one calendarDuration from another.

Returns a calendarDuration.

7.2.1.7 calendarDuration.dispstrs

out

= dispstrs (obj) [Method]
Get display strings for each element of obj.
Returns a cellstr the same size as obj.

7.2.1.8 calendarDuration.isnan

out

= isnan (obj) [Method]
True if input elements are NaT. This is just an alias for isnat, provided for compat-
ibility and polymorphic programming purposes.

Returns logical array the same size as obj.

7.2.2 calmonths

out

= calmonths (x) [Function File]
Create a calendarDuration that is a given number of calendar months long.

Input x is a numeric array specifying the number of calendar months.

This is a shorthand alternative to calling the calendarDuration constructor with
calendarDuration(0, x, 0).

Returns a new calendarDuration object of the same size as x.

See Section 7.2.1 [calendarDuration], page 9.

Chapter 7: Function Reference 11

7.2.3 calyears

out = calyears (x) [Function]
Construct a calendarDuration a given number of years long.

This is a shorthand for calling calendarDuration(x, 0, 0).

See Section 7.2.1 [calendarDuration], page 9.

7.2.4 datetime

datetime [Class]
datetime represents points in time using the Gregorian calendar.

The underlying values are doubles representing the number of days since the Matlab
epoch of "January 0, year 0". This has a precision of around nanoseconds for typical
times.

A datetime array is an array of date/time values, with each element holding a com-
plete date/time. The overall array may also have a TimeZone and a Format associated
with it, which apply to all elements in the array.

This is an attempt to reproduce the functionality of Matlab’s datetime. It also
contains some Octave-specific extensions.

double dnums [Instance Variable of datetime]
The underlying datenums that represent the points in time. These are always in
UTC.

This is a planar property: the size of dnums is the same size as the containing datetime
array object.

char TimeZone [Instance Variable of datetime]
The time zone this datetime array is in. Empty if this does not have a time zone
associated with it (“unzoned”). The name of an IANA time zone if this does.

Setting the TimeZone of a datetime array changes the time zone it is presented in for
strings and broken-down times, but does not change the underlying UTC times that
its elements represent.

char Format [Instance Variable of datetime]
The format to display this datetime in. Currently unsupported.

7.2.4.1 datetime.datetime

obj = datetime () [Constructor]
Constructs a new scalar datetime containing the current local time, with no time
zone attached.

obj = datetime (datevec) [Constructor]
obj = datetime (datestrs) [Constructor]
obj = datetime (in, ’ConvertFrom’, inType) [Constructor]
obj = datetime (Y, M, D, H, MI, S) [Constructor]
obj = datetime (Y, M, D, H, MI, MS) [Constructor]

Chapter 7: Function Reference 12

obj = datetime (..., ’Format’, Format, ’InputFormat’, [Constructor]
InputFormat, ’Locale’, InputLocale, ’PivotYear’, PivotYear,
>TimeZone’, TimeZone)
Constructs a new datetime array based on input values.

7.2.4.2 datetime.ofDatenum

obj = datetime.ofDatenum (dnums) [Static Method]
Converts a datenum array to a datetime array.

Returns an unzoned datetime array of the same size as the input.

7.2.4.3 datetime.ofDatestruct

obj = datetime.ofDatestruct (dstruct) [Static Method]
Converts a datestruct to a datetime array.

A datestruct is a special struct format used by Chrono that has fields Year, Month,
Day, Hour, Minute, and Second. It is not a standard Octave datatype.

Returns an unzoned datetime array.
7.2.4.4 datetime.posix2datenum

dnums = datetime.posix2datenum (pdates) [Static Method]
Converts POSIX (Unix) times to datenums

Pdates (numeric) is an array of POSIX dates. A POSIX date is the number of seconds
since January 1, 1970 UTC, excluding leap seconds. The output is implicitly in UTC.

7.2.4.5 datetime.datenum2posix

out = datetime.datenum2posix (dnums) [Static Method]
Converts Octave datenums to Unix dates.

The input datenums are assumed to be in UTC.
Returns a double, which may have fractional seconds.

7.2.4.6 datetime.proxyKeys

[keysA, keysB] = proxyKeys (a, b) [Method|
Computes proxy key values for two datetime arrays. Proxy keys are numeric values
whose rows have the same equivalence relationships as the elements of the inputs.

This is primarily for Chrono’s internal use; users will typically not need to call it or
know how it works.

Returns two 2-D numeric matrices of size n-by-k, where n is the number of elements
in the corresponding input.

7.2.4.7 datetime.ymd

[y, m, dl = ymd (obj) [Method]
Get the Year, Month, and Day components of a obj.
For zoned datetimes, these will be local times in the associated time zone.
Returns double arrays the same size as obj.

Chapter 7: Function Reference 13

7.2.4.8 datetime.hms

(h, m, s] = hms (obj) [Method|
Get the Hour, Minute, and Second components of a obj.

For zoned datetimes, these will be local times in the associated time zone.

Returns double arrays the same size as obj.

7.2.4.9 datetime.ymdhms

ly, m, d, h, mi, s] = ymdhms (obj) [Method|
Get the Year, Month, Day, Hour, Minute, and Second components of a obj.

For zoned datetimes, these will be local times in the associated time zone.

Returns double arrays the same size as obj.

7.2.4.10 datetime.timeofday

out = timeofday (obj) [Method|
Get the time of day (elapsed time since midnight).

For zoned datetimes, these will be local times in the associated time zone.

Returns a duration array the same size as obj.

7.2.4.11 datetime.week

out = week (obj) [Method|
Get the week of the year.

This method is unimplemented.

7.2.4.12 datetime.dispstrs

out = dispstrs (obj) [Method]
Get display strings for each element of obj.

Returns a cellstr the same size as obj.

7.2.4.13 datetime.datestr

out = datestr (obj) [Method]
out = datestr (obj, ...) [Method|
Format obj as date strings. Supports all arguments that core Octave’s datestr does.

Returns date strings as a 2-D char array.

7.2.4.14 datetime.datestrs

out = datestrs (obj) [Method|

out = datestrs (obj, ...) [Method]
Format obj as date strings, returning cellstr. Supports all arguments that core Oc-
tave’s datestr does.

Returns a cellstr array the same size as obj.

Chapter 7: Function Reference 14

7.2.4.15 datetime.datestruct

out = datestruct (obj) [Method]
Converts this to a "datestruct" broken-down time structure.

A "datestruct" is a format of struct that Chrono came up with. It is a scalar struct
with fields Year, Month, Day, Hour, Minute, and Second, each containing a double
array the same size as the date array it represents.

The values in the returned broken-down time are those of the local time in this’
defined time zone, if it has one.

Returns a struct with fields Year, Month, Day, Hour, Minute, and Second. Each field
contains a double array of the same size as this.

This is an Octave extension.
7.2.4.16 datetime.posixtime

out = posixtime (obj) [Method|
Converts this to POSIX time values (seconds since the Unix epoch)

Converts this to POSIX time values that represent the same time. The returned
values will be doubles that may include fractional second values. POSIX times are,
by definition, in UTC.

Returns double array of same size as this.

7.2.4.17 datetime.datenum

out = datenum (obj) [Method]
DATENUM Convert this to datenums that represent the same local time

Returns double array of same size as this.

7.2.4.18 datetime.isnat

out = isnat (obj) [Method|
True if input elements are NaT.

Returns logical array the same size as obj.

7.2.4.19 datetime.isnan

out = isnan (obj) [Method]
True if input elements are NaT. This is an alias for isnat to support type compati-
bility and polymorphic programming.
Returns logical array the same size as obj.

7.2.4.20 datetime.lt

out = 1t (4, B) [Method]
True if A is less than B. This defines the < operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

Chapter 7: Function Reference 15

7.2.4.21 datetime.le

out = le (4, B) [Method|
True if A is less than or equal toB. This defines the <= operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

7.2.4.22 datetime.ne

out = ne (4, B) [Method|
True if A is not equal to B. This defines the != operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

7.2.4.23 datetime.eq

out = eq (4, B) [Method|
True if A is equal to B. This defines the == operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

7.2.4.24 datetime.ge

out = ge (4, B) [Method]
True if A is greater than or equal to B. This defines the >= operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

7.2.4.25 datetime.gt

out = gt (4, B) [Method]
True if A is greater than B. This defines the > operator for datetimes.

Inputs are implicitly converted to datetime using the one-arg constructor or conver-
sion method.

Returns logical array the same size as obj.

7.2.4.26 datetime.plus

out = plus (4, B) [Method|
Addition (+ operator). Adds a duration, calendarDuration, or numeric B to a
datetime A.

Numeric B inputs are implicitly converted to duration using duration.ofDays.

Returns datetime array the same size as A.

Chapter 7: Function Reference 16

7.2.4.27 datetime.minus

out = minus (4, B) [Method]
Subtraction (- operator). Subtracts a duration, calendarDuration or numeric B
from a datetime A, or subtracts two datetimes from each other.

If both inputs are datetime, then the output is a duration. Otherwise, the output
is a datetime.

Numeric B inputs are implicitly converted to duration using duration.ofDays.

Returns an array the same size as A.

7.2.4.28 datetime.diff

out = diff (obj) [Method]
Differences between elements.
Computes the difference between each successive element in obj, as a duration.

Returns a duration array the same size as obj.
7.2.4.29 datetime.isbetween

out = isbetween (obj, lower, upper) [Method]
Tests whether the elements of obj are between lower and upper.

All inputs are implicitly converted to datetime arrays, and are subject to scalar
expansion.

Returns a logical array the same size as the scalar expansion of the inputs.
7.2.4.30 datetime.linspace

out = linspace (from, to, n) [Method]
Linearly-spaced values in date/time space.

Constructs a vector of datetimes that represent linearly spaced points starting at
from and going up to to, with n points in the vector.

from and to are implicitly converted to datetimes.
n is how many points to use. If omitted, defaults to 100.

Returns an n-long datetime vector.
7.2.4.31 datetime.convertDatenumTimeZone

out = datetime.convertDatenumTimeZone (dnum, [Static Method]
fromZoneld, toZoneld)
Convert a datenum from one time zone to another.

dnum is a datenum array to convert.

fromZoneld is a charvec containing the IJANA Time Zone identifier for the time zone
to convert from.

toZoneld is a charvec containing the IANA Time Zone identifier for the time zone to
convert to.

Returns a datenum array the same size as dnum.

Chapter 7: Function Reference 17

7.2.5 days

out = days (x) [Function]
Duration in days.

If x is numeric, then out is a duration array in units of fixed-length 24-hour days,
with the same size as x.

If x is a duration, then returns a double array the same size as x indicating the
number of fixed-length days that each duration is.

7.2.6 duration

duration [Class]
Represents durations or periods of time as an amount of fixed-length time (i.e. fixed-
length seconds). It does not care about calendar things like months and days that
vary in length over time.

This is an attempt to reproduce the functionality of Matlab’s duration. It also
contains some Octave-specific extensions.

double days [Instance Variable of duration]
The underlying datenums that represent the durations, as number of (whole and
fractional) days. These are uniform 24-hour days, not calendar days.

This is a planar property: the size of days is the same size as the containing duration
array object.

char Format [Instance Variable of duration]
The format to display this duration in. Currently unsupported.

7.2.6.1 duration.duration

obj = duration () [Constructor]
Constructs a new scalar duration of zero elapsed time.

obj = duration (durationstrs) [Constructor]

obj = duration (durationstrs, ’InputFormat’, InputFormat) [Constructor]

obj = duration (H, MI, S) [Constructor]

obj = duration (H, MI, S, MS) [Constructor]
Constructs a new duration array based on input values.

7.2.6.2 duration.ofDays

obj = duration.ofDays (dnums) [Static Method|

Converts a double array representing durations in whole and fractional days to a
duration array. This is the method that is used for implicit conversion of numerics
in many cases.

Returns a duration array of the same size as the input.

Chapter 7: Function Reference 18

7.2.6.3 duration.years

out = years (obj) [Method]
Equivalent number of years.

Gets the number of fixed-length 365.2425-day years that is equivalent to this duration.

Returns double array the same size as obj.

7.2.6.4 duration.hours

out = hours (obj) [Method|
Equivalent number of hours.

Gets the number of fixed-length 60-minute hours that is equivalent to this duration.

Returns double array the same size as obj.
7.2.6.5 duration.minutes

out = minutes (obj) [Method]
Equivalent number of minutes.

Gets the number of fixed-length 60-second minutes that is equivalent to this duration.

Returns double array the same size as obj.
7.2.6.6 duration.seconds

out = seconds (obj) [Method|
Equivalent number of seconds.

Gets the number of seconds that is equivalent to this duration.

Returns double array the same size as obj.
7.2.6.7 duration.milliseconds

out = milliseconds (obj) [Method|
Equivalent number of milliseconds.

Gets the number of milliseconds that is equivalent to this duration.

Returns double array the same size as obj.

7.2.6.8 duration.dispstrs

out = duration (obj) [Method|
Get display strings for each element of obj.

Returns a cellstr the same size as obj.

7.2.6.9 duration.char

out = char (obj) [Method|
Convert to char. The contents of the strings will be the same as returned by dispstrs.

This is primarily a convenience method for use on scalar objs.

Returns a 2-D char array with one row per element in obj.

Chapter 7: Function Reference 19

7.2.6.10 duration.linspace
out = linspace (from, to, n) [Method]
Linearly-spaced values in time duration space.

Constructs a vector of durations that represent linearly spaced points starting at
from and going up to to, with n points in the vector.

from and to are implicitly converted to durations.
n is how many points to use. If omitted, defaults to 100.

Returns an n-long datetime vector.
7.2.7 hours

out = hours (x) [Function File]
Create a duration x hours long, or get the hours in a duration x.

If input is numeric, returns a duration array that is that many hours in time.
If input is a duration, converts the duration to a number of hours.

Returns an array the same size as x.
7.2.8 isdatetime

tf = isdatetime (x) [Function]
True if input is a datetime array, false otherwise.

Returns a logical array the same size as x.
7.2.9 isduration

tf = isduration (x) [Function]
True if input is a duration array, false otherwise.

Returns a logical array the same size as x.
7.2.10 milliseconds

out = milliseconds (x) [Function File]
Create a duration x milliseconds long, or get the milliseconds in a duration x.

If input is numeric, returns a duration array that is that many milliseconds in time.
If input is a duration, converts the duration to a number of milliseconds.

Returns an array the same size as x.
7.2.11 minutes

out = hours (x) [Function File]
Create a duration x hours long, or get the hours in a duration x.

Chapter 7: Function Reference 20

7.2.12 NaT
out = NaT () [Function]
out = NaT (sz) [Function]

“Not-a-Time”. Creates NaT-valued arrays.

Constructs a new datetime array of all NaT values of the given size. If no input sz is
given, the result is a scalar NaT.

NaT is the datetime equivalent of NaN. It represents a missing or invalid value. NaT
values never compare equal to, greater than, or less than any value, including other
NaTs. Doing arithmetic with a NaT and any other value results in a NaT.

7.2.13 seconds

out = seconds (x) [Function File]
Create a duration x seconds long, or get the seconds in a duration x.

If input is numeric, returns a duration array that is that many seconds in time.
If input is a duration, converts the duration to a number of seconds.

Returns an array the same size as x.

7.2.14 timezones

out
out

timezones () [Function]
timezones (area) [Function]
List all the time zones defined on this system.

This lists all the time zones that are defined in the IANA time zone database used by
this Octave. (On Linux and macOS, that will generally be the system time zone data-
base from /usr/share/zoneinfo. On Windows, it will be the database redistributed
with the Chrono package.

If the return is captured, the output is returned as a table if your Octave has table
support, or a struct if it does not. It will have fields/variables containing column

vectors:
Name The IANA zone name, as cellstr.
Area The geographical area the zone is in, as cellstr.

Compatibility note: Matlab also includes UTCOffset and DSTOffset fields in the
output; these are currently unimplemented.

7.2.15 years

out = years (x) [Function File]
Create a duration x years long, or get the years in a duration x.

If input is numeric, returns a duration array in units of fixed-length years of 365.2425
days each.

If input is a duration, converts the duration to a number of fixed-length years as
double.

Chapter 7: Function Reference 21

Note: years creates fixed-length years, which may not be what you want. To create
a duration of calendar years (which account for actual leap days), use calyears.

See Section 7.2.3 [calyears], page 11.

22

8 Copying

8.1 Package Copyright

Chrono for Octave is covered by the GNU GPLv3, the Unicode License, and Public Domain.
All the code in the package is GNU GPLv3.
The TANA Time Zone Database redistributed with the package is Public Domain.

The Windows Zones file redistributed with the package is covered by the Unicode License
(http://www.unicode.org/copyright.html).

8.2 Manual Copyright

This manual is for Chrono, version 0.3.1.
Copyright (©) 2019 Andrew Janke

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the same conditions as for modified versions.

http://www.unicode.org/copyright.html
http://www.unicode.org/copyright.html

	Introduction
	Getting Started
	Date Representation
	datetime Class
	datenum Compatibility

	Time Zones
	Defined Time Zones

	Durations
	duration Class
	calendarDuration Class

	Missing Functionality
	Function Reference
	Functions by Category
	Date Representation
	Durations

	Functions Alphabetically
	calendarDuration
	calendarDuration.calendarDuration
	calendarDuration.isnat
	calendarDuration.uminus
	calendarDuration.plus
	calendarDuration.times
	calendarDuration.minus
	calendarDuration.dispstrs
	calendarDuration.isnan

	calmonths
	calyears
	datetime
	datetime.datetime
	datetime.ofDatenum
	datetime.ofDatestruct
	datetime.posix2datenum
	datetime.datenum2posix
	datetime.proxyKeys
	datetime.ymd
	datetime.hms
	datetime.ymdhms
	datetime.timeofday
	datetime.week
	datetime.dispstrs
	datetime.datestr
	datetime.datestrs
	datetime.datestruct
	datetime.posixtime
	datetime.datenum
	datetime.isnat
	datetime.isnan
	datetime.lt
	datetime.le
	datetime.ne
	datetime.eq
	datetime.ge
	datetime.gt
	datetime.plus
	datetime.minus
	datetime.diff
	datetime.isbetween
	datetime.linspace
	datetime.convertDatenumTimeZone

	days
	duration
	duration.duration
	duration.ofDays
	duration.years
	duration.hours
	duration.minutes
	duration.seconds
	duration.milliseconds
	duration.dispstrs
	duration.char
	duration.linspace

	hours
	isdatetime
	isduration
	milliseconds
	minutes
	NaT
	seconds
	timezones
	years

	Copying
	Package Copyright
	Manual Copyright

