

MaterialX: An Open Standard for
Network-Based CG Object Looks

Doug Smythe - smythe@ilm.com

Jonathan Stone - jstone@lucasfilm.com
July 21, 2018

Introduction

Many Computer Graphics production studios use workflows involving multiple software tools for
different parts of the production pipeline. There is also a significant amount of sharing and outsourcing
of work across multiple facilities, requiring companies to hand off fully look-developed models to other
divisions or studios which may use different software packages and rendering systems. In addition,
studio rendering pipelines that previously used monolithic shaders built by expert programmers or
technical directors with fixed, predetermined texture-to-shader connections and hard-coded texture
color-correction options are moving toward more flexible node graph-based shader networks built up by
connecting input texture images and procedural texture generators to various inputs of shaders through a
tree of image processing and blending operators.

There are at least four distinct interrelated data relationships needed to specify the complete "look" of a
CG object:

1. Image processing networks of sources, operators, connections and parameters, outputting a
number of spatially-varying data streams.

2. Geometry-specific information such as associated texture filenames or IDs for various map types.
3. Associations between spatially-varying data streams and/or uniform values and the inputs of

BxDF shaders, defining a number of materials.
4. Associations between materials and specific geometries to create a number of looks.

To our knowledge, there is no other common, open standard for describing all of the above data
relationships. Various applications have their own file formats to store this information, but these are
either closed, proprietary, inadequately documented or implemented in such a way that using them
involves opening or replicating a full application. Thus, there is a need for an open,
platform-independent, well-defined standard for specifying the "look" of computer graphics objects built
using shader networks so that these looks (or sub-components of a look) can be passed from one
software package to another or between different facilities.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 1

mailto:smythe@ilm.com
mailto:jstone@lucasfilm.com

Proposal

We propose a new material content schema, MaterialX, along with a corresponding XML-based file
format to read and write MaterialX content. The MaterialX schema defines several primary element
types plus a number of supplemental and sub-element types. The primary element types are:

● A set of standard nodes for defining data-processing graphs
● <nodedef> for extending the standard node set with BxDF shaders and custom processing

operators
● <material> for defining shader instances with bindings to spatially-varying data streams and

uniform values
● <geominfo> for defining geometric attributes that may be referenced from node graphs
● <look> for defining specific combinations of material and property bindings to geometries

An MTLX file is a standard XML file that represents a MaterialX document, with XML elements and
attributes used to represent the corresponding MaterialX elements and attributes. MTLX files may be
fully self-contained, or split across several files to encourage sharing and reuse of components.

This document describes the core MaterialX specification. A companion document, MaterialX
Supplemental Notes, describes additional node types and other information about the library.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 2

Table of Contents

Introduction 1

MaterialX Overview 5
Definitions 7
MaterialX Names 8
MaterialX Data Types 8
Custom Data Types 10
MTLX File Format Definition 12
Color Spaces and Color Management Systems 13
MaterialX Namespaces 14
Geometry Representation 15

Lights 16
Geometry Name Expressions 16
Collections 16

Geometry and File Prefixes 17
Image Filename Substitutions 18

Nodes 20
Inputs and Parameters 20

Parameter Expressions and Function Curves 21
Output Elements 21
Node Graph Elements 22
Standard Source Nodes 23

Texture Nodes 23
Procedural Nodes 24
Geometric Nodes 26
Global Nodes 28
Application Nodes 28

Standard Operator Nodes 30
Math Nodes 30
Adjustment Nodes 34
Compositing Nodes 35
Conditional Nodes 37
Channel Nodes 38
Convolution Nodes 39

Organization Nodes 40
Standard Node Parameters 40
Standard UI Attributes 40

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 3

Node Graph Examples 41
Custom Nodes 46

Custom Node Declaration 46
Custom Node Definition 49
Node Graph Implementations 52
Custom Node Use 53

Shader Nodes 54
Standard Shader-Semantic Operator Nodes 56

Custom Attributes, Parameters and Inputs 56

Materials 58
Material Elements 58

ShaderRef Elements 58
BindParam Elements 59
BindInput Elements 59
BindToken Elements 60

Material Variants 61
Material Examples 61

Geometry Info Elements 67
GeomInfo Definition 67

GeomAttr Elements 67
Token Elements 68
GeomAttrDefault Elements 68
GeomTokenDefault Elements 69
Reserved GeomAttr Names 69

Look and Property Elements 70
Property Definition 70
Look Definition 71
Assignment Elements 71

MaterialAssign Elements 71
VariantAssign Elements 72
Visibility Elements 72
PropertyAssign Elements 74

Look Examples 74

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 4

MaterialX Overview

The diagram on the following page gives a high-level overview of what each element defines and how
the elements connect together to form a complete set of look definitions. Details of nodes, <geominfo>,
<material>, <look> and other elements are described in the sections that follow.

Flow of information generally proceeds counterclockwise through the diagram. The green "GeomInfo
Tokens" box shows how named attributes and string tokens can be associated with geometries. The red
"Node Graphs" box defines a number of texture processing networks, which generally determine which
input texture images to read by substituting GeomInfo Token strings defined for each geometry into a
specified portion of the image file name. Rendering materials referencing one or more shaders and
assigning values and input bindings to them are illustrated in the blue "Materials" box. These materials
are then assigned to specified geometries via MaterialAssigns ("MA" in the diagram) as shown in the
violet "Looks" box.

The example diagram defines two looks: L1 and L2. L1 uses material M1 (assigned to geometry /a/g1
through /a/g6), while L2 uses materials M1 (assigned to /a/g1, /a/g2 and /a/g3) and M2 (assigned to
/a/g4, /a/g5 and /a/g6). Both materials reference the "basic_srf" shader, but M2 also references the
"bump_dsp" shader. Each of the materials bind shader input connections to named outputs from node
graphs N1, N2 and N3, but set different values for the interface parameters "altmix" and (for M2)
"bumpmult" as well as different value bindings for the basic_srf "roughness" parameter.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 5

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 6

Definitions

Because the same word can be used to mean slightly different things in different contexts, and because
each studio and package has its own vocabulary, it's important to define exactly what we mean by any
particular term in this proposal and use each term consistently.

An Element is a named object within a MaterialX document, which may possess any number of child
elements and attributes. An Attribute is a named property of a MaterialX element.

A Node is a computer program that generates or processes spatially-varying data. This specification
provides a set of standard nodes with precise definitions, and also supports the creation of custom nodes
for application-specific uses. The interface for a node’s incoming data is declared through Parameters,
which can hold only uniform values, Inputs, which may be spatially-varying, and Tokens, which are
string values that can be substituted into image filenames.

A Pattern is a node that generates or processes simple scalar, vector, and color data, and has access to
local properties of any geometry that has been bound. A Shader is a node that can generate or process
arbitrary lighting or BxDF data, and has access to global properties of the scene in which it is evaluated.

A Node Graph is a directed acyclic graph of nodes, which may be used to define arbitrarily complex
generation or processing networks. Common uses of Node Graphs are to describe a network of pattern
nodes flowing to a shader input, or to define a complex or layered node in terms of simpler nodes.

A Material is a container for shader references, with capabilities for binding constant and
spatially-varying data to the shader parameters and inputs.

A Stream refers to a flow of spatially-varying data from one node to another. A Stream most commonly
consists of color, vector, or scalar data, but can transport data of any standard or custom type.

A Layer is a named 1-, 2-, 3- or 4-channel color "plane" within an image file. Image file formats that do
not support multiple or named layers within a file should be treated as if the (single) layer was named
"rgba".

A Channel is a single float value within a color or vector value, e.g. each layer of an image might have a
red Channel, a green Channel, a blue Channel and an alpha Channel.

A Geometry is any renderable object, while a Partition refers to a specific named renderable subset of a
piece of geometry, such as a face set.

A Collection is a recipe for building a list of geometries, which can be used as a shorthand for assigning
e.g. a Material to a number of geometries in a Look.

A Target is a software environment that interprets MaterialX content to generate images, with common
examples being digital content creation tools and 3D renderers.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 7

MaterialX Names

All elements in MaterialX (nodes, materials, shaders, etc.) are required to have a name attribute of type
"string". The name attribute of a MaterialX element is its unique identifier, and no two elements within
the same scope (i.e. elements with the same parent) may share a name. Some element types (e.g.
<bindparam> or <bindinput>) serve the role of referencing an element at a different scope, and in this
situation the referencing element will share a name with the element it references.

Element names are restricted to upper- and lower-case letters, numbers, and underscores (“_”) from the
ASCII character set; all other characters and symbols are disallowed. MaterialX names are
case-sensitive and are not allowed to begin with a digit.

MaterialX Data Types

All values, input and output ports, and streams in MaterialX are strongly typed, and are explicitly
associated with a specific data type. The following standard data types are defined by MaterialX:

Base Types:
 integer, boolean, float, color2, color3, color4, vector2, vector3, vector4,

 matrix33, matrix44, string, filename, geomname

Array Types:
 integerarray, floatarray, color2array, color3array, color4array,

 vector2array, vector3array, vector4array, stringarray, geomnamearray

The following examples show the appropriate syntax for MaterialX attributes in MTLX files:

Integer, Float: just a value inside quotes:
 integervalue = "1"
 floatvalue = "1.0"

Boolean: the lower-case word "true" or "false" inside quotes:
 booleanvalue = "true"

Color types: MaterialX supports three different color types:

● color2 (red, alpha)
● color3 (red, green, blue)
● color4 (red, green, blue, alpha)

Color channel values should be separated by commas (with or without whitespace), within quotes:
 color2value = "0.1,1.0"
 color3value = "0.1,0.2,0.3"
 color4value = "0.1,0.2,0.3,1.0"

Note: all color3 values and the RGB components of a color4 value are presumed to be specified in the
"working color space" defined in the enclosing <materialx> element, although any element within a
document may provide a colorspace attribute that explicitly states the space in which color values
within its scope should be interpreted; implementations are expected to translate those color values into
the working color space before performing computations with those values. See the Color Spaces and
Color Management Systems section below.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 8

Vector types: similar to colors, MaterialX supports three different vector types:

● vector2 (x, y)
● vector3 (x, y, z)
● vector4 (x, y, z, w)

Coordinate values should be separated by commas (with or without whitespace), within quotes:
 vector2value = "0.234,0.885"
 vector3value = "-0.13,12.883,91.7"
 vector4value = "-0.13,12.883,91.7,1.0"

While colorN and vectorN types both describe vectors of floating-point values, they differ in a number of
significant ways. First, the final channel of a color2 or color4 value is interpreted as an alpha channel by
compositing operators, and is only meaningful within the [0, 1] range, while the fourth channel of a
vector4 value could be (but is not necessarily) interpreted as the "w" value of a homogeneous 3D vector.
Additionally, values of type color3 and color4 are always associated with a particular color space and are
affected by color transformations, while values of type vector3 and vector4 are not. More detailed rules
for colorN and vectorN operations may be found in the Standard Operators section of the specification.

Matrix types: MaterialX supports two matrix types that may be used to represent geometric and color
transforms. The matrix33 and matrix44 types, respectively, represent 3x3 and 4x4 matrices and are
written as nine or sixteen float values separated by commas, in row-major order:
 matrix33value = "1,0,0, 0,1,0, 0,0,1"

 matrix44value = "1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1"

String: literal text within quotes. See the MTLX File Format Definition section for details on
representing special characters within string data.
 stringvalue = "some text"

Filename: attributes of type "filename" are just strings within quotes, but specifically mean a Uniform
Resource Identifier (https://en.wikipedia.org/wiki/Uniform_Resource_Identifier) that represents a
reference to an external asset, such as a file on disk or a query into a content management system, with
image filename string substitution being performed on the string before the URI reference is resolved.
For maximum portability between applications, regular filenames relative to a current working directory
are generally preferred, especially for 

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 13

http://opencolorio.org/
http://www.oscars.org/science-technology/sci-tech-projects/aces

MaterialX reserves the color space name "none" to mean no color space conversion should be applied to
the images and color values within their scope.

MaterialX Namespaces

MaterialX supports the specification of “namespaces”, which qualify the MaterialX names of all
elements within their scope. Namespaces are specified via a namespace attribute in a <materialx>
element, and other MaterialX files which <xi:include> this .mtlx file can refer to its content without
worrying about element or object naming conflicts, similar to the way namespaces are used in various
programming languages. It is permissible for multiple <materialx> elements to specify the same
namespace; the elements from each will simply be merged into the same namespace. <materialx>
elements which do not specify a namespace will define elements into the (unnamed) global namespace.
MaterialX namespaces are most commonly used to define families of custom nodes (nodedefs), material
libraries, or commonly-used network shaders or nodegraphs.

References to elements in a different namespace are qualified using the syntax
"namespace:elementname", where namespace is the namespace at the scope of the referenced element
and elementname is the name of the referenced element. References to elements in the same namespace,
or to elements in the global namespace, should not be qualified.

Example:
Mtllib.mtlx contains the following (assuming that "..." contains necessary <shaderref> and other element
definitions):
 <?xml version="1.0" encoding="UTF-8"?>

 <materialx version="major.minor" namespace="stdmaterials">
 ...

 <material name="wood">

 ...

 </material>

 <material name="plastic">

 ...

 </material>

 </materialx>

Then another MaterialX file could reference these materials like this:
 <xi:include href="mtllib.mtlx"/>

 ...

 <look name="hero">

 <materialassign name="m1" material="stdmaterials:wood" collection="C_wood">

 <materialassign name="m2" material="stdmaterials:plastic"

collection="C_plastic">

 </look>

Similarly, if a .mtlx file defining the "site_ops" namespace defined a custom color3-typed node
"mynoise" with a single float parameter "f", it could be used in a node graph like this:
 <site_ops:mynoise name="mn1" type="color3">

 <parameter name="f" type="float" value="0.3"/>

 </site_ops:mynoise>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 14

Geometry Representation

Geometry is referenced by but not specifically defined within MaterialX content. The file in which
geometry is defined can optionally be declared using geomfile attributes within any element; that
geomfile declaration will then apply to any geometry name referenced within the scope of that
element, e.g. any geom attributes, including those defining the contents of collections (but not when
referencing the contents of a collection via a collection attribute). If a geomfile is not defined for the
scope of any particular geom attribute, it is presumed that the host application can resolve the location of
the geometry definition.

The geometry naming conventions used in the MaterialX specification are designed to be compatible
with those used in Alembic (http://www.alembic.io/) and USD (http://graphics.pixar.com/usd).
"Geometry" can be any particular geometric object that a host application may support, including but not
limited to polygons, meshes, subdivision surfaces, NURBS, implicit surfaces, particle sets, volumes,
lights, procedurally-defined objects, etc. The only requirements for MaterialX are that geometries are
named using the convention specified below, can be assigned to a material and can be rendered.

The naming of geometry should follow a syntax similar to UNIX full paths:

 /string1/string2/string3/...

E.g. an initial "/" followed by one or more hierarchy level strings separated by "/"s, ending with a final
string and no "/". The strings making up the path component for a level of hierarchy cannot contain
spaces or "/"s or any of the characters reserved for geometry name expressions (see below). Individual
implementations may have further restrictions on what characters may be used for hierarchy level names,
so for ultimate compatibility it is recommended to use names comprised only of upper- or lower-case
letters, digits 0-9, and underscores ("_").

Geometry names (e.g. the full path name) must be unique within the entire set of geometries referenced
in a setup. Note that there is no implied transformation hierarchy in the specified geometry paths: the
paths are simply the names of the geometry. However, the path-like nature of geometry names can be
used to benefit in geometry name expression pattern matching and assignments.

Note: if a geometry mesh is divided into partitions, the syntax for the parent mesh would be:
 /path/to/geom/meshname

and for the child partitions, the syntax would be:
 /path/to/geom/meshname/partitionname

Assignments to non-leaf locations apply hierarchically to all geometries below the specified location,
unless they are the target of another assignment. By extension, an assignment to "/" applies to all
geometries within the MaterialX setup, unless they are the target of another assignment.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 15

http://www.alembic.io/
http://graphics.pixar.com/usd

Lights

Computer Graphics assets often include lights as part of the asset, such as the headlights of a car.
MaterialX does not define "light" objects per se, but instead allows referencing externally-defined light
objects in the same manner as geometry, via a UNIX-like path. MaterialX does not describe the
position, view or shape of a light object: MaterialX presumes that these properties are stored within the
external representation.

Light object geometries can be turned off (muted) in looks by making the light geometry invisible,
assignment of "light"-context shader materials can be done using a <materialassign> within a <look>,
and illumination and shadowing assignments can be handled using <visibility> declarations for the light
geometry. See the Look Definition section below for details.

Geometry Name Expressions

Certain elements in MaterialX files support geometry specification via expressions. The syntax for
geometry name expressions in MaterialX largely follows that of “glob” patterns for filenames in Unix
environments, with a few extensions for the specific needs of geometry references.

Within a single hierarchy level (e.g. between "/"s):

● * matches 0 or more characters
● ? matches exactly one character
● [] are used to match any individual character within the brackets, with "-" meaning match

anything between the character preceding and the character following the "-"
● {} are used to match any of the comma-separated strings or expressions within the braces

Additionally, a "/" will match only exactly a single "/" in a geometry name, e.g. as a boundary for a
hierarchy level, while a "//" will match a single "/", or two "/"s any number of hierarchy levels apart; "//"
can be used to specify a match at any hierarchy depth. If a geometry name ends with "//*", the final "*"
will only match leaf geometries in the hierarchy. A geometry name of "//*" by itself will match all leaf
geometries in an entire scene, while the name "//*//" will match all geometries at any level, including
nested geometries, and the name "/a/b/c//*//" will match all geometries at any level below "/a/b/c". It
should be noted that for a mesh with partitions, it is the partitions and not the mesh which are treated as
leaf geometry by MaterialX geometry names using "//*".

Collections

Collections are recipes for building a list of geometries (which can be any path within the geometry
hierarchy), which can be used as a shorthand for assignments to a (potentially large) number of
geometries at once. Collections can be built up from lists of specific geometries, geometries matching
defined geometry name expressions, other collections, or any combination of those.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 16

A <collection> element contains lists of geometry expressions and/or collections to be included, and an
optional list of geometry expressions to be excluded:

 <collection name="collectionname" [includegeom="geomexpr1[,geomexpr2]..."]
 [includecollection="collectionname1[,collectionname2]..."]

 [excludegeom="geomexpr3[,geomexpr4]..."]/>

Either includegeom and/or includecollection must be specified. The includegeom and
includecollection lists are applied first, followed by the excludegeom list. This can be used to
build up the contents of a collection in pieces, or to add expression-matched geometry then remove
specific unwanted matched geometries. The contents of a collection can itself be used to define a portion
of another collection. The contents of each includecollection collection are effectively evaluated
in whole before being added to the collection being built.

If the containing file is capable of defining MaterialX-compliant collections (e.g. an Alembic or USD
file), its collections can be referred to in any situation where a collection=" name" reference is
allowed.

Geometry and File Prefixes

As a shorthand convenience, MaterialX allows the specification of a geomprefix attribute that will be
prepended to data values of type "geomname" or "geomnamearray" (e.g. geom attributes in
<geominfo> , <collection> , <materialassign> , and <visibility> elements) specified within
the scope of the element defining the geomprefix . For data values of type "geomnamearray", the
geomprefix is prepended to each individual comma-separated geometry name. Since the values of the
prefix and the geometry are string-concatenated, the value of a geomprefix should generally end with
a "/". Geomprefix is commonly used to split off leading portions of geometry paths common to all
geometry names, e.g. to define the "asset root" path.

So the following MTLX file snippets are equivalent:

 <materialx>

 <collection name="c_plastic" includegeom="/a/b/g1, /a/b/g2, /a/b/g5,

/a/b/c/d/g6"/>

 </materialx>

 <materialx geomprefix="/a/b/">

 <collection name="c_plastic" includegeom="g1, g2, g5, c/d/g6"/>

 </materialx>

MaterialX also allows the specification of a fileprefix attribute which will be prepended to
parameter values of type "filename" (e.g. file parameters in 

 <image name="in2" type="color3">

 <parameter name="file" type="filename" value="textures/color2/color2.tif"/>

 </image>

 </nodegraph>

 <nodegraph name="nodegraph1" fileprefix="textures/color/">

 <image name="in1" type="color3">

 <parameter name="file" type="filename" value="color1.tif"/>

 </image>

 <image name="in2" type="color3">

 <parameter name="file" type="filename" fileprefix="textures/"

 value="color2/color2.tif"/>

 </image>

 </nodegraph>

Note in the second example that 

 <image name="in2" type="color3">

 <parameter name="file" type="filename" value="<albedomap>"/>

 <parameter name="default" type="color3" value="0.18,0.18,0.18"/>

 </image>

Standard Texture nodes:

● image: samples data from a single image, or from a layer within a multi-layer image. When
used in the context of rendering a geometry, the image is mapped onto the geometry based on
geometry UV coordinates. Parameters and inputs:
○ file (parameter, filename, required): the URI of an image file. The filename can include

one or more substitutions to change the file name (including frame number) that is accessed,
as described in the Image Filename Substitutions section above.

○ layer (parameter, string, optional): the name of the layer to extract from a multi-layer input
file. If no value for layer is provided and the input file has multiple layers, then the
"default" layer will be used, or "rgba" if there is no "default" layer. Note: the number of
channels defined by the type of the 

 <image name="img2" type="color3">

 <parameter name="file" type="filename" value="layer2.tif"/>
 </image>

 <image name="img3" type="float">

 <parameter name="file" type="filename" value="mask1.tif"/>
 </image>

 <mix name="n0" type="color3">

 <input name="fg" type="color3" nodename="img1"/>

 <input name="bg" type="color3" nodename="img2"/>

 <input name="mix" type="float" nodename="img3"/>

 </mix>

 <multiply name="n1" type="color3">

 <input name="in1" type="color3" nodename="n0"/>

 <input name="in2" type="float" value="0.22"/>

 </multiply>

 <output name="diffuse" type="color3" nodename="n1"/>

</materialx>

Example 2: Same as above, but replacing the three single-channel input files with a single multi-channel
input file.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 42

<?xml version="1.0" encoding="UTF-8"?>
<materialx>
 <image name="img1" type="color3">

 <parameter name="file" type="filename" value="multilayer.tif"/>

 <parameter name="layer" type="string" value="diffuse1"/>

 </image>

 <image name="img2" type="color3">

 <parameter name="file" type="filename" value="multilayer.tif"/>
 <parameter name="layer" type="string" value="diffuse2"/>

 </image>

 <image name="img3" type="float">

 <parameter name="file" type="filename" value="multilayer.tif"/>
 <parameter name="layer" type="string" value="areamask"/>

 </image>

 <mix name="n3" type="color3">

 <input name="fg" type="color3" nodename="img1"/>

 <input name="bg" type="color3" nodename="img2"/>

 <input name="mix" type="float" nodename="img3"/>

 </mix>

 <multiply name="n4" type="color3">

 <input name="in1" type="color3" nodename="n3"/>

 <input name="in2" type="float" value="0.22"/>

 </multiply>

 <output name="diffuse" type="color3" nodename="n4"/>

</materialx>

The above file could be embedded within "multilayer.exr"s metadata field by setting the "file" parameter
of the input nodes to the special hostattr "{CONTAINER}":

 <image name="img1" type="color3">

 <parameter name="file" type="filename" value="{CONTAINER}"/>

 <parameter name="layer" type="string" value="diffuse1"/>

 </image>

 <image name="img2" type="color3">

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 43

 <parameter name="file" type="filename" value="{CONTAINER}"/>

 <parameter name="layer" type="string" value="diffuse2"/>

 </image>

 <image name="img3" type="float">

 <parameter name="file" type="filename" value="{CONTAINER}"/>

 <parameter name="layer" type="string" value="areamask"/>

 </image>

Example 3: A more complex example, using geometry attributes to define two diffuse albedo colors and
two masks, then color-correcting one albedo less red and more blue and increasing the contrast of the
other, blending the two through an area mask, and adding a small amount of scaled 2D Perlin noise
within a second mask. The graph outputs the area mask layer separately from the composited diffuse
albedo color.

<?xml version="1.0" encoding="UTF-8"?>

<materialx>

 <!-- Note: in a real file, there would need to be geominfos here to define

<diff_albedo> etc. token values for each geometry-->

 <image name="img1" type="color3">

 <parameter name="file" type="filename" value="<diff_albedo>"/>

 </image>

 <image name="img2" type="color3">

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 44

 <parameter name="file" type="filename" value="<dirt_albedo>"/>

 </image>

 <image name="img3" type="float">

 <parameter name="file" type="filename" value="<areamask>"/>

 </image>

 <image name="img4" type="float">

 <parameter name="file" type="filename" value="<noisemask>"/>

 </image>

 <constant name="n5" type="color3">

 <parameter name="value" type="color3" value="0.8,1.0,1.3"/>

 </constant>

 <multiply name="n6" type="color3">

 <input name="in1" type="color3" nodename="n5"/>

 <input name="in2" type="color3" nodename="img1"/>

 </multiply>

 <contrast name="n7" type="color3">

 <input name="in" type="color3" nodename="img2"/>

 <parameter name="amount" type="float" value="0.2"/>

 <parameter name="pivot" type="float" value="0.5"/>

 </contrast>

 <mix name="n8" type="color3">

 <input name="fg" type="color3" nodename="n7"/>

 <input name="bg" type="color3" nodename="n6"/>

 <input name="mix" type="float" nodename="img3"/>

 </mix>

 <texcoord name="t1" type="vector2"/>

 <multiply name="m1" type="vector2">

 <input name="in" type="vector2" nodename="t1"/>

 <parameter name="amount" type="float" value="0.003"/>

 </multiply>

 <noise2d name="n9" type="color3">

 <input name="texcoord" type="vector2" nodename="m1"/>

 <parameter name="amplitude" type="vector3" value="0.05,0.04,0.06"/>

 </noise2d>

 <inside name="n10" type="color3">

 <input name="mask" type="float" nodename="img4"/>

 <input name="in" type="color3" nodename="n9"/>

 </inside>

 <add name="n11" type="color3">

 <input name="in1" type="color3" nodename="n10"/>

 <input name="in2" type="color3" nodename="n8"/>

 </add>

 <output name="albedo" type="color3" nodename="n11"/>

 <output name="areamask" type="float" nodename="img3"/>

</materialx>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 45

Custom Nodes

Specific applications will commonly support sources and operators that do not map directly to standard
MaterialX nodes. Individual implementations may provide their own custom nodes, with <nodedef>
elements to declare their parameter interfaces, and <implementation> and/or <nodegraph> elements to
define their behaviors.

Custom Node Declaration
Each custom node must be explicitly declared with a <nodedef> element, specifying the expected names
and types of the node’s inputs and output(s).

Attributes for <nodedef> elements:

● name (string, required): a unique name for this <nodedef>
● node (string, required): the name of the custom node being defined
● inherit (string, optional): the name of a <nodedef> to inherit node definitions from; the types

of this nodedef and the inherited one must match, and the parameter/input/output definitions of
this nodedef will be applied on top of those in the inherited-from one.

● type (string, required): the type of the output of this custom node, which can be a standard
MaterialX type or a custom type declared through a <typedef>. <Nodedef>s for custom nodes
with multiple outputs should declare type as "multioutput".

● nodegroup (string, optional): an optional group to which this node declaration belongs.
Standard MaterialX nodes have nodegroup values matching the titles of the section headings in
which they are described, e.g. "texture", "procedural", "global", "geometric", "application",
"math", "adjustment", "compositing", "conditional", "channel", "convolution", or
"organizational".

● defaultinput (string, optional): for nodes with a single output, the name of an <input>
element within the <nodedef>, which must be the same type as type , and will be passed through
unmodified by applications that don’t have an implementation for this node. "multioutput"-type
nodedefs may not specify a defaultinput .

● default (same type as type , optional): for nodes with a single output, a constant value which
will be output by applications that don’t have an implementation for this node, or if a
defaultinput input is specified but that input is not connected. "multioutput"-type nodedefs
may not specify a default .

● version (string, optional): a version string for this nodedef, allowing usage of a node to
reference a specific version of a node. Version strings should be of the format "major[.minor]",
i.e. one or two integer numbers separated by a dot (the minor version is assumed to be "0" if not
provided). If there are multiple nodedefs for the same node and target with the same
combination of input and output types, they must each specify a version .

● isdefaultversion (boolean, optional): If true, then this nodedef should be used for node
instances which do not request a specific version. Specifying isdefaultversion "true" is
only required if there are multiple nodedefs for a node declaring a version , and it is not
permissible for multiple nodedefs for the same node and target with the same combination of
input and output types to set isdefaultversion "true". Defaults to "false".

● target (stringarray, optional): the set of targets to which this nodedef is restricted. By default, a
nodedef is considered universal, not restricted to any specific targets, but it is possible that certain
targets may have different parameter names or usage for the same node.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 46

● internalgeomprops (stringarray, optional): a list of MaterialX geometric properties (e.g.
"position", "normal", "texcoord", etc. with optional modifiers; see below) that the node expects to
be able to access internally. This metadata hint allows code generators to ensure this data is
available and can be used for error checking. Internalgeomprops is most useful for nodes
whose implementation is defined by external code; it is not necessary for nodegraph-defined
nodes, as the list of geometric properties accessed can be determined by examining the
nodegraph.

Custom nodes are allowed to overload a single node name by providing multiple <nodedef> elements
with different combinations of input and output types. This overloading is permitted both for custom
node names and for the standard MaterialX node set. Within the scope of a single MaterialX document
and its included content, no two <nodedef> elements with an identical combination of input and output
types for the same target and version may be provided for a single node name.

The inherit attribute may be provided to allow one <nodedef> to inherit from another: this is most
useful for defining additional parameters in a target- or version-specific <nodedef>, inheriting from a
generic, canonical definition of a node or shader.

The syntax for the internalgeomprops attribute is as follows:
 <nodedef name="name" ... internalgeomprops="geomprop1 [param1=value1]
 [param2=value2], geomprop2 [param1=value1] ..., ..."
e.g.
 <nodedef name="n1" ... internalgeomprops="normal space=world, tangent

 space=world index=1"

That is, a comma-separated list of MaterialX geometric property names, each of which may optionally be
followed by one or more "param=value" pairs indicating the values of various parameters associated
with the like-named Geometric node.

NodeDefs with multiple outputs must additionally define the appropriate number of child <output>
elements within the <nodedef> to define the name and types of each output; for nodes defined using a
nodegraph, the names and types of the outputs must agree with the <output> elements in the nodegraph.
Single-output <nodedef>s cannot contain an <output> element, as the (nameless) output's type and
default is set in the <nodedef> itself.

The parameter interface of a custom node is specified via a set of child <parameter>, <input> and
<token> elements of the <nodedef>.

Parameter elements are used within a <nodedef> to declare the uniform parameters of a node:

 <parameter name="parametername" type="parametertype" [value="value"]/>

Attributes for NodeDef Parameter elements:

● name (string, required): the name of the parameter
● type (string, required): the MaterialX type of the parameter
● value (same type as type , optional): a default value for this parameter, to be used if the node is

invoked without a value defined for this parameter. If a default value is not defined, then the
parameter becomes required, so any invocation of the custom node without a value assigned to

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 47

this parameter would be in error.
● uiname (string, optional): an alternative name for this parameter as it appears in the UI. If

uiname is not provided, then name is the presumed UI name for the parameter.
● uifolder (string, optional): the pathed name of the folder in which this parameter appears in

the UI, using a "/" character as a separator for nested UI folders.
● enum (attribute, stringarray, optional): a comma-separated list of string value descriptors that the

parameter is allowed to take: for string- and stringarray-type parameters, these are the actual
parameter values (or values per array index for stringarrays); for other types, these are the
"enum" labels e.g. as shown in the application user interface for each of the actual underlying
values specified by enumvalues . MaterialX itself does not enforce that a specified parameter
value is actually in this list.

● enumvalues (attribute, typearray, optional): for non-string/stringarray types, a comma-separated
list of values of the same base type as the <parameter> or <input>, representing the values that
would be used if the corresponding enum string was chosen in the UI. MaterialX itself does not
enforce that a specified parameter value is actually in this list. Note that implementations are
allowed to redefine enumvalues (but not enum) for specific targets: see the Custom Node
Definition section below.

● uimin (attribute, integer or float or colorN or vectorN , optional): for parameters of type integer,
float, colorN or vectorN, the minimum value that the UI allows for this particular value.
MaterialX itself does not enforce this as an actual minimum for value.

● uimax (attribute, integer or float or colorN or vectorN , optional): for parameters of type integer,
float, colorN or vectorN, the maximum value that the UI allows for this particular value.
MaterialX itself does not enforce this as an actual maximum for value.

Input elements are used within a <nodedef> to declare the spatially-varying inputs for a node:

 <input name="inputname" type="inputtype" [value="value"]/>

Attributes for NodeDef Input elements:

● name (string, required): the name of the shader input
● type (string, required): the MaterialX type of the shader input
● value (same type as type , optional): a default value for this input, to be used if the input

remains unconnected and is not otherwise assigned a value
● defaultgeomprop (string, optional): for vector2 or vector3 inputs, the name of an intrinsic

geometric property that provides the default value for this input, must be one of "position",
"normal", "tangent", "bitangent" or "texcoord" for vector3 inputs, or "texcoord" for vector2
inputs. This is effectively the same as declaring a default connection of the input to a Geometric
Node with default parameters.

● uiname (attribute, string, optional): an alternative name for this input as it appears in the UI. If
uiname is not provided, then name is the presumed UI name for the input.

● uifolder (attribute, string, optional): the pathed name of the folder in which this input appears
in the UI, using a "/" character as a separator for nested UI folders.

● uimin (attribute, integer or float or colorN or vectorN , optional): for inputs of type integer, float,
colorN or vectorN, the minimum value that the UI allows for this particular value. MaterialX
itself does not enforce this as an actual minimum for value.

● uimax (attribute, integer or float or colorN or vectorN , optional): for inputs of type integer, float,
colorN or vectorN, the maximum value that the UI allows for this particular value. MaterialX

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 48

itself does not enforce this as an actual maximum for value.

It is permissible to define a value or a defaultgeomprop for an input but not both. If neither value
or defaultgeomprop are defined, then the input becomes required, and any invocation of the custom
node without providing a value or connection for this input would be in error.

Token elements are used within a <nodedef> to declare uniform string-substitution values to be
referenced and substituted within image filenames used in a node's nodegraph implementation:

 <token name="tokenname" type="tokentype" [value="value"]/>

Attributes for NodeDef Token elements:

● name (string, required): the name of the token
● type (string, required): the MaterialX type of the token; when the token's value is substituted

into a filename, the token value will be cast to a string, so string or integer types are
recommended for tokens, although any MaterialX type is permitted.

● value (same type as type , optional): a default value for this token, to be used if the node is
invoked without a value defined for this token. If a default value is not defined, then the token
becomes required, so any invocation of the custom node without a value assigned to that token
would be in error.

● uiname (attribute, string, optional): an alternative name for this token as it appears in the UI. If
uiname is not provided, then name is the presumed UI name for the token.

● uifolder (attribute, string, optional): the pathed name of the folder in which this token appears
in the UI, using a "/" character as a separator for nested UI folders.

Please see Example 3 in the Material Examples section below for an example of how Tokens are used.

Custom Node Definition
Once the parameter interface of a custom node has been declared through a <nodedef>, MaterialX
provides two methods for precisely defining its functionality: via an <implementation> element that
references external source code, or via a <nodegraph> element that composes the required functionality
from existing nodes. Providing a definition for a custom node is optional in MaterialX, but is
recommended for maximum clarity and portability.

Implementation elements are used to associate external function source code with a specific nodedef.
Implementation elements support the following attributes:

● name (string, required): a unique name for this <implementation>
● nodedef (string, required): the name of the <nodedef> for which this <implementation> applies
● implname (string, optional): an alternative name for this node for the specified target; this

allows one to say that for this particular target, the node/shader is called something else but is
functionally equivalent to the node described by the nodedef. Note that node graphs in MaterialX
documents should always use the node names defined in the nodedefs, never
implementation-specific names.

● file (filename, optional): the URI of an external file containing the source code for the entry
point of this particular node template. This file may contain source code for other templates of
the same custom node, and/or for other custom nodes. Ideally, source code for nodes should be

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 49

written in a portable language such as OSL, MDL or HLSL, but any language supported by the
target system (if specified) is acceptable.

● function (string, optional): the name of a function within the external file that contains the
implementation of this node. If a file is specified, then function is required.

● language (string, optional): when file is specified, the language in which the file code is
written; defaults to "osl". Recommended values for language include "osl", "glsl", "hlsl",
"mdl", and "cpp".

● target (stringarray, optional): the set of targets to which this implementation is restricted. By
default, an implementation is considered applicable to all targets that the referenced nodedef
applies to. If the referenced <nodedef> also specifies a target, then this target must be a subset
of the nodedef's target list.

If an <implementation> element specifies a language and/or target with no file , then it is
interpreted purely as documentation that a private definition exists for the given target. Because the
definition in an <implementation> may be restricted to specific targets, a <nodedef> that is defined with
such restrictions may not be available in all applications; for this reason, a <nodedef> that is defined
through an <implementation> is expected to provide a value for default and/or defaultinput when
possible, specifying the expected behavior when no definition for the given node can be found. It should
be noted that specifying language and/or target is intended to help applications differentiate between
different versions of nodes and imply compatibility for specific situations, but does not necessarily
guarantee compatibility: they are intended to be hints about the particular implementation, and it is up to
the host application to determine which <implementation>, if any, is appropriate for any particular use.

Because the names used for node inputs or parameters (such as "normal" or "default") may conflict with
reserved words in various shading languages, or may simply be different for specific targets, MaterialX
allows <implementation> elements to contain a number of <input> and/or <parameter> elements to
remap the name s of <input>s and <parameter>s as specified in the <nodedef> to different implname s to
indicate what the input or parameter name is actually called in the implementation's code. Only the
inputs and parameters that need to be remapped to new implname s need to be listed; for each, it is
recommended that the type of that input or parameter be listed for clarity, but if specified, it must match
the type specified in the <nodedef>: <implementation>s are not allowed to change the type or any other
attribute defined in the <nodedef>. In this example, the <implementation> declares that the "default"
parameter defined in the "ND_image_color3" nodedef is actually called "default_value" in the
"mx_image_color" function:

 <implementation name="IM_image_color3_osl" nodedef="ND_image_color3"

 file="mx_image_color.osl" function="mx_image_color" language="osl">

 <parameter name="default” type="color3" implname="default_value"/>

 </implementation>

For parameters whose nodedef description includes an enum list of allowable values, individual
implementations may associate different target-specific resolved values for them potentially of a
different type; these may be described by providing an enumvalues attribute on the parameter within
an <implementation> and if appropriate, an impltype to declare the target-specific type of these
enumvalues. Note that if the type of the enum parameter in the nodedef is an array type, then the
impltype (if specified) must also be an array type, while enumvalues is a list of values of the base
(non-array) type. The following <implementation> states that for the "mystudio" target, the
uaddressmode and vaddressmode parameters of the "image" node are actually called "extrapolate_u" and

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 50

"extrapolate_v", are integers rather than strings, and take different values (e.g. "clamp" is 2):

 <!-- In ND_image_color3, u/vaddressmode have enum="black,clamp,periodic" -->

 <implementation name="IM_image_color3_mystudio"

 nodedef="ND_image_color3" target="mystudio">

 <parameter name="uaddressmode” type="string"

 implname="extrapolate_u" impltype="integer" enumvalues="0, 2, 1"/>

 <parameter name="vaddressmode” type="string"

 implname="extrapolate_v" impltype="integer" enumvalues="0, 2, 1"/>

 </implementation>

Example of custom nodes defined with external file implementations:

 <nodedef name="ND_mariblend_color3" node="mariBlend" type="color3"

defaultinput="in1">

 <input name="in1" type="color3" value="0.0, 0.0, 0.0"/>

 <input name="in2" type="color3" value="1.0, 1.0, 1.0"/>

 <parameter name="ColorA" type="color3" value="0.0, 0.0, 0.0"/>

 <parameter name="ColorB" type="color3" value="0.0, 0.0, 0.0"/>

 </nodedef>

 <nodedef name="ND_mariblend_float" node="mariBlend" type="float"

 defaultinput="in1">

 <input name="in1" type="float" value="0.0"/>

 <input name="in2" type="float" value="1.0"/>

 <parameter name="ColorA" type="float" value="0.0"/>

 <parameter name="ColorB" type="float" value="0.0"/>

 </nodedef>

 <nodedef name="ND_marinoise_color3" node="mariCustomNoise" type="color3"

 default="0.5,0.5,0.5">

 <parameter name="ColorA" type="color3" value="0.5, 0.5, 0.5"/>

 <parameter name="Size" type="float" value="1.0"/>

 </nodedef>

 <implementation name="IM_mariblend_color3_glsl" nodedef="ND_mariblend_color3"

 file="lib/mtlx_funcs.glsl" language="glsl"/>

 <implementation name="IM_mariblend_float_glsl" nodedef="ND_mariblend_float"

 file="lib/mtlx_funcs.glsl" language="glsl/>

 <implementation name="IM_marinoise_color3_glsl" nodedef="ND_marinoise_color3"

 file="lib/mtlx_funcs.glsl" language="glsl/>

 <implementation name="IM_mariblend_color3_osl" nodedef="ND_mariblend_color3"

 file="lib/mtlx_funcs.osl" language="osl"/>

 <implementation name="IM_mariblend_float_osl" nodedef="ND_mariblend_float"

 file="lib/mtlx_funcs.osl" language="osl"/>

 <implementation name="IM_marinoise_color3_osl" nodedef="ND_marinoise_color3"

 file="lib/mtlx_funcs.osl" language="osl"/>

 <implementation name="IM_marinoise_color3_osl_vray" nodedef="ND_marinoise_color3"

 file="lib/mtlx_vray_funcs.osl" language="osl" target="vray"/>

This example defines two templates for a custom operator node called "mariBlend" (one operating on
color3 values, and one operating on floats), and one template for a custom source node called
"mariCustomNoise". Implementations of these functions have been defined in both OSL and GLSL.
There is also in this example an alternate implementation of the "mariCustomNoise" function
specifically for VRay, as if the author had determined that the generic OSL version was not appropriate
for that renderer.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 51

Here is an example of a multioutput node definition and external implementation declaration. Note the
use of <output> elements within the <nodedef> to describe the names, types, and defaults for each
output.

 <nodedef name="ND_doublecolor_c3c3" node="doublecolor" type="multioutput">

 <input name="in1" type="color3" value="0.0, 0.0, 0.0"/>

 <parameter name="seed" type="float" value="1.0"/>

 <output name="c1" type="color3" default="1.0, 1.0, 1.0"/>

 <output name="c2" type="color3" defaultinput="in1"/>

 </nodedef>

 <implementation name="IM_doublecolor_c3c3_osl" nodedef="ND_doublecolor_c3c3"

 file="lib/mtlx_funcs.osl" language="osl"/>

Node Graph Implementations

Alternatively, a custom node's implementation may be described using a Node Graph. A <nodegraph>
element wraps a graph of standard or custom nodes, taking the inputs and parameters and producing the
output(s) described in the specified <nodedef>.

A <nodegraph> element consists of at least one node element and at least one <output> element
contained within a <nodegraph> element:

 <nodegraph name="graphname" [nodedef="nodedefname"] [target="target"]>
 [...parameter/input element(s)...]

 ...node element(s)...

 ...output element(s)...

 </nodegraph>

The <nodegraph> element specifies a nodedef attribute (and optionally a target attribute as well) to
indicate both that the nodegraph is a functional definition for that <nodedef>, and that the <nodedef>
declares the set of inputs and parameters that the nodegraph accepts. The type of the <nodedef> (or the
types of its <output>s for "multioutput" nodedefs) and the type(s) of the nodegraph <output>(s) must
agree. The inputs and parameters of the <nodedef> can be referenced within <input> and <parameter>
elements of nodes within the nodegraph implementation using interfacename attributes in place of
value or nodename attributes, e.g. a nodedef parameter named "p1" and a nodedef input "i2" can be
referenced as follows:

 <parameter name="amount" type="float" interfacename=”p1”/>

 <input name="in2" type="color3" interfacename=”i2”/>

Note that it is acceptable for the interfacename in an <input> of a node within the nodegraph to
reference a parameter in the nodedef, but an interfacename in a <parameter> of a node within the
nodegraph may not reference an input in the nodedef.

It is permissible to define multiple nodegraph- and/or file-based implementations for a custom node for
the same combination of input and output types. It is recommended that the specified
language /target combinations be unique, e.g. one implementation in "osl" and another in "glsl",
although this is not required: in the case of multiple applicable implementations for a target, it would be

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 52

up to the host application to determine which implementation to actually use, though in general if there
was both a <nodegraph> and an <implementation> for the same nodedef target/version, the
<implementation> should prevail in order to allow optimized native-code node implementations.

The <nodegraph> itself may contain target-specific top-level <parameter> and/or <input> elements,
which may be used to modify the names of parameters and/or inputs or the impltypes and enumvalues of
enum parameters described in the referenced <nodedef>, or to declare additional target-specific
parameters and/or inputs. These declarations work in exactly the same manner as described above for
Implementation elements.

Example of a custom node defined using a nodegraph:

 <nodedef name="ND_blendadd_color4" node="blend_add" type="color4"

 defaultinput="bg">

 <input name="fg" type="color4" value="0,0,0,0"/>

 <input name="bg" type="color4"/>

 <parameter name="amount" type="float" value="1.0"/>

 </nodedef>

 <nodegraph name="NG_blendadd_color4" nodedef="ND_blendadd_color4">

 <multiply name="n1" type="color4">

 <input name="in1" type="color4" interfacename="fg"/>

 <input name="in2" type="float" interfacename="amount"/>

 </multiply>

 <add name="n2" type="color4">

 <input name="in1" type="color4" nodename="n1"/>

 <input name="in2" type="color4" interfacename="bg"/>

 </add>

 <output name="o_result" type="color4" nodename="n2"/>

 </nodegraph>

The parameters of the nodegraph are declared by the <nodedef>, and the nodes within the nodegraph
reference those parameters using interfacename attributes. The "fg" input parameter provides a
default value which is used if the "fg" input is left unconnected when the custom node is used, and the
"amount" parameter defines a default value which will be used if invocations of the node do not
explicitly provide a value for "amount". The "bg" input does not provide a default, so it would be an
error to invoke this node without connecting "bg".

Custom Node Use
Once defined with a <nodedef>, invoking a custom node within a node graph looks very much the same
as using any other standard node: the name of the element is the name of the custom node, and the
MaterialX type of the node's output is required; the custom node's child elements define connections of
inputs to other node outputs as well as any parameter values for the custom node.

 <mariCustomNoise name="custnoise1" type="color3">

 <parameter name="ColorA" type="color3" value="1.0, 1.0, 1.0"/>

 <parameter name="Size" type="float" value="0.5"/>

 </mariCustomNoise>

 <mariBlend name="customblend1" type="color3">

 <input name="in1" type="color3" nodename="custnoise1"/>

 <input name="in2" type="color3" value="0.3, 0.4, 0.66"/>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 53

 <parameter name="ColorA" type="color3" value="1.0, 1.0, 0.9"/>

 <parameter name="ColorB" type="color3" value="0.2, 0.4, 0.6"/>

 </mariBlend>

In this example, some inputs of nodes n1 and n2 have been connected to the two named outputs of the
custom doublecolor operator "dc1": an output attribute is used to specify which output of "dc1" to
connect to in each case.

 <doublecolor name="dc1" type="multioutput">

 <input name="in1" type="color3" nodename="n0"/>

 <parameter name="seed" type="float" value="0.442367"/>

 </doublecolor>

 <contrast name="n1" type="color3">

 <input name="in" type="color3" nodename="dc1" output="c1"/>

 <parameter name="amount" type="float" value="0.14"/>

 </contrast>

 <add name="n2" type="color3">

 <input name="in1" type="color3" nodename="dc1" output="c2"/>

 <input name="in2" type="color3" nodename="n1"/>

 </add>

Shader Nodes

Custom nodes that output data types with a "shader" semantic are referred to in MaterialX as "Shader
Nodes". Shaders, along with their inputs and parameters, are declared using the same <nodedef>,
<implementation> and <nodegraph> elements described above:

 <nodedef name="name" type="shadertype" node="shaderfunctionname">
 ...parameter and input declarations...

 </nodedef>

The attributes for <nodedef> elements as they pertain to the declaration of shaders are:

● name (string, required): a user-chosen name for this shader node definition element.
● type (string, optional): the "data type" of the output for this shader, which must have been

defined with a "shader" semantic; see the Custom Data Types section above and discussion
below for details.

● node (string, required): the name of the shader node being defined, which typically matches the
name of an associated shader function such as “blinn_phong”, “Disney_BRDF_2012”,
“volumecloud_vol”. Just as for custom nodes, this shading program may be defined precisely
through an <implementation> or <nodegraph>, or left to the application to locate by name using
any shader definition method that it chooses.

NodeDef elements defining shader nodes do not typically include default or defaultinput
attributes, though they are permitted using the syntax described in the Custom Data Types section if the
output type of the shader node is not a blind data type.

As mentioned in the Custom Data Types section earlier, the standard MaterialX distribution includes
the following standard data types for shaders:

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 54

 <typedef name="surfaceshader" semantic="shader" context="surface"/>

 <typedef name="volumeshader" semantic="shader" context="volume"/>

 <typedef name="displacementshader" semantic="shader" context="displacement"/>

 <typedef name="lightshader" semantic="shader" context="light"/>

These types all declare that they have "shader" semantic, but define different contexts in which a
rendering target should interpret the output of the shader node. For a shading language based on
deferred lighting computations (e.g. OSL), a shader-semantic data type is equivalent to a radiance
closure. For a shading language based on in-line lighting computations (e.g. GLSL), a shader-semantic
data type is equivalent to the final output values of the shader.

It is allowable for applications to define additional types for shader nodes; in particular, one could define
a custom type with explicitly-defined members to represent the output AOVs for a class of shader nodes:

 <typedef name="studio_aovs" semantic="shader" context="surface">

 <member name="rgba" type="color3"/>

 <member name="diffuse" type="color3"/>

 <member name="specular" type="color3"/>

 <member name="indirect" type="color3"/>

 <member name="opacity" type="float"/>

 <member name="Pndc" type="vector3"/>

 </typedef>

and then use this type when declaring surface shader nodes:

 <nodedef name="ND_unifiedsrf_studio" type="studio_aovs" node="unified_srf">

 <input name="diffc" type="color3" value="0.18,0.18,0.18"/>

 <parameter name="spec1roughness" type="float" value="0.3"/>

 ...

 </nodedef>

It should be noted that the primary benefit of declaring and using specific types for shader nodes would
be to differentiate which shader node outputs can be connected into other node inputs (e.g. the types
match) for applications such as post-shading layering and blending operations. It should also be noted
that using non-blind data types for shaders with specific members greatly limits portability of graphs to
other systems, so their use should be restricted to situations which require them; MaterialX materials and
looks do not require knowledge of the exact contents of shader output, and so use of the standard
"surfaceshader" etc. types should be sufficient in most situations.

Declarations of shader node source implementations are also accomplished using <implementation>
elements for external source file declarations and nodedef attributes within <nodegraph> elements for
nodegraph-based definitions.

As with non-shader custom nodes, Parameter elements are used within a <nodedef> to declare the
uniform parameters of a shader node, and Input elements are used within a <nodedef> to declare the
spatially-varying input ports for a shader node. When a shader node is instantiated in a <material>, its
parameters may be bound to new uniform values or left at their declared default values, and its input
ports may be connected to the spatially-varying output ports of nodegraphs or bound to new (uniform)
values, or left at their declared default (uniform) values.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 55

Standard Shader-Semantic Operator Nodes

The Standard MaterialX Library defines the following node variants operating on "shader"-semantic
types.

● add: add two surface/displacement/volumeshader closures.
○ in1 (input, surface/displacement/volumeshader, required): the name of the first

shader-semantic node
○ in2 (input, surface/displacement/volumeshader, required): the name of the first

shader-semantic node

● multiply: multiply a surface/displacement/volumeshader closure by a float or color3/vector3
value: surfaceshaders and volumeshaders may be multiplied by a float or color3, while
displacementshaders may be multiplied by a float or vector3.
○ in1 (input, surface/displacement/volumeshader, required): the name of the input

shader-semantic node
○ in2 (input, float or color3 or vector3, required): the value to multiply the closure by

● mix: linear blend between two surface/displacement/volumeshader closures.

○ bg (input, surface/displacement/volumeshader, required): the name of the background
shader-semantic node

○ fg (input, surface/displacement/volumeshader, required): the name of the foreground
shader-semantic node

○ mix (input, float, required): the blending factor used to mix the two input closures

Custom Attributes, Parameters and Inputs

While the MaterialX specification describes the attributes and elements that are meaningful to
MaterialX-compliant applications, it is permissible to add custom attributes, parameters and inputs to
standard MaterialX elements. These custom attributes and child elements are ignored by applications
that do not understand them, although applications should preserve and re-output them with their values
and connections even if they do not understand their meaning.

If an application requires additional information related to any MaterialX element, it may define and
utilize additional attributes with non-standard names. Custom attributes are defined using <attributedef>
elements:

 <attributedef name="name" attrname="attrname" type="type" value="defaultvalue"
 [target="targets"] [elements="elements"]/>

where name is a unique name for the attributedef, attrname is the name of the custom attribute to define,
type is the type of the attribute (typically string, stringarray, integer or boolean, although any MaterialX
type is allowed), defaultvalue is the default value for the attribute, target is an optional list of targets to
which this attribute applies, and elements is an optional list of element names or
elementname/parametername in which the attribute may be used. Examples:

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 56

 <attributedef name="AD_maxmtlname" attrname="maxmtlname" type="string" value=""

 target="3dsmax" elements="material"/>

 <attributedef name="AD_img_vflip" attrname="vflip" type="boolean" value="false"

 target="mystudio" elements="image/file"/>

The first example above defines a 3ds Max-specific name attribute for materials, which may be given a
value in addition to its MaterialX-compliant name in order to preserve the original package-specific
name; it is assumed here that maxmtlname is the attribute name used by that particular implementation
for this purpose. The second example defines a "mystudio"-specific boolean attribute "vflip", which
could be used in the "file" parameter of 

If an application requires additional custom parameters or inputs within a standard MaterialX node, it
may define a target application-specific <nodedef> for that node inheriting the base parameter/input
definitions from the standard node's <nodedef>, then add parameters and inputs specific to that target
application.

 <nodedef name="ND_image_color4_maya" node="image" type="color4" target="maya"

 inherit="ND_image_color4">

 <parameter name="preFilter" type="boolean" value="true"/>

 </nodedef>

In the above example, a Maya-specific version of the color4-type 

Please see the Custom Node Definition section above for further details.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 57

Materials

Material Elements

Material elements are used to define instantiations of shader nodes, and to bind their parameters and
inputs to uniform data values and spatially-varying data streams.

A <material> element contains one or more <shaderref> elements, which define what shaders a
material references.

 <material name="materialname" [inherit="materialtoinheritfrom"]>
 ...<shaderref> elements (optional if inherit provided)...

 </material>

Attributes for <material> elements:

● name (string, required): the name of the material.
● inherit (string, optional): the name of another material to inherit the shader references and

bindings from.

If an inherit attribute is provided, then the shader references and bindings of the inherited material
will be applied first, and the ones defined within this <material> applied on top of the inherited ones.
For maximum compatibility, it is recommended that materials that inherit from other materials only
include value and input bindings and not add or change shaders.

<material> elements also support other attributes such as xpos , ypos and uicolor as described in the
Standard UI Attributes section above.

ShaderRef Elements
ShaderRef elements instantiate previously-declared nodes with "shader" semantic within the context of a
material, allowing their parameters and inputs to be bound to values and data streams. Any number of
<shaderref> elements may be specified within a <material>, as long as no two refer to shader nodes with
the same combination of output type context and implementation target . For example, one could
use two <shaderref>s to instantiate both a "surface"-context and a "displacement"-context shader for a
material, or different "surface"-context shaders for different renderers within a single material.

Attributes for <shaderref> elements:

● name (string, required): the unique name for this shaderref
● node (string, optional): the shader-semantic node name to reference in the material.
● version (string, optional): the version string of the node to use; if not specified, the default

version of the referenced node will be used.
● nodedef (string, optional): the name of a <nodedef> defining a specific shader-semantic node.

Since this refers to a specific <nodedef> element, a version string is neither needed nor
allowed with nodedef . nodedef takes precedence over node if both are specified in a
<shaderref>.

● type (string, optional): the type of the referenced shader-semantic node; if provided, it must
match that of the node /nodedef ; this is provided mainly for documentational and type-checking

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 58

purposes, since the actual node definition could likely be in a different (e.g. XIncluded) file.
● target (string, optional): the target to which this shaderref should apply; if specified, it must

match that of the referenced <nodedef>.

Either node or nodedef must be specified. It is preferred to reference the nodedef's node attribute
value, but if multiple <nodedef>s for the same node exist it is acceptable to reference the name of the
<nodedef> to disambiguate exactly which definition is to be used. So if a shader node was defined using
this <nodedef>:
 <nodedef name="ND_DisneyBRDF2012_surface" type="surfaceshader"

 node="Disney_BRDF_2012">

it would normally be referenced within a <shaderref> like this:
 <shaderref name="sref1" node="Disney_BRDF_2012">

but could alternatively be referenced like this:
 <shaderref name="sref2" nodedef="ND_DisneyBRDF2012_surface">

If the <shaderref> is within a <material> element that inherits from another material, and its node or
nodedef refers to the same <nodedef> element as the <shaderref> in a parent material, then the
<bindparam>s and <bindinput>s within the shaderref will apply to the same shader-semantic node as the
parent, overlaying its bindings on top of those specified by the parent; it is not possible to create a
separate instantiation of the same shader-semantic node within a child material.

<shaderref> elements also support other attributes such as xpos, ypos and uicolor as described in the
Standard UI Attributes section above.

BindParam Elements
BindParam elements are used within <shaderref> elements to dynamically bind values to shader node
parameters, replacing any default assignments in the original <parameter> elements. These bindings
persist only within the scope of the enclosing <shaderref> element. BindParams can only be applied to
shader nodes referenced by a <shaderref> of this material; they cannot apply to a shader node contained
within a node graph.

 <material name="steel">

 <shaderref name="sref3" node="simplesrf">

 <bindparam name="emissionColor" type="color3" value="0.005, 0.005, 0.005" />

 <bindparam name="rfrIndex" type="float" value="1.33" />

 </shaderref>

 </material>

Attributes for Bindparam elements:

● name (string, required): the name of the shader <parameter> which will be bound to a new value
● type (string, required): the MaterialX type of the shader <parameter>
● value (specified MaterialX type, required): a value to bind to the shader parameter within the

scope of this material.

BindInput Elements
BindInput elements are used within <shaderref> elements to dynamically bind values or node graph

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 59

outputs to shader node inputs, replacing any default assignments in the original <input> elements. These
bindings persist only within the scope of the enclosing <shaderref> element. BindInputs can only be
applied to shader nodes referenced by a <shaderref> of this material; they cannot apply to a shader node
contained within a node graph.

 <material name="steel">

 <shaderref name="sref4" node="simplesrf">

 <bindinput name="diffColor" type="color3" nodegraph="DiffNoiseNetwork"

 output="o_diffColor"/>

 <bindinput name="specColor" type="color3" output="o_specColor"/>

 <bindinput name="roughness" type="float" value="0.02"/>

 </shaderref>

 </material>

In the above example, output "o_specColor" is presumed to be defined in a free-standing network of
nodes, while output "o_diffColor" is defined within the "DiffNoiseNetwork" nodegraph.

Attributes for BindInput elements:

● name (string, required): the name of the shader <input> which will be bound to a new value or
nodegraph output

● type (string, required): the MaterialX type of the shader <input>
● value (specified MaterialX type, optional): a uniform value to bind to the shader input within

the scope of this material.
● nodegraph (string, optional): the name of the nodegraph element whose output will be bound
● output (string, optional): the name of the nodegraph output that will be bound to this input

Either value or output must be declared, but not both.

BindToken Elements
BindToken elements are used within <shaderref> elements to dynamically bind values to shader node
interface tokens, replacing any default assignments in the original <token> elements. These bindings
persist only within the scope of the enclosing <shaderref> element. BindTokens can only be applied to
shader nodes referenced by a <shaderref> of this material; they cannot apply to a shader node contained
within a node graph.

 <material name="steel_wet">

 <shaderref name="sref5" node="simplesrf">

 <bindtoken name="diffmap" type="string" value="diff_wet2"/>

 <bindparam name="specmap" type="string" value="spec_wet2"/>

 </shaderref>

 </material>

Attributes for Bindtoken elements:

● name (string, required): the name of the shader <token> which will be bound to a new value
● type (string, required): the MaterialX type of the shader <token>
● value (specified MaterialX type, required): a value to bind to the shader token within the scope

of this material.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 60

Material Variants

A Variant is a container for any number of uniform values for material parameters, inputs, and interface
tokens. One or more mutually-exclusive variants are defined as part of a <variantset>; variants may not
be defined outside of a <variantset>.

 <variantset name="wetvars">

 <variant name="wet1">

 <token name="diffmap" type="string" value="diff_wet1"/>

 <token name="specmap" type="string" value="spec_wet1"/>

 <parameter name="roughness" type="float" value="0.001"/>

 </variant>

 ...additional <variant> declarations for this variantset...

 </variantset>

<Input> elements within a <variant> may only define a value , not a connection to a node or <output>.

Example uses for variants include defining a number of allowable colors and texture tokens for different
costume variations, and defining values for progressively increasing levels of damage to a model.

Variants and variantsets are not intrinsically associated with any particular material; they merely state a
number of values for a number of named parameters/inputs/tokens. However, variantsets may state that
they are associated with specific shader-semantic nodes and/or <nodedef> declarations by providing
stringarray-type node and/or nodedef attributes:

 <variantset name="damagevars" node="Disney_BRDF_2012,Disney_BRDF_2015">

 ...

 <variantset name="costumevars" nodedef="ND_unifiedsrf_studio">

 ...

Variants are applied to materials within <look>s; please see the Look Assignment Elements section
below for information on using variants.

Material Examples

Example 1: Define two shaders and two materials with different bindings assigned to the shader(s). The
first material references both a surface and a displacement shader, while the second references only a
surface shader. In each case, some inputs do not have explicit value bindings, so their default values are
used.

<?xml version="1.0" encoding="UTF-8"?>

<materialx>

 <nodedef name="ND_simplesrf_surface" type="surfaceshader" node="simplesrf">

 <input name="diff_albedo" type="color3" value="0.18,0.18,0.18"/>

 <input name="spec_color" type="color3" value="1,1,1"/>

 <input name="roughness" type="float" value="0.3"/>

 <parameter name="fresnel_exp" type="float" value="0.2"/>

 </nodedef>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 61

 <nodedef name="ND_noisebump_displacement" type="displacementshader"

 node="noisebump">

 <parameter name="bump_scale" type="float" value="0.02"/>

 <parameter name="bump_ampl" type="float" value="0.015"/>

 </nodedef>

 <material name="material1">

 <shaderref name="sr1" node="simplesrf">

 <bindinput name="diff_albedo" type="color3" value="0.31, 0.14, 0.09"/>

 <bindinput name="spec_color" type="color3" value="1.0, 0.99, 0.95"/>

 <bindinput name="roughness" type="float" value="0.15"/>

 </shaderref>

 <shaderref name="sr2" node="noisebump">

 <bindparam name="bump_ampl" type="float" value="0.0125"/>

 </shaderref>

 </material>

 <material name="material2">

 <shaderref name="sr3" node="simplesrf">

 <bindinput name="spec_color" type="color3" value="0.7,0.7,0.7"/>

 <bindinput name="roughness" type="float" value="0.1"/>

 <bindparam name="fresnel_exp" type="float" value="0.3"/>

 </shaderref>

 </material>

</materialx>

Example 2: A material using pre-shader compositing of colors and textures. The parameter values for
three different surface types ("steel", "rust" and "paint") are defined as constant color values (or, in the
case of "rust_diffc", a color texture). The parameter values are then blended using mask textures before
being connected into a single surface shader. This example also demonstrates the use of the "target"
attribute of a shader implementation element to define multiple renderer-specific shaders of the same
type referenced within a single material.

<?xml version="1.0" encoding="UTF-8"?>
<materialx>

 <!-- Define a basic surface shaders with two implementations; first might be

 applicable to several renderers, second is specific to rmanris and has

 slightly different parameter names.

 -->

 <nodedef name="ND_basic_surface_surface" type="surfaceshader"

 node="basic_surface">

 <input name="diff_albedo" type="color3" value="0.18,0.18,0.18"/>

 <input name="spec_color" type="color3" value="1,1,1"/>

 <input name="roughness" type="float" value="0.3"/>

 <parameter name="fresnel_exp" type="float" value="0.25"/>

 </nodedef>

 <implementation name="IM_basicsurface_surface_osl"

 nodedef="ND_basic_surface_surface" file="basic_surface.osl"/>

 <implementation name="IM_basicsurface_surface_rmanris"

 nodedef="ND_basic_surface_surface" implname="basic_srf"

 target="rmanris" file="basic_srf.C" language="cpp">

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 62

 <input name="diff_albedo" type="color3" implname="diffColor"/>

 <input name="spec_color" type="color3" implname="specColor"/>

 <input name="roughness" type="float" implname="specRoughness"/>

 </implementation>

 <!-- Define interface and shading network for a simple blended material driven

 by mask image files.

 -->

 <nodedef name="ND_triblendsrf_surface" type="surfaceshader" node="triblendsrf">

 <parameter name="paintmaskfile" type="filename"/>

 <parameter name="rustmaskfile" type="filename"/>

 </nodedef>

 <nodegraph name="NG_triblendsrf_surface" nodedef="ND_triblendsrf_surface">

 <!-- Material constants for base layer, "steel" -->

 <constant name="steel_diffc" type="color3">

 <parameter name="value" type="color3" value="0.0318, 0.0318, 0.0318"/>

 </constant>

 <constant name="steel_specc" type="color3">

 <parameter name="value" type="color3" value="0.476, 0.476, 0.476"/>

 </constant>

 <constant name="steel_roughf" type="float">

 <parameter name="value" type="float" value="0.05"/>

 </constant>

 <!-- Material constants for middle layer, "paint" -->

 <constant name="paint_diffc" type="color3">

 <parameter name="value" type="color3" value="0.447, 0.447, 0.447"/>

 </constant>

 <constant name="paint_specc" type="color3">

 <parameter name="value" type="color3" value="0.144, 0.144, 0.144"/>

 </constant>

 <constant name="paint_roughf" type="float">

 <parameter name="value" type="float" value="0.137"/>

 </constant>

 <!-- Material constants for top layer, "rust" -->

 <image name="rust_diffc" type="color3">

 <parameter name="file" type="filename" value="rust_diffc.tif"/>

 </image>

 <constant name="rust_specc" type="color3">

 <parameter name="value" type="color3" value="0.043, 0.043, 0.043"/>

 </constant>

 <constant name="rust_roughf" type="float">

 <parameter name="value" type="float" value="0.5"/>

 </constant>

 <!-- Blending masks -->

 <image name="mask_paint" type="float">

 <parameter name="file" type="filename" interfacename="paintmaskfile"/>

 </image>

 <image name="mask_rust" type="float">

 <parameter name="file" type="filename" interfacename="rustmaskfile"/>

 </image>

 <!-- Define blended values for diffcolor, speccolor, roughness -->

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 63

 <mix name="mix_diff1" type="color3">

 <input name="bg" type="color3" nodename="steel_diffc"/>

 <input name="fg" type="color3" nodename="paint_diffc"/>

 <input name="mix" type="float" nodename="mask_paint"/>

 </mix>

 <mix name="mix_diff2" type="color3">

 <input name="bg" type="color3" nodename="mix_diff1"/>

 <input name="fg" type="color3" nodename="rust_diffc"/>

 <input name="mix" type="float" nodename="mask_rust"/>

 </mix>

 <mix name="mix_spec1" type="color3">

 <input name="bg" type="color3" nodename="steel_specc"/>

 <input name="fg" type="color3" nodename="paint_specc"/>

 <input name="mix" type="float" nodename="mask_paint"/>

 </mix>

 <mix name="mix_spec2" type="color3">

 <input name="bg" type="color3" nodename="mix_spec1"/>

 <input name="fg" type="color3" nodename="rust_specc"/>

 <input name="mix" type="float" nodename="mask_rust"/>

 </mix>

 <mix name="mix_rough1" type="float">

 <input name="bg" type="float" nodename="steel_roughf"/>

 <input name="fg" type="float" nodename="paint_roughf"/>

 <input name="mix" type="float" nodename="mask_paint"/>

 </mix>

 <mix name="mix_rough2" type="float">

 <input name="bg" type="float" nodename="mix_rough1"/>

 <input name="fg" type="float" nodename="rust_roughf"/>

 <input name="mix" type="float" nodename="mask_rust"/>

 </mix>

 <!-- Basic_Surface shader, connected to above blended values -->

 <basic_surface name="bsrf1" type="surfaceshader">

 <input name="diff_albedo" type="color3" nodename="mix_diff2"/>

 <input name="spec_color" type="color3" nodename="mix_spec2"/>

 <input name="roughness" type="float" nodename="mix_rough2"/>

 </basic_surface>

 <!-- Define the output of the shading network nodegraph -->

 <output name="o_out" type="surfaceshader" nodename="bsrf1"/>

 </nodegraph>

 <!-- Sample blended material using the above network shader -->

 <material name="blendedmtl">

 <shaderref name="sr4" node="triblendsrf">

 <bindparam name="paintmaskfile" type="filename" value="paint_mask.tif"/>

 <bindparam name="rustmaskfile" type="filename" value="rust_mask.tif"/>

 </shaderref>

 </material>

</materialx>

Example 3: A material using post-shader compositing to blend the outputs of two surface shaders. A

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 64

nodegraph containing image reading and processing nodes, two shader-semantic nodes and a blending
operation is defined, then turned into a single shader which is then referenced by a material; the material
uses tokens to define texture filenames, and a standalone texture image read bound to the mix amount
shader input.

<materialx>

 <!-- Define external "alSurface" shader -->

 <nodedef name="ND_alsurface_srf" type="surfaceshader" node="alSurface">

 <input name="diffuseColor" type="color3" value="0.2,0.2,0.2"/>

 <input name="specular1Color" type="color3" value="1,1,1"/>

 <input name="specular1Roughness" type="float" value="0.3"/>

 </nodedef>

 <nodedef name="ND_twolayersurface_surface" type="surfaceshader"

 node="twoLayerSurface">

 <input name="diffmult1" type="color3" value="1,1,1"/>

 <token name="color1" type="string" value="color"/>

 <token name="spec1" type="string" value="spec"/>

 <parameter name="roughness1" type="float" value="0.5"/>

 <input name="diffmult2" type="color3" value="0.1,0.1,0.1"/>

 <token name="color2" type="string" value="coloralt"/>

 <token name="spec2" type="string" value="specalt"/>

 <parameter name="roughness2" type="float" value="0.5"/>

 <input name="mixamt" type="float" value="0"/>

 </nodedef>

 <nodegraph name="NG_twolayersurface_srf" nodedef="ND_twolayersurface_srf">

 <image name="i_diff1" type="color3">

 <parameter name="file" type="filename"

 value="txt/[color1]/[color1].<UDIM>.tif"/>

 </image>

 <multiply name="mult1" type="color3">

 <input name="in1" type="color3" nodename="i_diff1"/>

 <input name="in2" type="color3" interfacename="diffmult1"/>

 </multiply>

 <image name="i_diff2" type="color3">

 <parameter name="file" type="filename"

 value="txt/[color2]/[color2].<UDIM>.tif"/>

 </image>

 <multiply name="mult2" type="color3">

 <input name="in1" type="color3" nodename="i_diff2"/>

 <input name="in2" type="color3" interfacename="diffmult2"/>

 </multiply>

 <image name="i_spec1" type="color3">

 <parameter name="file" type="filename"

 value="txt/[spec1]/[spec1].<UDIM>.tif"/>

 </image>

 <image name="i_spec2" type="color3">

 <parameter name="file" type="filename"

 value="txt/[spec2]/[spec2].<UDIM>.tif"/>

 </image>

 <alSurface name="als1" type="surfaceshader">

 <input name="diffuseColor" type="color3" nodename="mult1"/>

 <input name="specular1Color" type="color3" nodename="i_spec1"/>

 <input name="specular1Roughness" type="float" interfacename="roughness1"/>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 65

 </alSurface>

 <alSurface name="als2" type="surfaceshader">

 <input name="diffuseColor" type="color3" nodename="mult2"/>

 <input name="specular1Color" type="color3" nodename="i_spec2"/>

 <input name="specular1Roughness" type="float" interfacename="roughness2"/>

 </alSurface>

 <mix name="srfmix" type="surfaceshader">

 <input name="bg" type="surfaceshader" nodename="als1"/>

 <input name="fg" type="surfaceshader" nodename="als2"/>

 <input name="mix" type="float" interfacename="mixamt"/>

 </mix>

 <output name="o_out" type="surfaceshader" nodename="srfmix"/>

 </nodegraph>

 <image name="i_mixamt" type="float">

 <parameter name="file" type="filename" value="txt/rustmix/rustmix.<UDIM>.tif"/>

 </image>

 <output name="o_mixamt" type="float" nodename="i_mixamt"/>

 <material name="mblended1">

 <shaderref name="sr6" node="twoLayerSurface">

 <bindtoken name="color1" type="string" value="basecolor"/>

 <bindtoken name="spec1" type="string" value="basespec"/>

 <bindparam name="roughness1" type="float" value="0.34"/>

 <bindinput name="diffmult2" type="color3" value="0.8,0.82,0.79"/>

 <bindtoken name="color2" type="string" value="rustcolor"/>

 <bindtoken name="spec2" type="string" value="rustspec"/>

 <bindparam name="roughness2" type="float" value="0.6"/>

 <bindinput name="mixamt" type="float" output="o_mixamt"/>

 </shaderref>

 </material>

</materialx>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 66

Geometry Info Elements

Geometry Info ("geominfo") elements are used to define sets of named attributes with constant values,
and to associate them with specific external geometries.

The most common use for geominfo elements is to define the filenames (or portions of filenames) of
texture map images mapped onto the geometry. Typically, there are several types of textures such as
color, roughness, bump, opacity, etc. associated with each geometry: each texture name string would be
a separate <token> within the <geominfo>. These images could contain texture data for multiple
geometries, which would either be listed in the geom attribute of the <geominfo> element, or be
assembled into a collection and the name of that collection would be specified in the collection
attribute.

GeomInfo Definition

A <geominfo> element contains one or more geometry attribute and/or token definitions, and associates
them and their values with all geometries listed in the geom or collection parameter of the
<geominfo>:

 <geominfo name="name" [geom="geomexpr1,geomexpr2,geomexpr3"] [collection="coll"]>
 ...geometry attribute and token definitions...

 </geominfo>

Note that no two <geominfo>s may define values for the same geometry attribute or token for the same
geometry, whether the geometry is specified directly, matched via a geometry name expression, or
contained within a specified collection.

Attributes for GeomInfo elements:

● name (string, required): the unique name of the GeomInfo element
● geom (geomnamearray, optional): the list of geometries and/or geometry name expressions that

the GeomInfo is to apply to
● collection (string, optional): the name of a geometric collection

Either a geom or a collection may be specified, but not both.

GeomAttr Elements
GeomAttr elements define named uniform or varying values directly associated with specific geometries.
This could include application-specific metadata, attributes passed from a lighting package to a renderer,
or other geometry-specific data.

 <geomattr name=”attrname” type="attrtype" value="value"/>

GeomAttr elements have the following attributes:

● name (string, required): the name of the geometry attribute to define
● type (string, required): the geometry attribute's type

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 67

● value (any MaterialX type, optional): the value to assign to that attribute for this geometry. If a
value is not provided, then the GeomAttr declares the name and type of an externally-defined
geometric attribute.

For example, one could specify a unique surface ID value associated with a geometry:

 <geominfo name="gi1" geom="/a/g1">

 <geomattr name="surfid" type="integer" value="15"/>

 </geominfo>

GeomAttr values can be accessed from a nodegraph using a <geomattrvalue> node:

 <geomattrvalue name="srfidval1" type="integer" attrname="surfid">

Token Elements
Token elements define constant string values which are associated with specific geometries. These
values can be substituted into filenames within image nodes; see the Image Filename Substitutions
section above for details:

 <token name=”attrname” type="attrtype" value="value"/>

The "value" can be any MaterialX type, but since tokens are used in image filename substitutions, string
and integer values are recommended.

Token elements have the following attributes:

● name (string, required): the name of the geometry token to define
● type (string, required): the geometry token's type
● value (any MaterialX type, optional): the value to assign to that token name for this geometry.

For example, one could specify a texture identifier value associated with a geometry:

 <geominfo name="gi1" geom="/a/g1">

 <token name="txtid" type="string" value="Lengine"/>

 </geominfo>

and then reference that token's value in an image filename:

 <image name="cc1" type="color3">

 <parameter name="file" type="filename"

 value="txt/color/asset.color.<txtid>.tif"/>

 </image>

The <txtid> in the file name would be replaced by whatever value the txtid token had for each geometry.

GeomAttrDefault Elements
GeomAttrDefault elements define the default value for a specified GeomAttr name; this default value
will be returned by a <geomattrvalue> element referencing that geomattr if an explicit geomattr value is
not defined for the current geometry. Since GeomAttrDefault does not apply to any geometry in

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 68

particular, it must be used outside of a <geominfo> element.

 <geomattrdefault name="surfid" type="integer" value="0"/>

 <geomattrdefault name="basecolor" type="color3" value="0.1,0.1,0.1"/>

GeomTokenDefault Elements
GeomTokenDefault elements define the default value for a specified geometry token name; this default
value will be used in a filename string substitution if an explicit token value is not defined for the current
geometry. Since GeomTokenDefault does not apply to any geometry in particular, it must be used
outside of a <geominfo> element.

 <geomtokendefault name="diffmap" type="string" value="color1"/>

Reserved GeomAttr Names
Workflows involving textures with implicitly-computed filenames based on u,v coordinates (such as
<UDIM> and <UVTILE>) can be made more efficient by explicitly listing the set of values that they
resolve to for any given geometry. The MaterialX specification reserves two geomattr names for this
purpose, udimset and uvtileset , each of which is a stringarray containing a comma-separated list of
UDIM or UVTILE values:

 <geominfo name="gi4" geom="/a/g1,/a/g2">

 <geomattr name="udimset" type="stringarray" value="1002,1003,1012,1013"/>

 </geominfo>

 <geominfo name="gi5" geom="/a/g4">

 <geomattr name="uvtileset" type="stringarray" value="u2_v1,u2_v2"/>

 </geominfo>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 69

Look and Property Elements

Look elements define the assignments of materials, visibility and other properties to geometries and
geometry collections. In MaterialX, a number of geometries are associated with each stated material,
visibility type or property in a look, as opposed to defining the particular material or properties for each
geometry.

Property elements define non-material properties that can be assigned to geometries or collections in
Looks. There are a number of standard MaterialX property types that can be applied universally for any
rendering target, as well as a mechanism to define target-specific properties for geometries or
collections.

A MaterialX document can contain multiple property and/or look elements.

Property Definition

A <property> element defines the name, type and value of a look-specific non-material property of
geometry; <propertyset> elements are used to group a number of <property>s into a single named
object. The connection between properties or propertysets and specific geometries or collections is done
in a <look> element, so that these properties can be reused across different geometries, and enabled in
some looks but not others. <Property> elements may only be used within <propertyset>s; they may not
be used independently, although a dedicated <propertyassign> element may be used within a <look> to
declare a property name, type, value and assignment all at once.

 <propertyset name="set1">

 <property name="twosided" type="boolean" value="true"/>

 <property name="trace_maxdiffusedepth" target="rmanris" type="float" value="3"/>

 </propertyset>

The following properties are considered standard in MaterialX, and should be respected on all platforms
that support these concepts:

Property Type Default Value
 twosided boolean false
 matte boolean false

where twosided means the geometry should be rendered even if the surface normal faces away from
camera, and matte means the geometry should hold out, or "matte" out anything behind it (including in
the alpha channel).

In the example above, the "trace_maxdiffusedepth" property is target-specific, having been restricted to
the context of Renderman RIS by setting its target attribute to “rmanris”.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 70

Look Definition

A <look> element contains one or more material, variant, visibility and/or propertyset assignment
declarations:

 <look name="lookname" [inherit="looktoinheritfrom"]>
 ...materialassign, variantassign, visibilityassign, property/propertysetassign

declarations...

 </look>

Looks can inherit the assignments from another look by including an inherit attribute. The look can
then specify additional assignments that will apply on top of/in place of whatever came from the source
look. This is useful for defining a base look and then one or more "variation" looks. It is permissible for
an inherited-from look to itself inherit from another look, but a look can inherit from only one parent
look.

<Look> elements also support other attributes such as xpos , ypos and uicolor as described in the
Standard UI Attributes section above.

Assignment Elements

Various types of assignment elements are used within looks to assign materials, categorized visibility
and properties to specific geometries, or variants to materials.

For elements which make assignments to geometries, the pathed names within geom attributes or stored
within collections do not need to resolve strictly to "leaf" path locations or actual renderable geometry
names: assignments can also be made to intermediate "branch" geometry path locations, which will then
apply to any geometry at a deeper level in the path hierarchy which does not have another "closer to the
leaf" level assignment. E.g. an assignment to "/a/b/c" will effectively apply to "/a/b/c/d" and
"/a/b/c/foo/bar" (and anything else whose full path name begins with "/a/b/c/") if no other assignment is
made to "/a/b/c/d", "/a/b/c/foo", or "/a/b/c/foo/bar". If a look inherits from another look, the child look
can replace assignments made to any specific path location (e.g. a child assignment to "/a/b/c" would
take precedence over a parent look's assignment to "/a/b/c"), but an assignment by the parent look to a
more "leaf"-level path location would take precedence over a child look assignment to a higher
"branch"-level location.

MaterialAssign Elements
MaterialAssign elements are used within a <look> to connect a specified material to one or more
geometries or collections (either a geom or a collection may be specified, but not both).

 <materialassign name="maname" material="materialname"
 [geom="geomexpr1[,geomexpr2...]"] [collection="collectionname"]
 [exclusive=true|false]>

 ...optional variantassign elements...

 </materialassign>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 71

Material assignments are generally assumed to be mutually-exclusive, that is, any individual geometry is
assigned to only one material. Therefore, assign declarations should be processed in the order they
appear in the file, and if any geometry appears in multiple <materialassign>s, the last <materialassign>
wins. However, some applications allow multiple materials to be assigned to the same geometry as long
as the shader node types don't overlap. If the exclusive attribute is set to false (default is true), then
earlier material assigns will still take effect for all shader node types not defined in the materials of later
assigns: for each shader node type, the shader within the last assigned material referencing a matching
shader node type wins. If a particular application does not support multiple material assignments to the
same geometry, the value of exclusive is ignored and only the last full material and its shaders are
assigned to the geometry, and the parser should issue a warning.

VariantAssign Elements
VariantAssign elements are used within a <materialassign> or a <look> to apply the values defined in
one variant of a variantset to one assigned material, or to all applicable materials in a look.

 <look name="look1">

 <variantassign name="va1" variantset="varset1" variant="var1"/>

 <materialassign name="ma1" material="material1" geom="...">

 <variantassign name="va2" variantset="varset2" variant="var2"/>

 </materialassign>

 <materialassign name="ma2" material="material2" geom="..."/>

 ...

 </look>

VariantAssign elements have the following attributes:

● name (string, required): the unique name of the VariantAssign element
● variantset (string, required): the name of the variantset to apply the variant from
● variant (string, required): the name of the variant within variantset to use

In the above example, the parameter/input/token value bindings defined within variant "var1" will be
applied to matching-named parameters/inputs/tokens found in either "material1" or "material2", while
bindings defined within variant "var2" will only be applied to matching-named bindings in "material1".
VariantAssigns are applied in the order specified within a scope, with those within a <materialassign>
taking precedence over those which are direct children of the <look>.

Visibility Elements
Visibility elements are used within a <look> to define various types of generalized visibility between a
"viewer" object and other geometries. A "viewer object" is simply a geometry that has the ability to
"see" other geometries in some rendering context and thus may need to have the list of geometries that it
"sees" in different contexts be specified; the most common examples are light sources and a primary
rendering camera.

 <visibility name="vname" [viewergeom="objectname"]
 [geom="geomexpr1[,geomexpr2...]"] [collection="collectionname"]
 [vistype="visibilitytype"] [visible="false"]/>

Visibility elements have the following attributes:

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 72

● name (string, required): the unique name of the Visibility element
● viewergeom (geomnamearray, optional): the list of viewer geometry objects that the

<visibility> assignment affects
● viewercollection (string, optional): the name of a collection containing viewer geometry

objects that the <visibility> assignment affects
● geom (geomnamearray, optional): the list of geometries and/or geometry name expressions that

the viewergeom object should (or shouldn't) "see"
● collection (string, optional): the name of a defined collection of geometries that the

viewergeom object should (or shouldn't) "see"
● vistype (string, optional): the type of visibility being defined; see table below
● visible (boolean, optional): if false, the geom/collection objects will be invisible to this

particular type of visibility; defaults to "true".

The viewergeom attribute (and/or the contents of a collection referred to by the viewercollection
attribute) typically refers to the name of a light (or list of lights) or other "geometry viewing" object(s).
If viewergeom /viewercollection are omitted, the visibility applies to all applicable viewers
(camera, light, geometry) within the given render context; viewergeom /viewercollection are not
typically specified for vistype "camera". Either geom or collection must be defined but not both;
similarly, one cannot define both a viewergeom and a viewercollection .

The vistype attribute refers to a specific type of visibility. If a particular vistype is not assigned
within a <look>, then all geometry is visible by default to all viewergeom s for that vistype ; this
means that to have only a certain subset of geometries be visible (either overall or to a particular
vistype), it is necessary to first assign <visibility> with visible="false" to all geometry.
Additional <visibility> assignments to the same vistype within a <look> are applied on top of the
current visibility state. The following vistype s are predefined by MaterialX; applications are free to
define additional vistype s:

Vistype Description
 camera camera or "primary" ray visibility
 illumination geom or collection is illuminated by the viewergeom light(s)
 shadow geom or collection casts shadows from the viewergeom light(s)
 secondary indirect/bounce ray visibility of geom or collection to

viewergeom geometry

If vistype is not specified, then the visibility assignment applies to all visibility types, and in fact will
take precedence over any specific vistype setting on the same geometry: geometry assigned a
<visibility> with no vistype and visible="false" will not be visible to camera, shadows,
secondary rays, or any other ray or render type. This mechanism can be used to cleanly hide geometry
not needed in certain variations of an asset, e.g. different costume pieces or alternate damage shapes.

If the <visibility> geom or collection refers to light geometry, then assigning vistype="camera"
determines whether or not the light object itself is visible to the camera/viewer (e.g. "do you see the
bulb"), while assigning visible="false" with no vistype will mute the light so it is neither visible
to camera nor emitting any light.

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 73

For the "secondary" vistype, viewergeom should be renderable geometry rather than a light, to declare
that certain other geometry is or is not visible to indirect bounce illumination or raytraced reflections in
that viewergeom . In this example, "/b" would not be seen in reflections nor contribute indirect bounce
illumination to "/a", while geometry "/c" would not be visible to any secondary rays:

 <visibility name="v2" viewergeom="/a" geom="/b" vistype="secondary"

 visible="false"/>
 <visibility name="v3" geom="/c" vistype="secondary" visible="false"/>

PropertyAssign Elements
PropertyAssign and PropertySetAssign elements are used within a <look> to connect a specified
property value or propertyset to one or more geometries or collections.

 <propertyassign name="paname" property="propertyname" type="type" value="value"
 [target="target"]
 [geom="geomexpr1[,geomexpr2...]"] [collection="collectionname"]/>
 <propertysetassign name="psaname" propertyset="propertysetname"
 [geom="geomexpr1[,geomexpr2...]"] [collection="collectionname"]/>

Either a geom or a collection may be specified, but not both. Multiple property/propertyset
assignments can be made to the same geometry or collection, as long as no conflicting assignment is
made. If there are any conflicting assignments, it is up to the host application to determine how such
conflicts are to be resolved, but host applications should apply property assignments in the order they are
listed in the look, so it should generally be safe to assume that if two property/propertyset assignments
set different values for the same property to the same geometry, the later assignment will win.

Look Examples

<?xml version="1.0" encoding="UTF-8"?>

<materialx>

 <!-- <nodedef> and <material> elements to define Mplastic1,2 and Mmetal1,2 here -->

 <collection name="c_plastic" includegeom="/a/g1,/a/g2,/a/g5"/>

 <collection name="c_metal" includegeom="/a/g3,/a/g4"/>

 <collection name="c_lamphouse" includegeom="/a/lamp1/housing*Mesh"/>

 <collection name="c_setgeom" includegeom="/b"/>

 <nodedef name="ND_disklgt_lgt" type="lightshader" node="disk_lgt">

 <parameter name="emissionmap" type="filename" value=""/>

 <parameter name="gain" type="float" value="2000.0"/>

 </nodedef>

 <material name="mheadlight">

 <shaderref name="lgtsr1" node="disk_lgt">

 <bindparam name="gain" type="float" value="500.0"/>

 </shaderref>

 </material>

 <propertyset name="standard">

 <property name="displacementbound_sphere" target="rmanris" type="float"

 value="0.05"/>

 <property name="trace_maxdiffusedepth" target="rmanris" type="float" value="3"/>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 74

 </propertyset>

 <look name="lookA">

 <materialassign name="ma1" material="Mplastic1" collection="c_plastic"/>

 <materialassign name="ma2" material="Mmetal1" collection="c_metal"/>

 <materialassign name="ma3" material="mheadlight" geom="/a/b/headlight"/>

 <visibility name="v1" viewergeom="/a/b/headlight" vistype="shadow" geom="/"

visible="false"/>

 <visibility name="v2" viewergeom="/a/b/headlight" vistype="shadow"

collection="c_lamphouse"/>

 <propertysetassign name="psa1" propertysetname="standard" geom="/"/>

 </look>

 <look name="lookB">

 <materialassign name="ma4" material="Mplastic2" collection="c_plastic"/>

 <materialassign name="ma5" material="Mmetal2" collection="c_metal"/>

 <propertysetassign name="psa2" propertysetname="standard" geom="/"/>

 <!-- make the setgeom invisible to camera but still visible to shadows and

reflections -->

 <visibility name="v3" vistype="camera" collection="c_setgeom" visible="false"/>

 </look>

</materialx>

MaterialX Specification v1.36 TM & © 2018 Lucasfilm Ltd. All rights reserved. p. 75

