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1 Introduction 
We present XFLATE, an extension to DEFLATE that provides the ability to read chunks of a compressed 
data stream in a random access manner by encoding an index of the chunk locations into the data 
stream itself. The extension remains backwards compatible with DEFLATE such that all RFC 1951 
compliant decoders will also be able to read XFLATE. 

1.1 Background information 
The DEFLATE format defined by RFC 1951 is arguably the world’s most common compression format, 
combining decent compression ratios with decent compression and decompression rates. 
Unfortunately, it was never designed for random access decompression, which is useful in large 
compressed files such as Zip archives, disk images, DNA sequences, and others. This document proposes 
an extension to DEFLATE that provides random access properties, while also ensuring complete 
backwards compatibility with DEFLATE. 
 
In order for a compression format to be randomly accessible, the compressed output needs to be 
comprised of individually compressed chunks and also needs to provide a way for those chunks to be 
easily located. In the terminology used by other compression formats, a table that records the location 
of every chunk is called an index. Formats like XZ, which are designed with random access in mind, make 
the index part of the format. Unfortunately, the design of DEFLATE provides no easy way to encode this 
meta-information into the stream in such a way that it does not alter the uncompressed output. 
 
Our approach solves this issue by using the dynamic Huffman compressed blocks of DEFLATE. As an 
oversimplification, these blocks are comprised of two parts: a Huffman tree definition and a data 
section, which is interpreted by the preceding tree. By specifying that the data section contains no data, 
we can use the Huffman tree definition to encode arbitrary metadata. However, generating valid 
Huffman trees that still encode arbitrary metadata is no trivial matter, but is possible. As such, we 
describe the process in detail later. 
 
With the ability to encode arbitrary metadata into the stream in such a way that does not affect the 
uncompressed output, one can see how we can extend DEFLATE to include an index that allows for 
random access decompression. This document describes in detail a format for encoding an index and 
also the format for encoding in-band metadata into a DEFLATE stream. 
 
Contrary to most other approaches, which choose to extend Gzip in some way, our approach addresses 
the issue at the DEFLATE layer since it is the underlying compression algorithm of many other formats 
including Gzip, Zip, PNG, PDF, etc. If we can provide random access compression in DEFLATE, then other 
formats that rely on DEFLATE can potentially inherit those benefits. 

https://github.com/dsnet/compress
mailto:joetsai@digital-static.net
http://digital-static.net/


  

1.2 Design goals 
The following are some design goals of XFLATE: 

 Be backwards compatible with DEFLATE. That is, any stream encoded as XFLATE be decodable by 
any compliant DEFLATE decoder without issue. The output data when decoded as XFLATE and as 
DEFLATE must be identical. 

 Maintain a streamed input and output. When encoding to XFLATE, the size of the working 
memory is independent of the chunk size or the total amount of input data. Thus, the input may 
come from and the output may go to a process pipe. 

 Parallelizable compression and decompression. Since there are no dependencies between each 
chunk, they can be individually compressed or decompressed in parallel. This allows for better 
utilization of modern processors with many cores. 

 Require no external index file. Unlike several other solutions, the index table that contains 
information about where chunks are located is embedded in the compressed stream itself in a 
way that does not affect the uncompressed output. 

 Selectable chunk size. The uncompressed size chosen for each chunk can be individually 
configured. The user may select larger chunks to improved storage efficiency at the cost of 
reduced random access performance and vice-versa. 

 Encode arbitrarily large data sets. The format uses variable-length integer values to store sizes 
and allows for an infinite number of indexes to be chained together. This ensures that an 
unlimited amount of data may be represented by the format. 

 Be a simple extension. This is a subjective metric, but we strive to make the format simple to 
understand, reason about, and implement. As such, we leverage existing encoding formats and 
checksums to allow for code reuse. 

1.3 Related work 
Some works related to this document are: 

 DEFLATE: The DEFLATE algorithm specified in RFC 1951 and originally designed by Phil Katz is the 
source of this document’s discussion. 

 Zlib: The zlib library written by Mark Adler and Jean-Loup Gailly is the standard reference 
implementation for DEFLATE. In creating XFLATE, it was absolutely required that XFLATE be 
properly decodable by zlib.  

 Gzip: The Gzip format specified by RFC 1952 uses DEFLATE internally, but provides no specified 
way of implementing random access decompression.  

 BGZF: The BGZF format is an extension to Gzip that uses the “extra field” of Gzip to encode size 
information. Unless the index is stored externally, “random access” is achieved through 
following a linked-list of size offsets. 

 DictZip: A Gzip extension using the “extra field” and uses 64 KiB chunks. It embeds an index, but 
has a 1.8 GiB max limit. Since the index is stored at the beginning, a streamable output is not 
practical since the contents of the index are determined after compressing the data. 

 GZinga: A Gzip extension using the “comment field” to encode an index as the last Gzip file in 
the stream. This format achieves similar goals, but is still limited to the Gzip format. Also, we 
have concerns about the abuse of the “comment field” to store machine interpreted data.  

 JZRan: Library that provides random access to any Gzip stream by literally storing the state of 
the decompressor at specific points. This approach is space inefficient. 

 XZ: The XZ format, developed by Lasse Collin, is a modern format that uses a different 
compression algorithm than DEFLATE. It was designed to provide random access capabilities. 
The structure of XZ had a significant influence on the design of XFLATE. 

http://tools.ietf.org/html/rfc1951
http://www.zlib.net/
http://tools.ietf.org/html/rfc1952
http://samtools.github.io/hts-specs/SAMv1.pdf
http://linuxcommand.org/man_pages/dictzip1.html
https://github.com/eBay/GZinga
https://code.google.com/p/jzran/
http://tukaani.org/xz/


  

2 Specification 
This section assumes some knowledge of the DEFLATE format as specified in RFC 1951. Some review 
information is presented here as reference. Please refer to RFC 1951 as the absolute authority for 
DEFLATE specifics. 
 
In the format specifications below, we use regular expression-like semantics to describe the structure. 
As with the POSIX standard for regular expressions, we use the following operators: 

 Grouping: ()  

 Alternatives: |   

 Quantification: * + ? {n} {n,m}  

2.1 Stream format 
The XFLATE stream format is as follows: 

Symbol  Expression 

XflateStream := StreamBlock* StreamFooter 

├──StreamBlock := MacroBlock* Index 

│  ├──MacroBlock   := DeflateBlock* SyncBlock 

│  └──Index        <= IndexHeader IndexRecord* IndexCRC 

│     ├──IndexHeader := BackSize NumRecords TotalCompSize TotalRawSize 

│     └──IndexRecord  := CompSize RawSize 

└──StreamFooter <- Magic Flags BackSize 

 
In the grammar above, the color-coding of the variables has the following meaning: 

 Black: Represents some other symbol  

 Purple: Represents data compressed using DEFLATE 

 Green: Represents data encoded using meta blocks 

 Orange: Represents values with a fixed byte length 

 Blue: Represents values encoded using variable-length integers (VLI) 
 
Furthermore, the grammar uses several different equivalence operators: 

  := : The left side is literally equivalent to the right side 

  <- : The left side is equivalent to the right side encoded into a single meta block 

  <= : The left side is equivalent to the right side encoded into one or more meta blocks 

  #= : The left side is equivalent to the CRC-32 hash of the right side. 
 
Assuming that meta blocks and sync blocks produce absolutely no data when decompressed, one can 
see that an XFLATE stream is effectively equivalent to a series of regular DEFLATE blocks: 

XflateStream := StreamBlock* StreamFooter  
              := (MacroBlock* Index)* StreamFooter 
              := ((DeflateBlock* SyncBlock)* Index)* StreamFooter 
              :≈ DeflateBlock* 

 



  

In the sections to follow, we will describe each element and field in detail. For the time being, assume 
that there exists a function that encodes a sequence of arbitrary bytes into byte-aligned meta blocks, 
which when decompressed by a DEFLATE decoder, produces no uncompressed output. The specification 
for the meta block encoding will be discussed in detail in a later section. 

2.1.1 MacroBlock 
The macro block has the following format:  

MacroBlock := DeflateBlock* SyncBlock 

 
The MacroBlock is the primary means to encode compressed data. Each macro block must be 
compressed independently of each other. Since DEFLATE is functionally a combination of LZ77 and 
Huffman encoding, this means that each macro block may only use LZ77 distances that refer to data 
within the given macro block; it may not reference data emitted by a preceding macro block. This 
ensures that each macro block has no data dependencies on previous blocks. The presence of the 
SyncBlock ensures that macro blocks always start and end on byte-aligned offsets. 

2.1.1.1 DeflateBlock 
The DeflateBlock* section is comprised of zero or more DEFLATE blocks as emitted by a standard 
DEFLATE compressor. Other than the distance requirement outlined above, there are no restrictions on 
what the block may actually be. Note that meta blocks must be composed of regular DEFLATE blocks 
themselves. Thus, there is no requirement that the DEFLATE blocks used in the DeflateBlock to not be 
composing meta blocks themselves (even if accidentally). Of course, the block still must be RFC 1951 
compliant, which means that the final bit (RFC 1951, section 3.2.3) must not be set since DeflateBlock 
is never the last block in the XFLATE stream. 

2.1.1.2 SyncBlock 
The SyncBlock symbol represents an empty raw DEFLATE block, which has the property of ending on a 
byte boundary. This block is required even if the preceding sequence of DeflateBlocks already ends on 
a byte-aligned edge. This block always ends with the 4-byte string: [0x00, 0x00, 0xff, 0xff]. 
 
This byte sequence aids in parallel decompression when reading the compressed input as a stream. A 
decompressor may choose to buffer a large quantity of compressed input and search for the occurrence 
of this sequence and speculatively decompress from the position following that sequence. Care must be 
taken since the presence of this sequence does not guarantee the termination of a MacroBlock as this 
sequence may occur naturally in a DEFLATE stream. The decompressor may only release the 
speculatively decompressed data if the real offset has caught up with the speculated sync offset.  

2.1.2 Index 
The index has the following format: 

Index <= IndexHeader IndexRecord* IndexCRC 

 
The index stores size information regarding all of the MacroBlocks that precede the index within the 
same StreamBlock. It is recommended that there only be one index per XFLATE stream, but this may 
not be possible due to the memory requirements of holding a potentially gigantic index. 

2.1.2.1 IndexHeader 
Grammar format: 

IndexHeader := BackSize NumRecords TotalCompSize TotalRawSize 

 

https://tools.ietf.org/html/rfc1951#section-3.2.3


  

The BackSize is the literal size in bytes of the preceding meta-encoded Index. If this is the first index, 
then the size is zero. This causes all indexes to form a reverse linked list such that a reader can locate all 
other Indexes in the XFLATE stream starting from the StreamFooter. Supposing that a preceding index 
exists, it will be located at 𝑂𝑓𝑓𝑠𝑒𝑡𝑂𝑓(𝐼𝑛𝑑𝑒𝑥) − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑝𝑆𝑖𝑧𝑒 − 𝐵𝑎𝑐𝑘𝑆𝑖𝑧𝑒. 
 
The purpose of allowing several Index blocks to be chained together is to ensure that there is a 
bounded amount of memory needed to remember the index information. If the index table is becoming 
too large for an encoder to maintain in memory, it can flush out the current index and only needs to 
keep track of the literal size of the recently flushed Index. 
 
The NumRecords is the number of IndexRecord objects in the Index and must also be equal to the 
number of MacroBlocks that precede the current index in the same StreamBlock. Each IndexRecord 
uniquely corresponds to a MacroBlock. The first IndexRecord corresponds with the first MacroBlock, 
the second IndexRecord corresponds with the second MacroBlock, and so on. 
 
The TotalCompSize is the literal size in bytes of the compressed data representing the MacroBlock* 
section of the same StreamBlock. Since the previous sections are guaranteed to be byte-aligned, we do 
not need to worry about lengths in bits. The sum of the CompSize across all IndexRecords in the index 
must be equal to the TotalCompSize field. 
 
The TotalRawSize is the size in bytes of the MacroBlock* section when it has been decompressed. The 
sum of the RawSize across all IndexRecords in the index must be equal to the TotalRawSize field. 
 
By summing up the TotalCompSize and TotalRawSize across all indexes, a decoder can quickly 
determine the amount of compressed and uncompressed data that the entire XFLATE stream 
represents. It also allows for computing the compression ratio rather efficiently. 

2.1.2.2 IndexRecord 
Grammar format: 
 IndexRecord := CompSize RawSize 
 
The CompSize is the literal size in bytes of the corresponding MacroBlock when compressed.  
The RawSize is the size in bytes of the uncompressed data in the corresponding MacroBlock.  

2.1.2.3 IndexCRC 
The IndexCRC is a 4-byte CRC-32 hash completed over the other fields in the Index. Specifically, it 
covers the following fields: 
 IndexCRC #= IndexHeader IndexRecord* 
 
The CRC-32 implementation used is ITU-T V.42 and is the same as what is used in Gzip. The CRC-32 
polynomial used in that standard is 0xedb88320. For reference, see RFC 1952, section 8. The value is 
stored in little endian byte order. 

2.1.3 StreamFooter 
The stream footer has the following format:  

StreamFooter <- Magic Flags BackSize 

 
The Magic is the 2-byte string: ['X', 'F']. 
 

https://tools.ietf.org/html/rfc1952#section-8


  

The Flags symbol represents a single byte value where each bit represents the presence of certain 
features of the format. For the current version of XFLATE, there are no features defined, so the value of 
the flags should be 0x00. A reader must error if these bits are not zero. 
 
The BackSize in the footer represents the literal number of compressed bytes occupied by the last 
Index preceding and adjacent to the StreamFooter. If no index exists, then the size is set to 0. The 
BackSize exists so that a decoder can read the footer and seek to the index since it will lie at 
𝑂𝑓𝑓𝑠𝑒𝑡𝑂𝑓(𝑆𝑡𝑟𝑒𝑎𝑚𝐹𝑜𝑜𝑡𝑒𝑟) − 𝐵𝑎𝑐𝑘𝑆𝑖𝑧𝑒. The BackSize is encoded as a variable-length integer (VLI). 
 
The requirement that the StreamFooter be encoded as a single meta block is to aid the reader in 
identifying the start of the footer when reading the stream from the end. Meta blocks have the property 
that it can encode at least 22 bytes in a single block, that the encoded block occupies at most 64 bytes, 
and that all blocks are identifiable by a magic sequence that cannot occur in the encoded output itself. 
Being able to encode at least 22 bytes means that there is sufficient space to store the entire footer. In 
order to locate the start of StreamFooter, a reader needs to read the last 64 bytes of the stream and do 
a reverse search for first occurrence of the meta block magic sequence. 
 
In order to be compliant with DEFLATE, the StreamFooter block must have the final bit (RFC 1951, 
section 3.2.3) set to indicate that it is the last block in the DEFLATE stream. Logically, we can conclude 
that this is the only block with the final bit set since the stream footer is always present and is the last 
element. Thus, it is invalid for the final DEFLATE bit to be set on any other elements in XFLATE. 

2.2 Meta block encoding 
The backbone of what enables XFLATE to be possible is the meta block encoding, which we now discuss 
in detail. The key to encoding metadata into the stream is to somehow generate DEFLATE blocks that 
decompress to nothing, yet allow for the encoding of arbitrary metadata into that block. Unfortunately, 
DEFLATE does not provide for any form of “meta” type block. Rather, in DEFLATE there are 3 types of 
blocks: non-compressed blocks, compressed blocks with fixed Huffman codes, and compressed blocks 
with dynamic Huffman codes. In generating meta blocks, we utilize the compressed blocks with dynamic 
Huffman codes, which we call “dynamic blocks“ for short. The meta block is actually a subset of valid 
dynamic blocks. In short, they are dynamic blocks with metadata encoded into the Huffman code 
definition, with no actual compressed data. This section will describe the grammar for meta blocks and 
will not explain why they are valid dynamic blocks. An explanation about their validity as dynamic blocks 
can be found in Appendix C.1. 
 
In the specifications below, when dealing with bit-strings, they are to be interpreted in the same way as 
DEFLATE (RFC 1951, section 3.1.1). Unless otherwise specified, any bit-strings that appear in this 
document have the MSB (most-significant bit) on the left and the LSB (least-significant bit) on the right. 
When several bit-strings are being joined, they are packed together starting with the LSB first. Here is an 
example of packing bit-strings into a byte-array:  

1. {0111 100111 110 001 0 1 101011}   Start with LSB on right 
2. {1110 111001 011 100 0 1 110101}   Reverse bits so that LSB is on the left 
3. {11101110 01011100 01110101}       Group bits into bytes, with LSB on left 
4. {01110111 00111010 10101110}       Reverse bits so that LSB is on the right 
5. {0x77 0x3a 0xae}                   Convert bits to bytes 

 

https://tools.ietf.org/html/rfc1951#section-3.2.3
https://tools.ietf.org/html/rfc1951#section-3.2.3
https://tools.ietf.org/html/rfc1951#section-3.1.1


  

The MetaBlock format is as follows (where a ∙ matches either a 0 or a 1): 
Symbol  Expression 

MetaBlock := MetaHeader MetaBody MetaFooter 

MetaHeader := (∙ 10) (00∙∙∙ 00000 ∙∙∙0) (011 000 011 001 000 (000 000){7-HuffBits} 010) 0 

MetaBody := (0|01|011 ∙∙|111 ∙∙∙∙∙∙∙)* 

MetaFooter := 0{Padding} 0 1{HuffBits} 

2.2.1 MetaHeader 
Grammar format: 
 MetaHeader := (∙ 10) (00∙∙∙ 00000 ∙∙∙0) (011 000 011 001 000 (000 000){7-HuffBits} 010) 0 

 
In the grammar for the MetaHeader, there are three groups of unspecified bits. From left to right, these 
correspond to the encodings of the FinalBlock, Padding, and HuffBits fields. 
 
The FinalBlock field is a single bit indicating whether this is the last block in the XflateStream. Since 
the StreamFooter is always the last block (as mentioned in section 2.1.3), this is a 1-bit only for that 
element. 
 
The Padding field is a 3-bit unsigned integer with a value within the range of [0. .7]. The padding field 
determines how many 0-bits to encode in the MetaFooter such that the entirety of the MetaBlock falls 
on a byte boundary. 
 
The HuffBits field is a 3-bit unsigned integer representing the value 8 − 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 where 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 is 
in the range of [1. .7]. 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 cannot be 8, so 000 is not a valid value for HuffBits. The semantic 
meaning of this field will be explored in the following section. 

2.2.2 MetaBody 
Grammar format: 
 MetaBody := (0|01|011 ∙∙|111 ∙∙∙∙∙∙∙)* 

 
The MetaBody is a variable-length bit-string, which is transformed into a 256-bit intermediate bit-string, 
which is finally transformed into a metadata byte string (between 0 to 31 bytes long). 
 
The MetaBody is a sequence of prefix codes of four possible codes: 0, 01, 011, and 111. The different 
codes can be differentiated from each other by parsing the MetaBody bit-by-bit (starting with the LSB) 
and checking if the current token matches one of the prefix codes. 
 
Processing each code in the MetaBody works as follows: 

 A 0 code appends a 0-bit to the intermediate buffer. 

 A 01 code appends a 1-bit to the intermediate buffer. 

 A 011 code copies the last bit in the intermediate buffer 𝑁 times. If the intermediate buffer is 
empty, then the initial “last” bit is a 0-bit. The repeat length 𝑁 is decoded as 3 plus the value of 
the next 2-bit unsigned integer in the MetaBody.  

 A 111 code appends a 0-bit 𝑁 times to the intermediate buffer. The repeat length 𝑁 is decoded 
as 11 plus the value of the next 7-bit unsigned integer in the MetaBody. 

 
Parsing of the MetaBody continues until the intermediate buffer is exactly 256 bits long. It is an error if a 
repeater code causes more than 256 bits to be decoded. 



  

 
 This table summarizes the semantics of each code: 

Code  Extra Bits Count Value 

0  0 1 0 

01  0 1 1 

011  2 3..6 Last 

111  7 11..138 0 

 
When processing the MetaBody into the intermediate bit-string, the following constraints must hold: 

 A sequence of 8x 0-bits (i.e., 00000000) must never appear in the MetaBody bit-string. 

 The number of 1-bits in the intermediate bit-string must exactly equal 2𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠. 

 The last bit in the intermediate bit-string must be a 1-bit. 
A decoder must check that these properties are upheld, while an encoder must not violate these. 

2.2.2.1 Intermediate bit-string 
The intermediate bit-string (exactly 256-bits long) follows the following grammar:  
 InterBits := FinalMeta Invert Size (∙∙∙∙∙∙∙∙){31} 1  

 
The FinalMeta field is a single bit indicating whether the current MetaBlock is the last in a sequence of 
MetaBlocks. Since each MetaBlock can encode at most 31 bytes of metadata, it is necessary to use 
more than one block to encode longer strings of metadata. The Index may be composed of more than 
one block, but the StreamFooter must be composed of exactly one MetaBlock. Thus, the 
StreamFooter is the only MetaBlock with both the FinalBlock and FinalMeta bits set. 
  
The Invert field is a single bit indicating whether the bits of every byte in the decoded metadata of this 
MetaBlock should be inverted. An encoder may set this bit when encoding a metadata string with many 
1-bits to help satisfy the constraint regarding the total number of 1-bits. 
 
The Size field is a 5-bit unsigned integer, 𝑁, representing the number of bytes of metadata; the bytes of 
which are composed of the next 𝑁 octets (possibly inverted) following the Size field. Even if there is 
more metadata to encode, the size may be less than 31 so that the unused bits may be utilized to satisfy 
the constraint regarding the total number of 1-bits. 

2.2.3 MetaFooter 
Grammar format: 
 MetaFooter := 0{Padding} 0 1{HuffBits} 

 

The value of 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 must be one such that the MetaFooter ends on a byte boundary and should only 
be composed of 0-bits. A decoder must verify that this is true, while an encoder must choose a value for 
𝑃𝑎𝑑𝑑𝑖𝑛𝑔 such that this holds true. As such, an encoder will typically choose the value of 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 once 
all other fields are known. 



  

2.2.4 Properties 
The meta block format was designed to guarantee certain properties to aid a reader in locating all the 
independently compressed chunks with minimal effort.  
 
Every MetaBlock starts on a byte-boundary and can be identified by a unique magic sequence: 

MagicVals = [0x04, 0x00, 0x86, 0x05] 
MagicMask = [0xc6, 0x3f, 0xfe, 0xff] 

 
The start of a MetaBlock at an arbitrary file offset can be identified by performing a logical AND of the 
next 4 bytes with the MagicMask and checking if it equals MagicVals. The uniqueness of this magic 
sequence only applies when searching for the start of a MetaBlock from a binary section representing 
only MetaBlocks. It is possible (however unlikely) that the magic sequence appear in DeflateBlocks. 
 
Futhermore, every MetaBlock has these byte size properties: 

Property Value Description 

MinRawBytes 0 Minimum and maximum number of metadata 
bytes a block can encode MaxRawBytes 31 

EnsureRawBytes 22 
Number of bytes that a single block is ensured 
to encode 

   

MinEncBytes 12 Minimum and maximum number of bytes an 
encoded block will occupy MaxEncBytes 64 

 
The existence of a magic value and guaranteed max encoded size allows a decoder to parse the 
StreamFooter by reading the last 64 bytes in an XflateStream, searching in reverse for the magic value 
and decoding the discovered MetaBlock. The guarantee of being able to encode at least 22 bytes in a 
single MetaBlock gives considerable margin for encoding the StreamFooter as a single block. 

2.3 Variable-length integers 
Some integer fields are encoded using variable-length integers (VLI). The format used is identical to the 
VLI format specified by the XZ format (section 1.2). In summary, it provides the following properties: 

 Encodes any integer in the range of [0. . 𝑀𝑎𝑥𝑈𝑖𝑛𝑡64/2 ] 

 Occupies between [1. .9] bytes 

 Smaller values encode into fewer bytes 

http://tukaani.org/xz/xz-file-format.txt


  

Appendix A: Example XFLATE streams 
For illustrative purposes, here are some examples of valid XFLATE streams. 

A.1 Empty stream 
The simplest XflateStream is one that decompresses to absolutely no data. 

 

Note that this stream still requires a StreamFooter, but the BackSize is always zero to indicate that 
there are no indexes present and, thus, has no uncompressed data. 
 
There are actually several ways to represent the empty stream since there are multiple ways of 
performing the meta encoding for the footer. Below is the hex-dump of one such representation: 

 

The column on the left is a hex-dump of a valid empty XFLATE stream. It consists of only a single meta 
block of which a hex-dump of the decoded metadata is shown in the middle column. As expected, the 
magic marker is clearly visible in the ASCII printout. The third column is a structured representation of 
the metadata after it has been parsed. 

A.1.1 Decoding a MetaBlock 
The MetaBlock from the above example is deconstructed as follows (LSB on the right): 

MetaHeader := (1 10) (00001 00000 1000) (011 000 011 001 000 (000 000){3} 010) 0  
MetaBody   := 01 0 0 0 01 0 (011 01) 01 01 0 01 0 0 01 01 0 0 0 01  
              (111 1111111) (111 1001101) 01 (011 11) 01  
MetaFooter := 0{1} 0 1{4} 

With these decoded values: 
 FinalBlock: true 
 Padding:    1 
 HuffBits:   4 
 

The MetaBody can be further deconstructed into the following intermediate bit-string: 
 InterBits := 1 0 0 0 1 0 0{4} 1 1 0 1 0 0 1 1 0 0 0 1 0{138} 0{88} 1 1{6} 1 

Which can be grouped by the relevant bit fields (LSB on the right): 
 InterBits := 1 0 00100 01011000 01000110 (00000000){28} 11111110 1 

With these decoded values: 
 FinalMeta: true 
 Invert:    false 
 Size:      4 
 MetaData:  [0x58, 0x46, 0x00, 0x00] 
 

We note that there are exactly 2𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 = 24 = 16 1-bits in InterBits and that the last bit is a 1-bit. 



  

A.2 Multiple indexes in stream 

 

The diagram above shows an exploded view of another XflateStream. This stream is comprised of two 
StreamBlocks. The first stream block contains actual data, while the second stream block contains no 
data. An efficient encoder would avoid outputting a StreamBlock with no uncompressed data, but this 
was done for the purpose of illustration. Notice how a decoder can completely back-trace all of the 
blocks starting from the StreamFooter by following all of the Size fields. 
 
Below, we show the hex-dump of a valid XFLATE stream that actually follows the structure shown above. 
Similar to the previous hex-dump, the left column displays the bytes of the actual XFLATE stream. The 
two purple regions represent DEFLATE compressed MacroBlocks. In each macro block, the distinctive 
0x0000ffff bytes of the sync marker can be clearly seen. The three green regions following the macro 
blocks represent the two Indexes shown above and the StreamFooter. Since the macro blocks precede 
the first index, they belong to that index. There are no macro blocks preceding the second index, so that 
index contains no records. 



  

 

The column in the middle shows the decompressed output for the macro blocks (in gray) and the 
decoded output of the meta blocks (in blue and orange). The column on the right shows a structured 
representation of the middle column after the decoder has parsed it. 
 
In this example, the string "The quick brown fox jumped over the lazy dog!" is being 
compressed (although not very efficiently). Looking at the compressed representation on the left 
column, one can verify that the total compressed size is 60 bytes, split into a section of 50 bytes (offsets 
0x0000 to 0x0032) in the first macro block and 10 bytes (offsets 0x0032 to 0x003c) in the second macro 
block. Similarly, by looking at the decompressed representation in the middle column, one can verify 
that there are indeed 45 bytes in that string, split into a section of 41 bytes in the first macro block and 4 
bytes in the second macro block. 
 
Lastly, one can verify the correctness of the back sizes. Starting with the footer, we can clearly see that 
the index preceding it does indeed occupy 21 bytes (offsets 0x0058 to 0x006d). Looking at the last index 
now, we can see that the index preceding that one does indeed occupy 28 bytes (offsets 0x003c to 
0x0058). Since we are now at the first index, the back size that it contains is 0 bytes, indicating that 
there are no more preceding indexes. Even encoding an empty index occupies at least 8 metadata bytes 
(4 bytes of VLIs and a 4 byte CRC), and thus occupies at least some positive number of meta-encoded 
bytes. This guarantees that use of a 0 byte size is a legal sentinel value for termination. 
 
In order to keep this example small, none of the VLIs have large enough values to span multiple bytes. 



  

Appendix B: Analysis of XFLATE format 
Since the XFLATE format was designed to provide random access decompression, there is some 
overhead that causes an XFLATE stream to be larger than if the source had been compressed as a 
DEFLATE stream instead. The sources of overhead come from compression inefficiency due to chunking 
and overhead due to storing the index tables. 

B.1 Effect of chunk size 
The factor that has the most effect on the overhead of XFLATE over standard DEFLATE is the choice of 
chunk size. Since each chunk is independently compressed, they cannot benefit from potential LZ77 
matches on sub-strings found in prior chunks. Using the DEFLATE compressor from Go1.4.2, we measure 
the overhead of chunking on various test files: 

 go1.4.2.linux-amd64.tar: TAR archive containing both binary and text data 

 enwik8.txt: Text file containing primarily English articles 

 zeros.bin: 1GiB file of all zeros that is highly compressible 

 sawtooth.bin: 1GiB file of repeating sequences of bytes iterating from 0 to 255 
 

File  go1.4.2.linux-amd64.tar  enwik8.txt 

RawSize  233581568  100000000 

ChunkSize  65536 262144 1048576  65536 262144 1048576 

#Chunks  3565 892 223  1526 382 96 

CompSizeSTREAM  62442686  36523872 

CompSizeCHUNKED  64256397 62911473 62553140  38134384 36940045 36628142 

%Overhead  2.90% 0.75% 0.18%  4.41% 1.14% 0.29% 

 

File  zeros.bin  sawtooth.bin 

RawSize  1073741824  1073741824 

ChunkSize  65536 262144 1048576  65536 262144 1048576 

#Chunks  16384 4096 1024  16384 4096 1024 

CompSizeSTREAM  1043610  4165513 

CompSizeCHUNKED  1359877 1122309 1061893  9502720 5496832 4495360 

%Overhead  30.31% 7.54% 1.75%  128.13% 31.96% 7.92% 

 
CompSizeSTREAM represents the compressed size when encoded as a single DEFLATE stream, while 
CompSizeCHUNKED represents the compressed size when encoded with individually compressed chunks of 
the specified size. The %Overhead computes the percentage increase of output size of the chunked 
version relative to the single stream version. This overhead does not account for the space required to 
store any indexing metadata. 
 
From the above table, we make some observations: 

 Inputs that benefit most from LZ77 matches have the greatest overhead. Thus, applying chunking on 
sawtooth.bin is an effective measure of the worst-case overhead since it has almost no benefit 
from Huffman encoding and relies almost entirely on LZ77 for compression. The overhead for 
zeros.bin is not as extreme since it still benefits significantly from Huffman coding. 



  

 As the chunk size increases, the overhead decreases since there is more data for LZ77 to take 
advantage of for compression. The choice of chunk size allows a user to balance the trade-offs 
between random access efficiency and compression overhead. 

 A scheme that uses dynamic chunk sizes may be able to better balance the trade-off between 
overhead and random-accessibility. A larger chunk size may be chosen for highly compressible data 
with the assumption that this data is faster to compress and decompress. 

B.2 Trade-offs in index format design 
Another source of overhead is the storage of the index itself into the XFLATE stream. Several techniques 
were considered to make the encoded size of the index smaller: 

 Compression: Compress the index itself using DEFLATE. Since XFLATE is already an extension on 
the DEFLATE format, it should not be difficult to call a DEFLATE encoder on the index. 

 Column-oriented layout: The RawSize in every record is likely to be the same (assuming fixed 
chunk sizes). If we group the CompSizes of every record together, followed by the RawSizes of 
every record, we can gain a compression benefit due to adjacent repetition. 

 Variable-length integers (VLIs): Use variable-length encoding for integers such that smaller 
values require fewer bytes to encode as opposed to using a uint64 for all integers. 

 Delta-encoding: The CompSize and RawSize usually have values in the same range, we can 
compute the difference between the current value and the previous value and only store the 
delta, which is likely to be smaller. This technique works best with the use of VLIs. 

 
To test the effectiveness of these techniques, indexes based on go1.4.2.linux-amd64.tar with 3565 
chunks were generated using various combinations of the techniques:  
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RawSize MetaSize 

Fixed       57040 41032 

VLIs    ✔   19510 30824 

Delta    ✔ ✔  10829 17867 

CompFixed  ✔     10145 18927 

CompVLIs  ✔  ✔   9636 17340 

CompDelta  ✔  ✔ ✔  8315 15002 

ColumnFixed  ✔ ✔    9670 18298 

ColumnVLIs  ✔ ✔ ✔   7809 14388 

ColumnDelta  ✔ ✔ ✔ ✔  7109 12827 

 
The middle columns indicate which techniques were used, while the RawSize is the byte size of the 
formatted index, and the MetaSize is the byte size after using meta encoding. As expected, using more 
techniques leads to a smaller raw size. In general, meta encoding the index results in an increase of 
about 1.6x to 1.8x, with the exception of the Fixed mode which was interestingly smaller due to the 
meta encoding’s efficiency at handling long runs of 0-bits. 
 
The final design only used VLIs since it provided decent benefit, without adding the complexity of the 
other techniques. Furthermore, even with the inefficiencies of the meta encoding, the index overhead 
was much smaller than the chunking overhead; so minimal encoding was not a critical priority. 



  

Appendix C: Analysis of meta encoding format 
In the design of the meta encoding format, multiple approaches were explored that balanced aspects of 
simplicity and encoding efficiency. The specific format presented in section 2.2 was deemed an 
acceptable balance of simplicity and efficiency. 

C.1 Validity of meta block as DEFLATE block 
As mentioned, the MetaBlock format is a special case of dynamic blocks from DEFLATE. In order to 
demonstrate this, we first review the format of DynamicBlocks themselves. Please refer to RFC 1951 as 
the authoritative source. 

C.1.1 Review of dynamic blocks 
The DynamicBlock has the following grammar: 

Symbol  Expression 

DynamicBlock := FinalBlock BlockType HuffHeader HuffTrees HuffData 

├──HuffHeader := NumLit NumDist NumHCLen 

├──HuffTrees := HCLens (LitLens DistLens) 

│  ├──HCLens := HCLen{NumHCLen+4} 

│  ├──LitLens := (HCCode Extra?){1,NumLit+257} 

│  └──DistLens := (HCCode Extra?){1,NumDist+1} 

└──HuffData := (LCode Extra? (Dcode Extra?)?)* LCodeEOB 

 
Symbol  Expression  Significance 

FinalBlock := 0|1  Is this the last block in DEFLATE stream? 

BlockType := 10  Dynamic Huffman tree block type 

NumLit := [01]{5}  Number of literal symbols - 257 in LitTree 

NumDist := [01]{5}  Number of distance symbols - 1 in DistTree 

NumHCLen := [01]{4}  Number of length symbols - 4 in HCTree 

HCLen := [01]{3}  Bit-length for each HCTree code type 

Extra := [01]+  Unsigned value that augments prior symbol 

 
The uncompressed data in a DynamicBlock is entirely stored by the HuffData field. The HuffData is 
essentially a sequence of LCode or DCode values that represent either literal byte values or 
distance/length pairs, terminated by a special “end-of-block” code, LCodeEOB. Each code may be 
followed by some number of extra bits depending on the semantics of the preceding code (although 
most codes will have no extra bits). Symbols colored in beige are Huffman encoded symbols using their 
respective Huffman tree. That is, HCCode uses 𝐻𝐶𝑇𝑟𝑒𝑒, LCode uses 𝐿𝑖𝑡𝑇𝑟𝑒𝑒, and DCode uses 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒. 
 
Huffman trees are a method of constructing a variable-length encoding such that symbols with more 
frequent occurrences can be assigned a shorter bit-string code. Huffman trees are essentially a data 
structure that maps some domain of alphabet symbols to a range of bit-string codes. The input range 
and output domain always have the same cardinality, and this conversion process is bijective (the 
mapping is reversible). When parsing any bit-stream bit-by-bit, it is possible to unambiguously 
determine the sequence of symbols that were used to generate that bit-stream. 
 



  

An example Huffman tree is as follows: 

 

 
Symbol  Code 

A  00 

B  0111 

C  011 

D  10 

E  01 

F  1111 

 
The tree on the left and the table on the right represent the same mapping. There are 6 alphabet 
symbols [𝐴. . 𝐹] being mapped to 6 distinct bit-string codes. The tree encodes the symbols as the leaves, 
while the codes are encoded as the path from the root node (the LSB) to each leaf (the MSB). The 
Huffman encoding used in DEFLATE is canonical, meaning that the tree is constructed in such a way that 
only the bit-lengths of each symbol is needed to reconstruct the tree. Thus, the tree in the example can 
be reconstructed only using the sequence of bit-lengths: [2, 4, 3, 2, 2, 4]. 
 
Similarly, the 𝐻𝐶𝑇𝑟𝑒𝑒, 𝐿𝑖𝑡𝑇𝑟𝑒𝑒, and 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 are all constructed from a list of bit-lengths specified in 
the HCLens, LitLens, and DistLens fields. The number of symbols represented by these lists are stored 
in the NumHCLen, NumLit, and NumDist fields; they can take on a value in the ranges of [257. .286], 
[1. .30], and [4. .19], respectively. The 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 contains symbols needed to encode literal byte values 
(256 symbols), an end-of-block symbol, and also various copy lengths (up to 29 symbols). The 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 

contains symbols needed to encode the copy distance (up to 30 symbols). The definitions of the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 

and 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 themselves are actually encoded using another mapping, 𝐻𝐶𝑇𝑟𝑒𝑒 (up to 19 symbols). 
 
The symbols of 𝐻𝐶𝑇𝑟𝑒𝑒 are [𝑅𝐿, 𝑅0𝑎, 𝑅0𝑏, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]. The bit-lengths 
for each code are stored in HCLens. If the length of HCLens is shorter than 19, then the alphabet is right 
truncated to match in length. Each HCLen value is 3-bits long, meaning each HCCode can be up to 7-bits 
long. If the HCLen value is 0, then the associated symbol is not in 𝐻𝐶𝑇𝑟𝑒𝑒. The symbols [0. .15] 
represent bit-lengths for codes in 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 and 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒, while symbols 𝑅𝐿, 𝑅0𝑎, and 𝑅0𝑏 are special 
symbols used to repeat other symbols. Code 𝑅𝐿 is used to repeat the last non-special symbol [3. .6] 
times. Code 𝑅0𝑎 is used to repeat a zero symbol [3. .10] times. Code 𝑅0𝑏 is used to repeat a zero 
symbol [11. .138] times. The repeat count is stored immediately after each repeater code, occupying 2, 
3, and 7 bits respectively and added to the lower bound of the repeat range. 
 
𝐻𝐶𝑇𝑟𝑒𝑒 is used to encode the bit-lengths of 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 and 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 in the LitLens and DistLens fields. 
Since the largest symbol in 𝐻𝐶𝑇𝑟𝑒𝑒 is 15, that means each LCode and DCode can be up to 15-bits long. 
The use of repeater symbols allows the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 and 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 to be populated efficiently without 
needing to specify a single code for every mapped symbol. It is important to note that the list of bit-
length for all trees must form a canonical Huffman tree; meaning that the bit-lengths form a valid binary 
tree where each node has exactly 2 children. 
 
We do not review how LZ77 sub-string matching operates with respect to 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 and 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 since 
that is not necessary to explain how MetaBlocks work. 
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C.1.2 Meta blocks as a special case of dynamic blocks 
Using the DynamicBlock as a template, we define the MetaBlock by hard-coding certain fields: 

Symbol  Expression 

MetaBlock := FinalBlock 10 HuffHeader HuffTrees HuffData 

├──HuffHeader := (Padding 00) 00000 (0 HuffBits) 

├──HuffTrees := HCLens (LitLens DistLens) 

│  ├──HCLens := 011 000 011 001 000 (000 000){7-HuffBits} 010 

│  ├──LitLens := 0 (HCCode Extra?){1,256} 0{Padding} 

│  └──DistLens := 0 

└──HuffData := LCodeEOB 

   └──LCodeEOB := 1{HuffBits} 

 
Symbol  Expression  Significance 

FinalBlock := 0|1  Is this the last block in DEFLATE stream? 

Padding := [01]{3}  Number of padding bits for byte-alignment 

HuffBits := [01]{3}  Controls the bit-depth of LitTree 

HCCode := 0 | 01 | 011 | 111  Maps to HCTree symbols 

Extra := [01]{2} | [01]{7}  RL and R0b repeater counts 

 
The following fields have fully or partially hard-coded values: 

 The upper 2 bits of NumLit is hard-coded to 00, leaving the lower 3 bits as a new Padding field. 
This means that 𝑁𝑢𝑚𝐿𝑖𝑡 can only take on values in the range of [257. .264]. 

 The lowest bit of NumHCLen is hard-coded to 0, leaving the upper 3 bits as a new HuffBits field, 
with a restriction that the field cannot be 000. This means that 𝑁𝑢𝑚𝐻𝐶𝐿𝑒𝑛 can only take on 
values in the set of [6, 8, 10, 12,14, 16, 18]. The HuffBits field stores 8 − 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠.  

 The HCLens list has several hard-coded values that creates this mapping of symbols to bit-
lengths: {𝑅𝐿: 3, 𝑅0𝑏: 3, 0: 1, 𝑋: 2}. The 𝑋 symbol is in the range of [1. .7]. 

 The NumDist field is hard-coded such that 𝑁𝑢𝑚𝐷𝑖𝑠𝑡 is 1. The DistLens field itself is hard-coded 
with a single HCCode representing the symbol 0, indicating that the 𝐷𝑖𝑠𝑡𝑇𝑟𝑒𝑒 is empty. 

 The HuffData field is hard-coded to immediately terminate with LCodeEOB. Thus, the 
MetaBlock decompresses to absolutely nothing at all. 

 
The 𝐻𝐶𝑇𝑟𝑒𝑒 is a Huffman tree with 4 leaves. The code that is 2 bits long has a symbol that is dependent 
on the HuffBits field and is equal to the 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 value. 

 

 
Symbol  Code 

0 SymZero  0 

[1..7] SymOne  01 

RL SymRepLast  011 

R0b SymRepZero  111 



  

We rename these symbols as SymZero, SymOne, SymRepLast, and SymRepZero to better identify how 
they are used to construct the intermediate bit-string described in section 2.2.2. The 𝐻𝐶𝑇𝑟𝑒𝑒 has only 
two normal symbols: SymZero and SymOne. SymZero is used to indicate which symbols in the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 
are non-existant, while SymOne (which has a value of 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠) is used to specify which symbols in 
𝐿𝑖𝑡𝑇𝑟𝑒𝑒 do exist. Since we only have one bit-length value 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠, in order for the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 to be a 
canonical Huffman tree, it must be a perfectly balance binary tree with a depth of 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠. This 

implies that exactly 2𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠  symbols in the tree must be a SymOne.  
 
For the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 symbols themselves, the 0th symbol must be encoded with a SymZero literal (for reasons 
explained later), but the 1st to 255th symbols may encoded by either SymZero or SymOne literals or using 
the repeater symbols, SymRepLast and SymRepZero. In order to ensure that LCodeEOB is a valid code, 
the 256th symbol in the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 must be a SymOne. The 257th symbol and above must be SymZero literals 
as determined by the 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 count. Since the padding contains only SymZeros, it has no effect on the 
𝐿𝑖𝑡𝑇𝑟𝑒𝑒 structure. This ensures that the code value for LCodeEOB is always 1{HuffBits}. 

C.2 Uniqueness of magic marker 
For this section, we will be writing bit-strings with the LSB on the left (contrary to the rest of the 
document) because it aids visually in what the bit-streams actually looks like. Since bit-streams are 
fundamentally packed into bytes, we delineate byte boundaries with a single space character. 
 
From section 2.2.4, the magic marker is defined to be:  

MagicVals = [0x04, 0x00, 0x86, 0x05] 
MagicMask = [0xc6, 0x3f, 0xfe, 0xff] 

 
The magic marker is checked by first ANDing some data bytes with MagicMask before checking it against 
MagicVals for equality. The AND operation is used to mask-out certain bits as irrelevant. If we were to 
write out the magic as a bit-string with the masked-out bits using a wildcard bit ‘∙’, then we obtain the 
bit-string labeled M below. 
 
M:  ∙01∙∙∙00 000000∙∙ ∙1100001 10100000 
 
B1: ∙01∙∙∙00 00000011 11100001 10100000 00000000 00000000 00000000 00000000 00000100 ∙∙∙∙∙∙∙p pppppp01 
B2: ∙01∙∙∙00 00000001 11100001 10100000 00000000 00000000 00000000 00000001 00∙∙∙∙∙∙ ∙∙∙∙∙∙pp ppppp011 
B3: ∙01∙∙∙00 00000010 11100001 10100000 00000000 00000000 00000000 0100∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙ppp pppp0111 
B4: ∙01∙∙∙00 00000000 11100001 10100000 00000000 00000000 000100∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙pppp ppp01111 
B5: ∙01∙∙∙00 00000011 01100001 10100000 00000000 00000100 ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙ppppp pp011111 
B6: ∙01∙∙∙00 00000001 01100001 10100000 00000001 00∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙pppppp p0111111 
B7: ∙01∙∙∙00 00000010 01100001 10100000 0100∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙ ∙ppppppp 01111111 

 
Furthermore, we have several bit-strings labeled B[1..7] that represent all of the bit-strings that a meta 
block could possibly take form as (where the number 𝑥 in B𝑥 is the 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 used). The sections in red, 
green, and blue represents the MetaHeader, MetaBody, and MetaFooter. Some of the bits in the header 
are unknown because they represent the final DEFLATE bit and the padding bit-count. As for the body, 
all of the bits are unknown since the symbols used may be anything. Lastly, some of the bits in the 
footer are labeled with a ‘p’ bit. This indicates that these bits are for padding. Since padding bits may or 
may not be present, these bits can practically be treated as unknown bits ‘∙’ as well. 
 



  

When matching the magic string M downwards with all of the Bx strings, it is clear that it always 
matches. This is expected since the magic value should match all meta blocks at the beginning. The 
important thing we want to show is that M does not match any parts of Bx when M is byte-shifted to the 
right. For example, if we were to byte-shift M right by one byte, we can see that it never matches Bx 
since the 3rd bit in M is a 1-bit, while the corresponding bit in Bx is always 0-bit. 
 
For the MetaHeader, if we were to continue this process, we would see that M does not match any of 
the full bytes of the MetaHeader in Bx at any possible byte-shift offset. The closest possible match occurs 
with B6 at a right-shift of 3 bytes where the 18th bit of M is a 1-bit, while the corresponding bit from B6 
is a 0-bit. The reason the MetaHeader (from section 2.2.1) ends with a 0-bit (which is a SymZero as the 
first symbol in the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒) is to prevent a match. For the MetaFooter, the last byte of M never matches 
the end of the footer since the last bit of M is a 0-bit, while the last bit of Bx is always a 1-bit.  
 
The remaining task is to show that M never matches the MetaBody, which is difficult since the MetaBody 
is entirely composed of unknown bits. To address this, we observe that M contains a sequence of 8 
consecutive zeros, which lies entirely within the body section. Thus, to ensure that M never matches the 
MetaBody, we developed the constraint in section 2.2.2 that 8x 0-bits never appear in the MetaBody. 
While this may prevent certain combinations of symbols in the body that would not have accidentally 
matched the magic, it is a relatively simple rule for a meta decoder to check for. 
 
However, let use analyze whether this constraint makes the encoding of certain metadata impossible. 
Below we listed every possible way that 8x 0-bits can be generated in the MetaBody: 

A. 0 0 0 0 0 0 0 0 8x SymZeros 

B. 10 0 0 0 0 0 0 0 SymOne, followed by 7x SymZeros 

C. 110-00 0 0 0 0 0 SymRepLast with count of 3x, followed by 5x SymZeros 
D. 110-10 0 0 0 0 0 0 0 SymRepLast with count of 4x, followed by 7x SymZeros 

E. 111-0000000 0 SymRepZero with count of 11x, followed by 1x SymZeros 
F. 111-1000000 0 0 SymRepZero with count of 12x, followed by 2x SymZeros 
G. 111-1100000 0 0 0 SymRepZero with count of 14x, followed by 3x SymZeros 
H. 111-1110000 0 0 0 0 SymRepZero with count of 18x, followed by 4x SymZeros 
I. 111-1111000 0 0 0 0 0 SymRepZero with count of 26x, followed by 5x SymZeros 
J. 111-1111100 0 0 0 0 0 0 SymRepZero with count of 42x, followed by 6x SymZeros 
K. 111-1111110 0 0 0 0 0 0 0 SymRepZero with count of 169x, followed by 7x SymZeros 

Avoiding the consecutive zeros is actually trivial in every one of these cases. For cases A, B, C, D, and K, 
the sequence of at least 5x SymZeros ("0 0 0 0 0") can be replaced with a single SymZero, followed by 
a SymRepLast with a count of at least 4x ("0 110-10"). For cases E, F, G, H, I, and J, this situation can be 
avoided by simply folding the trailing SymZeros into the count of the preceding SymRepZero. As a 
general rule, any greedy algorithm that tries to use the repeater codes whenever possible will never 
violate the consecutive 0-bits constraint. 
 
An astute reader may note that it is not always the most efficient to use SymRepLast to encode runs of 
zeros. For example, 5 zeros is more efficiently written as 5x SymZeros, rather than using a single 
SymZero, followed by a SymRepLast with a count of 4. The first sequence occupies 5 bits, while the 
second sequence occupies 6 bits. An implementation of the meta encoder may output 5x SymZeros 
instead of using the repeater so long as the 8 consecutive zeros rule is not violated. 



  

C.3 Size limits of a meta block 
In section 2.2.4, we provided some properties of the meta encoding. Here we explore the mathematical 
basis for those values. To summarize, the table shown above had: 

Property Value Description 

MinRawBytes 0 Minimum and maximum number of metadata 
bytes a block can encode MaxRawBytes 31 

EnsureRawBytes 22 
Number of bytes that a single block is ensured 
to encode 

   

MinEncBytes 12 Minimum and maximum number of bytes an 
encoded block will occupy MaxEncBytes 64 

 

C.3.1 Limits to number of bytes that can be encoded 
First, let us explore the number of metadata bytes that can be encoded into a block. The metadata itself 
is encoded in the 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 definition and is fundamentally limited by the number of symbols in that 
definition. The 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 contains [257. .264] symbols. The 256th symbol is used for the EOB marker and 
is always SymOne, the 257th symbol and above are always used for padding and are always SymZero, and 
the first 8 symbols have special uses (5 of which are used to store the count). This leaves 248 symbols 
for arbitrary metadata, which amounts to a MaxRawBytes of 31, which conveniently fits within the 5-bit 
count. Also, the MinRawBytes is 0 since the size field can trivially be set to a value of 0. 

C.3.2 Limits to number of bytes that is ensured be encoded 
Next, we determine the number of bytes that can always be encoded into a single meta block. This is 
determined by whether the intermediate bit-string forms a valid 𝐿𝑖𝑡𝑇𝑟𝑒𝑒 (i.e., the total number of 1-bits 

exactly equals 2𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 ). In other words, for some given metadata string, so long as we can determine 
some value for 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 ∈ [1. .7] that satisfies the constraint, then we know that the metadata can be 
encoded in a single block. Furthermore, we note that it does not matter what the metadata string 
actually is so long as we know the number of 1-bits (and also 0-bits) in the string.  
 

def ComputeHuffBits(n0s, n1s): 
    MaxSyms = 256 # Does not include 0

th
 symbol and padding symbols 

    if n1s > n0s: 
        n0s, n1s = n1s, n0s 
    n0s += 7 # Add other zero bits: FinalMeta, Invert, Size 
    n1s += 8 # Add other one bits: FinalMeta, Invert, Size, EOB symbol 
    for hb in range(MinHuffBits, MaxHuffBits+1): 
        MaxOnes = 1<<hb 
        if MaxSyms-MaxOnes >= n0s and MaxOnes >= n1s: 
            return hb 
    return None 

 
The ComputeHuffBits function computes a valid 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 value given information about the input 
metadata string; specifically the total number bits of each value. Since there is a cap on the total number 
of 1-bits allowed, we invert the input if there are more 1-bits than 0-bits. We also add 7 or 8 to the 
number of bits to account for required fields. An astute reader may note that the value of the Invert 
and Size fields are entirely known, so we could add the exact number of 0-bits and 1-bits that they 
require, but we use a more conservative metric here for simplicity. 
 



  

Given the ComputeHuffBits function, we can now compute EnsureRawBytes, the number of bytes that 
can always be encoded into a single meta block. We determine this value by sweeping through all 
possible combinations of 0-bits and 1-bits for strings of every byte-length and checking that it is always 
possible to compute a valid 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 value. 
 

def ComputeEnsureRawBytes(): 
    MaxRawBytes = 31 
    for nb in range(MaxRawBytes+1): 
        for n0s in range(8*nb + 1): 
            n1s = 8*nb - n0s 
            if ComputeHuffBits(n0s, n1s) is None: 
                return nb-1 
    return MaxRawBytes 

 
Running the above function informs us that EnsureRawBytes is 22 bytes. 

C.3.3 Limits to number of bytes that a meta block can occupy 
Lastly, we explore the size of the encoded block itself. Let us first compute the amount of bits lost to the 
MetaHeader and MetaFooter for each of the possible 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 values. The first group of numbers 
represents the bits that the MetaHeader occupies, while the second group of numbers represents the 
bits that the MetaFooter occupies (without the padding bits): 

BitLoss = { 
    1: (1+2 + 5+5+4 + 3*18 + 1) + (1 + 1), # 74 bits 
    2: (1+2 + 5+5+4 + 3*16 + 1) + (1 + 2), # 69 bits 
    3: (1+2 + 5+5+4 + 3*14 + 1) + (1 + 3), # 64 bits 
    4: (1+2 + 5+5+4 + 3*12 + 1) + (1 + 4), # 59 bits 
    5: (1+2 + 5+5+4 + 3*10 + 1) + (1 + 5), # 54 bits 
    6: (1+2 + 5+5+4 + 3*8  + 1) + (1 + 6), # 49 bits 
    7: (1+2 + 5+5+4 + 3*6  + 1) + (1 + 7), # 44 bits 
} 

 
With the BitLoss map now defined, we can now define two other functions that deal only with the 
MetaBody. The n0s and n1s variables in the functions below are the number of zeros and ones that need 
to be encoded for a given 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠. The MinRepLast and MaxRepLast constants are 3 and 6; while the 
MinRepZero and MaxRepZero constants are 11 and 138. 
 
Let us define a function MaxBits, that when given 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠, computes the longest meta block.  

def MaxBits(i): 
    n0s, n1s, nb = 256-(1<<i), 1<<i, BitLoss[i] 
 
    # Encode all of the zeros. 
    nb += 5*(n0s/MinRepLast) 
    nb += 1*(n0s%MinRepLast) 
 
    # Encode all of the ones. 
    nb += 2*n1s 
 
    return nb 

When encoding zeros, the worst case actually occurs when using SymRepLast, with a minimal count, to 
represent 3 zeros instead of using 3x SymZeros. When generating ones, we avoid any repeater symbols 
and just output SymOne for all the ones. 



  

 
Let us define a function MinBits, that when given 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠, computes the shortest meta block. 

def MinBits(i):  
    n0s, n1s, nb = 256-(1<<i), 1<<i, BitLoss[i] 
 
    # Encode all of the zeros. 
    while n0s > 0: 
        if n0s >= MinRepZero: 
            n0s -= min(MaxRepZero, n0s) 
            nb += 10 
        elif n0s >= MinRepLast+2: 
            n0s -= min(MaxRepLast, n0s) 
            nb += 5 
        else: 
            n0s -= 1 
            nb += 1 
 
    # Encode all of the ones. 
    nb += 2 
    n1s -= 1 
    while n1s > 0: 
        if n1s >= MinRepLast: 
            n1s -= min(MaxRepLast, n1s) 
            nb += 5 
        else: 
            n1s -= 1 
            nb += 2 
 
    return nb 

In both generating zeros and ones, the strategy taken is to use repeater symbols with the largest count 
as much as possible. In order to avoid the inefficiency of using SymRepLast with zeros as seen in 
MaxBits, we add 2 to MinRepLast in order to offset it to the breakeven point where it is economical to 
use SymRepLast for encoding runs of zeros. 
 

Given the MinBits and MaxBits functions, we can determine the minimum and maximum occupy sizes 
by sweeping through all of the possible 𝐻𝑢𝑓𝑓𝐵𝑖𝑡𝑠 values: 

𝑚𝑖𝑛( { 𝑀𝑖𝑛𝐵𝑖𝑡𝑠(𝑖)  |  1 ≤ 𝑖 ≤ 7 } ) = 𝑚𝑖𝑛( {98, 96, 93, 96, 103, 126, 163} ) = ⌈ 
93 𝑏𝑖𝑡𝑠

8
 ⌉ = 12 𝑏𝑦𝑡𝑒𝑠 

 

𝑚𝑎𝑥( { 𝑀𝑎𝑥𝐵𝑖𝑡𝑠(𝑖)  |  1 ≤ 𝑖 ≤ 7 } ) = 𝑚𝑎𝑥( {500, 497, 492, 491, 490, 497, 512} ) = ⌈ 
512 𝑏𝑖𝑡𝑠

8
 ⌉ = 64 𝑏𝑦𝑡𝑒𝑠 

 
Thus, we confirm that, MinEncBytes and MaxEncBytes, the minimum and maximum number of bytes an 
encoded block will occupy is 12 and 64 bytes, respectively. 



  

C.4 Efficiency of encoding 
We now analyze the efficiency of the meta encoding. That is, we compute the ratio of the encoded 
output after meta encoding to the number of bytes being encoded. Using the meta encoder from the 
reference implementation, we produce the following table: 

The meaning of each column is: 

 #Bytes: The length of the input metadata string. 

 FullRange: Whether it is possible to encode all possible metadata strings of this length. 

 %Range: The percentage of all possible metadata strings of this length that can be encoded. 

 (Min, Avg, Max)Size: The length of the encoded meta block. 

 %(Max, Avg, Min)Eff: The efficiency measured as the percentage of the encoded output that is 
actual metadata. 

#Bytes  FullRange %Range  MinSize AvgSize MaxSize  %MaxEff %AvgEff %MinEff 

0  True 100.0%  12 12.00 12    0.0%  0.0%  0.0% 

1  True 100.0%  12 14.08 15    8.3%  7.1%  6.7% 

2  True 100.0%  13 15.39 16   15.4% 13.0% 12.5% 

3  True 100.0%  13 17.16 18   23.1% 17.5% 16.7% 

4  True 100.0%  13 18.57 20   30.8% 21.5% 20.0% 

5  True 100.0%  13 19.54 21   38.5% 25.6% 23.8% 

6  True 100.0%  13 20.69 22   46.2% 29.0% 27.3% 

7  True 100.0%  13 23.42 26   53.8% 29.9% 26.9% 

8  True 100.0%  13 25.17 27   61.5% 31.8% 29.6% 

9  True 100.0%  13 26.33 28   69.2% 34.2% 32.1% 

10  True 100.0%  13 27.22 29   76.9% 36.7% 34.5% 

11  True 100.0%  13 27.79 29   84.6% 39.6% 37.9% 

12  True 100.0%  13 28.49 31   92.3% 42.1% 38.7% 

13  True 100.0%  13 29.39 32  100.0% 44.2% 40.6% 

14  True 100.0%  13 30.54 33  107.7% 45.8% 42.4% 

15  True 100.0%  13 34.15 39  115.4% 43.9% 38.5% 

16  True 100.0%  13 37.43 41  123.1% 42.7% 39.0% 

17  True 100.0%  13 39.24 42  130.8% 43.3% 40.5% 

18  True 100.0%  13 40.64 43  138.5% 44.3% 41.9% 

19  True 100.0%  13 41.65 44  146.2% 45.6% 43.2% 

20  True 100.0%  13 42.75 45  153.8% 46.8% 44.4% 

21  True 100.0%  13 43.75 47  161.5% 48.0% 44.7% 

22  True 100.0%  13 44.89 48  169.2% 49.0% 45.8% 

23  False 100.0%  13 45.80 49  176.9% 50.2% 46.9% 

24  False 99.98%  13 46.80 50  184.6% 51.3% 48.0% 

25  False 99.77%  13 47.87 51  192.3% 52.2% 49.0% 

26  False 98.50%  13 49.04 52  200.0% 53.0% 50.0% 

27  False 93.41%  13 49.86 53  207.7% 54.2% 50.9% 

28  False 79.58%  13 50.69 54  215.4% 55.2% 51.9% 

29  False 52.97%  13 51.41 55  223.1% 56.4% 52.7% 

30  False 15.35%  13 52.32 55  230.8% 57.3% 54.5% 



  

It would have been computationally infeasible to produce the table above by iterating over all possible 
metadata strings and computing their outputs. Instead, the table was produced by assuming that the 
length of the encoded output is heavily dependent on the total number of 0-bits and 1-bits in the input. 
For every possible metadata byte length, we sweep through every possible combination of the number 
of 0-bits and 1-bits. For each combination, we encode random metadata strings from a small portion 
(256 samples) of the set of possible strings for that combination. 
 
When estimating the encoded output sizes, we assume the sampling of 256 results is representative of 
the entire input space for that combination. To estimate the AvgSize, we weight the average of each 
sample set according to what proportion of the total input space that the combination represents. We 
determine the proportion according to the following mathematical property: 

2𝑛 = ∑ 𝐶(𝑛, 𝑖)

𝑛

𝑖=0

 

This equation allows us to compute the exact number of possible strings that have 𝑛 1-bits. For example, 
a 1-byte string (8-bits) can be broken down as: 

28 = ∑ 𝐶(8, 𝑖)

8

𝑖=0

= 1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 256 

Thus, for a combination of 0x 0-bits and 8x 1-bits, there is exactly 1 possible input string (0.4% of total). 
For a combination of 3x 0-bits and 5x 1-bits, there are exactly 56 possible inputs (21.9% of total).  
 
When computing the %Range, we apply this to each metadata string of some length in bytes. For each 
combination, we know from Appendix C.3.2 that the number of 0-bits and 1-bits alone is sufficient to 
determine whether a metadata string is encodable. Thus, if a single string of a given combination is 
encodable, then we know that all possible inputs for that combination are also encodable. Similarly, if a 
single string is not encodable, then all possible inputs for that combination are also not encodable. Using 
this knowledge along with the proportions that each combination represents, we can compute the exact 
percentage of the total input space that is encodable. 
 
From the above table, we make some observations: 

 Running a linear regression on AvgSize, provides us with 13 +  1.4𝑁, which is an effective way to 
estimate the encoded output size given a metadata string of length 𝑁 up to 30. 

 The smallest meta block still occupies around 12 bytes, so there is some minimum overhead that the 
XFLATE format will introduce over standard DEFLATE. 

 A vast majority of inputs can be encoded in blocks containing 26 to 28 actual metadata bytes, where 
the worst-case efficiency generally will not go below 50%. 

 Encoding metadata comprising of long runs of 0-bits or 1-bits can actually have efficiency greater 
than 100% due to the primitive form of run-length encoding using SymRepLast and SymRepZero. 
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