
Using Command Completion with
TEXShop

Herbert Schulz
herbs2@mac.com

2011/04/19

Introduction

As of v1.34 TEXShop offered a Command Completion facility that was reasonably powerful, if under-
utilized. Command Completion in TEXShop allows continuations (completions) or substitutions
(abbreviations) for a set of characters bounded on the left by a Word Boundary Character1 and
triggered by the Escape (Esc) key.

With the help of the good folks on the Mac OS X TeX e-mail list2, a CommandCompletion.txt

file was created along with associated Applescript macros to take advantage of that facility. The
completions and abbreviations supplied often contain bullet characters, ‘•’, called Marks3, as
placeholders for command arguments or to easily get to the end of an environment. Skipping
forward and backward to these Marks was accomplished using macros4; the macros jumped to
the Marks and selected, or deleted, them. Most of the abbreviations were inspired by those used
in the FasTEX

5 set used with TypeIt4Me6.
Version 2.30 and later of TEXShop offers a built-in and enhanced version of Command Com-

pletion inspired by Hugh Neary and Will Robertson. There is no longer a need for the Applescript
macros and the arguments of completions can have short comments.

TEXShop 2.36 introduced the ability to switch the Command Completion trigger key be-
tween Tab (Tab) and the Esc keys in TeXShop→Preferences→Source→Command Com-

pletion Triggered By:. Wherever you see Esc in this document use Tab if you’ve set that as
the trigger.

Command Completion in TEXShop 2.38 and later preserves indentation. Also included is
an indented version of the CommandCompletion.txt file. It is found in ~/Library/TeXShop/

CommandCompletion/IndentedCC/ and is activated by copying the file located there into ~/

Library/TeXShop/CommandCompletion/ thus overwriting the version already there. To get the
original version of the CommandCompletion.txt file back simply move the ~/Library/TeXShop/
CommandCompletion/ folder to your Desktop and restart TEXShop.

1The Word Boundary Characters are space, tab, linefeed(newline), period, comma, semicolon, colon, {, }, (,) or \
(actually the TeX Command Character which can vary in different implementations). The { and \ also become part of
the expansion.

2Subscribe by sending an e-mail to <mailto:MacOSX-TeX-on@email.esm.psu.edu>.
3Previously called Tabs.
4The original CommandCompletion.txt file, macros and documentation are still available as CommandComple-

tion.zip from <http://public.me.com/herbs2/>.
5FasTEX was developed by Filip G. Machi, Jerrold E. Marsden and Wendy G. McKay. For more information see the Fas

TEX web page, <http://www.cds.caltech.edu/~fastex/>.
6TypeIt4Me, by Riccardo Ettore, presently a preference pane, allows abbreviation replacement in most OS X programs

with “dictionaries” that can be application dependent. See the TypeIt4Me web page, <http://www.typeit4me.com/>,
for more information.

mailto:herbs2@mac.com
mailto:MacOSX-TeX-on@email.esm.psu.edu
http://public.me.com/herbs2/
http://www.cds.caltech.edu/~fastex/
http://www.typeit4me.com/

Installation

Simply place this version of TEXShop into /Applications/TeX/. If you ever started up an older
version of TEXShop (earlier than 2.30) also follow the directions in the following sub-section.

CommandCompletion.txt

A new default version of CommandCompletion.txt is embedded within this new version of
TEXShop. It will get installed, along with other files, the first time TEXShop runs unless you’ve used
TEXShop before. In that case you need to move the ~/Library/TeXShop/CommandCompletion/
(~ is your HOME directory) directory to your Desktop and start the new version of TEXShop; a
replacement folder with the new version of CommandCompletion.txt will be created.

If you’ve already added items to the original file you will be able to merge them into the new
file after it’s created. You can open the new version of CommandCompletion.txt by clicking on
the Source→Command Completion→Edit Command Completion File. . . menu item. The older
file must be opened with Unicode (UTF-8) encoding: use the File→Open. . . (Cmd-O) menu
command and make sure to select the Unicode (UTF-8) encoding before opening your old version
in TEXShop.

Some of What’s New in TEXShop

Most important are four interconnected changes to TEXShop: an addition to the way TEXShop

handles completions from CommandCompletion.txt; a new menu that has commands for search-
ing and selecting Marks within completions; the ability to have comments attached to Marks;
a new CommandCompletion.txt file that takes some advantage of the previous three changes.
The following four sub-sections cover each of these changes in more detail. Some minor menu
changes are discussed separately.

Changes to Completion Handling

Completions (in the CommandCompletion.txt file) in previous versions of TEXShop could contain
a single #INS# command for the positioning of the insertion point within the completion.

This version of TEXShop allows completions to have two copies of #INS# and the text be-
tween them is selected. A single #INS# behaves the same as before; there is complete backward
compatibility with the previous versions of TEXShop.

The Source→Command Completion→Marks Menu

The new Source→Command Completion→Marks menu contains commands to search for, move
to and select Marks and Comments. The commands are shown in Table (1) on page 3. The (Del)
versions of the search commands only show in the menu when the Option (Opt) key is pressed
and the Insert Comment command only appears when you hold down the Control (Ctl) key.
The Insert Mark command is added since using TEXShop’s Key Binding (previously called Auto
Complete) facility will insert \bullet in the document when the keystroke that normally inserts
a ‘•’ (Opt-8 with a US keyboard mapping) is pressed. The default version of the Marks menu is
shown in Figure (1) on page 3.

Comments

The changes mentioned in the previous sub-sections allow completions to contain Comments—
short “memory joggers” that have some information about the contents of a given argument.
The comments are contained within arguments and are surrounded by “•‹” and “›7” within the
arguments; if the first argument contains a comment it should be surrounded by two #INS# so it
is the initial selection.

7Note that ‘‹’ and ‘›’ are single “guillemot” glyphs, not ‘<’ and ‘>’.

2

Menu Item Shortcut Internal Connection

Next Mark Ctl -Cmd - F Jump to and select the next Mark and/or
Comment.

Next Mark (Del) Ctl -Opt -Cmd - F Jump to and select the next Mark and/or
Comment and delete the Mark. This is
most useful when you have nested envi-
ronments to automatically delete a Mark at
the end of an inner environment.

Previous Mark Ctl -Cmd -G Like Next Mark but search backwards.
Previous Mark (Del) Ctl -Opt -Cmd -G LikeNext Mark (Del)but search backwards.
Insert Mark Cmd -8 Places a Mark at the insertion point. Used

to mark arguments, etc., when creating
new completions in CommandComple-

tion.txt.
Insert Comment Ctl -Cmd -8 Places a Comment Skeleton, “•‹›” with the

insertion point before the “›”, at the inser-
tion point. Handy for creating comments
in CommandCompletion.txt.

Table 1: Commands in the Source→Command Completion→Marks Menu.

Figure 1: The Default Source→Command Completion→Marks Menu.

3

The New CommandCompletion.txt File

There are a few changes to the new CommandCompletion.txt file that comes with this version of
TEXShop when compared to the one supplied with the original add-on version:

• there are some minor bug fixes and a few additional environments and commands;

• all single #INS# commands are replaced by #INS#•#INS# so that the initial selection is a
selected Mark, •. This is for consistency with the appearance and behavior when using the
Next/Previous Mark commands;

• there are a few (too few?) examples of comments in commands and environments.

Additional Shortcuts in TEXShop 2.36 and Later

Besides Ctl -Cmd -F/G for Next/Previous Mark TEXShop 2.36 introduced the Opt/Ctl -Esc as
alternates for those menu items. If you wish to turn that feature off execute the command

defaults write TeXShop CommandCompletionAlternateMarkShortcut NO

in Terminal to turn it off or substitute YES for NO in the command to turn it back on.

Usage

Command Completion

A typical use of command completion is to set up environments. To do this type \b and Esc; this
should get you \begin{. Then start to type the environment name; e.g., eq and Esc will give

\begin{equation}

•

\end{equation}•

while the next Esc gives eqnarray followed by it’s *-variant. After entering your equation text
at the cursor run the Source→Completion→Marks→Next Mark command and the cursor will
select (and delete if Next Mark (Del) is used) the next ‘•’ so you can start to type following text.

The macros are also handy for commands that take multiple arguments. For example, to
create a new command with an optional argument type \new or \newc and then Esc three times
to get

\newcommand{•}[•][•]{•}

with the first mark selected. After entering the new command’s name use the Next Mark com-
mand to jump to the next argument, etc.

Abbreviations

In addition to command completion there also exist many abbreviations for commands. The prin-
cipal difference is that the abbreviations are not just the start of a command name. For example
typing benu and then Esc at the beginning of a line8 will produce the complete enumerated list
environment:

\begin{enumerate}

\item

•

\end{enumerate}•

8Or after any other Word Boundary Character.

4

as you might expect. Abbreviations like this exist for many environments as well as sectioning
commands. Alternate command versions with one or more options or *-variants have names
that end with ‘o’ (one or more) or ‘s’ respectively: e.g., sec and two presses of Esc or secs and a
single Esc at the start of a new line give \section*{•}. By the way, After typing the text for the
first item, typing it and Esc on a new line will generate another \item with a selected Mark on
the line below it; continued presses of Esc will give \item[•] with a Mark on the following line,
\textit{•} and finally \itshape before returning to the original it.

You must remember to have one of the Word Boundary Characters before use or the substitu-
tion won’t operate properly. This a not a problem with environments and sectioning commands,
since you usually start them on a new line, but can be for other abbreviations. Therefore many
abbreviation also have a ‘\’ version; e.g., `tt and Esc will not expand properly since the ‘`’ isn’t a
Word Boundary Character while `\tt and Esc will expand to `\texttt{•} while a second Esc

will give the declaration `\ttfamily9.
Many of the Greek characters and in-line math versions of the Greek characters have abbrevi-

ations with the following rules:

1. The abbreviations for Greek characters all start with an ‘x’ and a notation for the character:
e.g., xa or \xa10 and Esc give \alpha.

2. The var version of several Greek characters start with ‘xv’ and the notation for the character:
e.g., xth gives \theta while xvth and Esc gives \vartheta.

3. To get capitals for some letters use an ‘xc’: e.g., xg gives \gamma while xcg gives \Gamma.

4. Finally, preceding by a ‘d’ gives the following Greek character as an in-line math equation:
e.g., dxcd gives \(\Delta\).

Abbreviations will be completed and cycle through matches just like the command comple-
tions: e.g., both the abbreviation newcoo (note the ‘oo’ at the end of the abbreviation) and Esc

or newc followed by three Esc key presses on a new line give \newcommand{•}[•][•]{•}, the
\newcommand with two optional arguments. There are alternate abbreviations for some com-
mands: e.g., ncm gives the same result as newc.

I suggest that you read through the CommandCompletion.txt file to see what abbreviations
are available; all lines with ‘:=’ are abbreviations. Naturally, you can change them to suit your
needs and add and delete others.

Comments

It is easy to remember the arguments for commands that are used fairly often but to forget those
rarely used; these are the perfect candidates for comments. E.g., the order of the arguments for
the \rule command; type \rul and Esc twice to get \rule[•‹lift›]{•‹width›}{•‹height›},
the version with the optional argument11. Another example is the wrapfigure environment,
from the wrapfig package, which has multiple versions with differing numbers and positions
of optional arguments. To see the variations with the comments type bwr on an empty line and
press Esc to get:

\begin{wrapfigure}{•‹placement: r,R,l,L,i,I,o,O›}{•‹width›}

•

\end{wrapfigure}•

with the versions with optional arguments on succeeding presses of Esc.

9Similar abbreviations exist for bf, sf, sc, etc. Math versions have a preceding m; e.g., mbf and Esc will give
\mathbf{•}.

10All of the Greek character abbreviations have \ versions.
11This is \rule[#INS#•‹lift›#INS#]{•‹width›}{•‹height›} in the CommandCompletion.txt file.

5

Figure 2: Initially entered sec and successive pressings of Esc from initial to last result before
returning to the beginning. Corresponds to the sequence initial→ sec→ secs→ seco.

Other Environments

Environments that aren’t built into the CommandCompletion.txt file can always be added if you
use them a lot but there is an alternative for occasional use. Built into the completion algorithm
is a way to complete environments. First press \b and Esc to get \begin{, enter the environ-
ment name and the closing } and then Esc again; the closing \end{} with the corresponding
environment name will be generated on a separate line.

Abbreviations in CommandCompletion.txt

This section contains a, hopefully, complete list of the abbreviations supplied in the latest Com-

mandCompletion.txt. The list has been broken up into Environments, Commands & Declarations
and Greek Letters. If you supply a certain beginning abbreviation the search will start at the first
match to what you supply and succeeding presses of Esc will go down the list until there is no
longer a match; e.g. if you type be succeeding presses of Esc will match benu, benuo, bequ, bequs,
beqn and beqns before returning to the original be. Adding more letters to the abbreviation may
get you to the desired completion with fewer presses of Esc. In reality some of the Commands
& Declarations are scattered between the Environments in the CommandCompletion.txt file so
there might be additional items at times. The tables don’t include standard completions or the ‘\’
versions of the abbreviations.

NOTE: The list may be a bit intimidating. There is no need to “memorize” all of these ab-
breviations; learn the minimum number as you need them. In addition variations on a given
abbreviation are obtained by successive pressings of Esc; e.g., see Figure 2.

Environment Abbreviations

Table (2) on page 8 contains a list of abbreviations for different environments supplied in the
CommandCompletion.txt file. Multiple vertically adjacent Environments with the same name
correspond to variations in number and distribution of possible optional arguments or *-variants.
There can also be more than one abbreviation for the same environment.

Commands & Declarations

As with Environments there are lots of variations with options and *-variants as well as multiple
abbreviations corresponding to the same command. See Table (3) on page 9.

Greek Letters

The Greek Letter abbreviations appear in Table (4) on page 10. The in-line equation, i.e., ‘d’,
versions of the letters are not shown.

Making Additions to CommandCompletion.txt

If you are adding items to the CommandCompletion.txt there are a few things you should know
about its structure:

• Each environment has three entries: a completion that removes the leading \begin, i.e.,
it starts with a leading ‘{’ and the environment name; two abbreviations that have an

6

abbreviation name without a backslash (\) and the same abbreviation with the backslash.
Commands may have more forms; the full command as well as abbreviation(s) all with and
without a leading \.

• You should add all the variations with slightly different endings for the abbreviations. I use
an ‘o’ at the end of an abbreviation if that variation has an optional argument, ‘oo’ for two
optional arguments, ‘s’ for starred forms of commands, etc.

• The order of similar items in the file does make a dramatic difference in the order in which
items are found; items placed later will be found earlier (the file is searched backwards).
E.g., the order of items obtained when you press \b and then Esc depends purely on the
order of matches in the CommandCompletion.txt file.

• For maximum convenience place a Mark12 within each argument of commands. Surround
the very first argument with two #INS# commands so it comes out selected. If you want to
have a comment in any arguments insert a Comment Skeleton13 and fill it in.

I’d suggest that you take a look in the CommandCompletion.txt file for examples.

Bugs

The CommandCompletion.txt file is usually searched backward from the last item but, on rare
occasions, the search direction seems to switch so you don’t get matches in the order you expect.
You can usually force the search to go back to the “correct” direction by pressing --- and then Esc

three times and then remove the ---. If that doesn’t correct the direction you can use Shift -Esc to
search in the “other” direction.

What’s Missing

Any suggestions are welcome and will be considered for inclusion in later iterations of the Com-
mand Completion code.

Try it. . . I hope you like it.

12Using Insert Mark (Cmd-8) from the Source→Completion→Marks menu.
13Using Insert Comment (Ctl-Cmd-8) from the Source→Completion→Marks menu.

7

Abbreviation Environment Abbreviation Environment

barr array blett letter
babs abstract blist list
bali align bminp minipage
balis align* bminpo minipage
baliat alignat bmult multline
baliats alignat* bmults multline*
balied aligned bpict picture
baliedat alignedat bpmat pmatrix
baliedato alignedat bquot quotation
bapp appendix bquo quote
bbmat bmatrix bsplit split
bcase cases bsubeq subequations
bcent center btab tabular
bcenum compactenum btabs tabular*
bcenumo compactenum btabx tabularx
bcitem compactitem btabl table
bcitemo compactitem btablo table
bdes description btabls table*
benu enumerate btablso table*
benuo enumerate btbl table
bequ equation btblo table
bequs equation* btbls table*
beqn eqnarray btblso table*
beqns eqnarray* btabb tabbing
bfig figure bbib thebibliography
bfigo figure bindex theindex
bframe frame btheo theorem
bframeo frame btitpg titlepage
bflalig flalign btrivl trivlist
bflaligs flalign* bvarw varwidth
bfll flushleft bverb verbatim
bflr flushright bvers verse
bgath gather bwrap wrapfigure
bgaths gather* bwrapo wrapfigure
bgathed gathered bwrapo2 wrapfigure
bgathedo gathered bwrapoo wrapfigure
bite itemize
biteo itemize

Table 2: Environment abbreviations supplied in CommandCompletion.txt.

8

Abbreviation Command Abbreviation Command Abbreviation Command

-- textendash midr midrule renewcomo renewcommand
--- textemdash mnorm mathnormal renewcomoo renewcommand
--- textemdash w/sp msf mathsf rncm renewcommand
adlen addtolength mtt mathtt rnewc renewcommand
adcount addtocounter mit mathit rncmo renewcommand
bf textbf midr midrule rnewcoo renewcommand
bfd bfseries mnorm mathnormal rncmoo renewcommand
biblio bibliography mdd mdseries rmc rmfamily
bibstyle bibliographystyle mbox mbox rbox raisebox
botr bottomrule makebox makebox rboxo raisebox
bibitem bibitem mboxo makebox rboxoo raisebox
bibitemo bibitem makebox makebox sec section
center centering mboxoo makebox secs section*
chap chapter mpar marginpar seco section
cmidr cmidrule multic multicolumn ssec subsection
cmidro cmidrule ncol space & space ssecs subsection*
em emph ncm newcommand sseco subsection
emd em newc newcommand sssec subsubsection
foot footnote ncmo newcommand sssecs subsubsection*
frac frac newco newcommand ssseco subsubsection
fbox fbox ncmoo newcommand spar subparagraph
fboxo framebox newcoo newcommand spars subparagraph*
fboxoo framebox nct newcolumntype sparo subparagraph
geometry geometry newct newcolumntype setl setlength
hw headwidth newpg newpage stcount stepcounter
hw2tw headw=textw npg newpage sf textsf
href href nline newline sfd sffamily
item item newlin newline sc textsc
ito item nlen newlength scd scshape
incg includegraphics newlen newlength sl textsl
incgo includegraphics nenv newenvironment sld slshape
it textit newenv newenvironment sqrt sqrt
itd itshape nenvo newenvironment sqrto sqrt
latex LaTeX newenvo newenvironment tt texttt
latexs LaTeX w/sp nenvoo newenvironment ttd ttfamily
latexe LaTeXe newenvoo newenvironment tw textwidth
latexes LaTeXe w/sp pgref pageref tex TeX
label label par paragraph texs TeX w/sp
lbl label pars paragraph* tilde textasciitilde
lettrine lettrine paro paragraph topr toprule
lettrineo lettrine pgs pagestyle toc tableofcontents
listf listoffigures parbox parbox tableofcontents tableofcontents
listt listoftables parboxo parbox tpgs thispagestyle
rule rule parboxoo parbox thispagestyle thispagestyle
ruleo rule parboxooo parbox up textup
mbf mathbf pbox parbox upd upshape
mrm mathrm pboxo parbox url url
mcal mathcal pboxoo parbox usep usepackage
msf mathsf pboxooo parbox usepo usepackage
mtt mathtt ref ref verb verb
mit mathit renewcom renewcommand verb2 verb

Table 3: Commands and Declarations in CommandCompletion.txt.

9

Abbreviation Command Abbreviation Command

xa alpha xph phi
xb beta xcph Phi
xch chi xvph varphi
xd delta xps psi
xcd Delta xcps Psi
xe epsilon xs sigma
xve varepsilon xcs Sigma
xet eta xvs varsigma
xg gamma xz zeta
xcg Gamma xr rho
xio iota xvr varrho
xl lambda xt tau
xcl Lambda xth theta
xm mu xcth Theta
xn nu xvth vartheta
xo omega xu upsilon
xco Omega xcu Upsilon
xp pi xx xi
xcp Pi xcx Xi
xvp varpi

Table 4: Greek Letters in CommandCompletion.txt. The ‘d’ versions are not shown.

10

