
Design of the RCDD Package

Charles J. Geyer

November 17, 2021

1 The Name of the Game

We have called the package rcdd which stands for “C Double Description in
R,” our name being copied from cddlib, the library we call to do the compu-
tations. This library was written by Komei Fukuda and is available at

http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/

Our rcdd package for R makes available some (by no means all) of the func-
tionality of the cddlib library.

The “C” is for either of the C or C++ computer languages. This is bad
terminology, making a mere implementation detail part of the name, but we
keep Fukuda’s name. And we make the terminology worse by tacking an “R”
on the front for another irrelevant implementation detail (but at least we’re
consistent).

The two descriptions in question are the descriptions of a convex polyhedron
as either

� the intersection of a finite collection of closed half spaces or

� the convex hull of of a finite collection of points and directions.

For those readers who are not familiar with the second description, we give
more detail. We assume the notion of a point in Rd is familiar. A direction in
Rd can be identified with either a nonzero point x or with the ray {λx : λ ≥ 0}
generated by such a point. The convex hull of a set of points x1, . . ., xk and a
set of directions represented as nonzero points xk+1, . . ., xm is the set of linear
combinations

x =

m∑
i=1

λixi

where the coefficients λi satisfy

λi ≥ 0, i = 1, . . . ,m

and
k∑

i=1

λi = 1

1

(note that only the λi for points, not directions, are in the latter sum). The fact
that these two descriptions characterize the same class of convex sets (the poly-
hedral convex sets) is Theorem 19.1 in Rockafellar (Convex Analysis, Princeton
University Press, 1970). The points and directions are said to be generators of
the convex polyhedron. Those who like eponyms call this the Minkowski-Weyl
theorem

http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/node14.html

2 Representations

2.1 The H-representation

In the terminology of the cddlib documentation, the two descriptions are
called the “H-representation” and the “V-representation” (“H” for half space
and “V” for vertex, although, strictly speaking, generators are not always ver-
tices).

For both efficiency and computational stability, the H-representation allows
not only closed half spaces but hyperplanes (which are, of course, the inter-
section of two closed half spaces), or, what is equivalent, the H-representation
characterizes the convex polyhedron as the solution set of a finite set of linear
equalities and inequalities, that is, the set of points x satisfying

A1x ≤ b1 and A2x = b2

where A1 and A2 are matrices and b1 and b2 are vectors and the dimensions are
such that these equations make sense.

In the representation used for our rcdd package for R, these parts of the
specification are combined into one big matrix

M =

(
0 b1 −A1

1 b2 −A2

)
If the dimension of the space in which the polyhedron lives is d, then M has
column dimension d+2 and the first two columns are special. The first column is
an indicator vector, zero indicates an inequality constraint and one an equality
constraint. The second column contains the “right hand side” vectors b1 and
b2. Although we have given an example in which all the inequality rows are on
top of all the equality rows, this is not required. The rows can be in any order.

If m is such a matrix and we let

l <- m[, 1]

b <- m[, 2]

v <- m[, - c(1, 2)]

a <- (- v)

then the convex polyhedron described is the set of points x that satisfy

2

axb <- a %*% x - b

all(axb <= 0)

all(l * axb == 0)

2.2 The V-representation

For both efficiency and computational stability, the V-representation allows
not only points and directions, but also lines and something I don’t know the
name of (perhaps “affine generators”).

In R a V-representation is matrix with the same column dimension as the
corresponding H-representation, and again the first two columns are special, but
their interpretation is different. Now the first two columns are both indicators
(zero or one valued). The rest of each row represents a point.

The convex polyhedron described is the set of linear combinations of these
points such that the coefficients are (1) nonnegative if column one is zero and
(2) sum to one where the sum runs over rows having a one in column two.

If m is such an object and we define v, b, and l as in the preceding section
(l is column one, b is column two, and v is the rest), then the polyhedron in
question is the set of points of the form

y <- t(lambda) %*% v

where lambda satisfies the constraints

all(lambda * (1 - l) >= 0)

sum(b * lambda) == max(b)

2.3 Fukuda’s Representations

Readers interested in comparing with Fukuda’s documentation should be
aware that cddlib uses different but mathematically equivalent representations.
If our representation is a matrix m, then Fukuda’s representation consists of a
matrix, which is our m[, -1] and a vector (which he calls the linearity), which
is our seq(1, nrow(m))[m[, 1] == 1] (that is the vector of indices of the
rows having a one in our column one).

3 Converting Between Representations

The R function scdd converts H-representations to V-representations and
vice versa. The result is a list that always contains a component output which
is the computed representation and may contain a component input which is
the input representation (depending on an argument keepinput, about which
see below).

Other options involve auxiliary computations, any of the arguments

adjacency = TRUE

incidence = TRUE

3

inputadjacency = TRUE

inputincidence = TRUE

(the defaults are FALSE) produce additional results, which are components of
the list returned by scdd having the same name as the argument (adjacency
and so forth). Each is a ragged array: adjacency[[i]][j] (note the brackets)
says that the i-th and j-th rows of the output are “adjacent”, and so forth.
See

http://www.cs.mcgill.ca/~fukuda/soft/cddman/node4.html

for more about these.
The result contains a component input if

keepinput = "TRUE"

or if

keepinput = "maybe"

and the input is involved in an adjacency or incidence list (the default is
"maybe").

The last option involves the computation itself. The roworder option spec-
ifies the order in which the rows of M are processed which can have a consider-
able effect on the running time of the algorithm and, when using normal floating
point arithmetic (see Section 4 below), on the numerical results of the algorithm
or even on success or failure of the algorithm. This argument is a finite choice

rowoder = c("lexmin", "lexmax", "minindex", "maxindex",

"mincutoff", "maxcutoff", "mixcutoff", "randomrow")

and match.arg is used for the argument matching, so (1) the argument may be
abbreviated and (2) the default is "lexmin" if no argument is specified.

http://www.cs.mcgill.ca/~fukuda/soft/cddman/node4.html

http://www.cs.mcgill.ca/~fukuda/soft/cddlibman/node6.html

contain some discussion of which to use. The main bit of advice seems to be
that roworder = "maxcut" might be useful when an input H-representation
contains many redundant inequalities or an input V-representation contains
many interior points.

4 Using GMP Rational Arithmetic

The cddlib code can also use the GMP (GNU Multiple Precision) Library to
compute results using exact arithmetic with unlimited precision rational num-
bers.

In order to do this, the input problem must be in this form. Thus we need
a way to specify rational numbers. We specify them as character objects of the

4

following form: an optional minus sign followed by an integer (the numerator),
followed by a slash, followed by another integer (the denominator). If the de-
nominator is one, both it and the slash may be omitted. The string contains no
whitespace.

All of

1/3

-5/7

2

123456789012345567890123456789/33

are valid. Note that the last is not exactly representable as an ordinary floating
point number (for that matter neither are 1/3 and −5/7). The point of the long
example is to point out that integers of any size are allowed. The numerator and
denominator do not have to be representable as ordinary computer integers.

We have two functions d2q and q2d that convert from standard floating
point (storage.mode "double" in R) to rational and vice versa. One can also
construct rationals from numerators and denominators using the z2q function.

5

