
The nnlib2 C++ library and nnlib2Rcpp R package for Artificial
Neural Networks.

Vasilis N. Nikolaidis

ORCID: 0000-0003-1471-8788 , email: vnnikolaidis@gmail.com

Revision: 0.4.5

1 Introduction

Two interrelated projects are discussed in this document, nnlib2 and nnlib2Rcpp.

1.1 The nnlib2 C++ library

The nnlib2 library is a small collection of C++ classes for implementation of neural networks
(NN). It contains base classes and class-templates that model typical NN parts and components
(processing nodes, connections, layers, groups of connections etc) as well as a class for composing
these parts in complete NN. Users of this library can combine predefined parts and components
with custom ones they can create by sub-classing the ones available. In all cases, considerable
predefined functionality is provided, s.a methods for building the NN models from the compo-
nents, presenting data and retrieving output, encoding and mapping data, serialization of the
model to and from files etc. The produced models can be included and used in any C++ appli-
cation.
The nnlib2 code can be found on GitHub at https://github.com/VNNikolaidis/nnlib2.
For more information on nnlib2, go to Section 2, below.

1.2 The nnlib2Rcpp R package

The nnlib2Rcpp package provides an interface between R and nnlib2 NN components and
entire models. It contains the entire nnlib2 library and source code, as well as R functions
that employ ready-to-use models implemented with nnlib2. It also contains a special R module
(’NN’ which allows the instantiation of individual parts and components (processing nodes,
connections, layers, groups of connections etc) in custom NN configurations which can be used
(trained, controlled, monitored etc) in R. Thus, new types of nnlib2 NN parts can be developed
using R-related tools (Rtools and RStudio), and employed in R (inside an ’NN’ R module); if
needed, the same components can be transferred and used in a pure C++ application (inside a
nnlib2 ’nn’ C++ class object).
Stable version of the package (along with source and reference manual) can be found on CRAN
at https://cran.r-project.org/web/packages/nnlib2Rcpp.
Development version can be found on GitHub at https://github.com/VNNikolaidis/nnlib2Rcpp.
For more information on nnlib2Rcpp, go to Section 3 , below.

1

https://github.com/VNNikolaidis/nnlib2
https://cran.r-project.org/web/packages/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp

2 The nnlib2 C++ library

The nnlib2 library is a collection of C++ classes and templates that provide simple predefined
base components useful for implementing and using NN. The nnlib2 library may interest NN
students and experimenters who prefer implementing new NN components and models using a
small collection of base classes and templates whose purpose is clear, have simple interfaces,
follow familiar NN concepts, and allow significant control. A small collection of ready-to-use NN
components and models are also implemented and included in nnlib2.

The nnlib2 library requires a standard C++ compiler (has been tested with various GNU
and Microsoft Visual Studio versions), and produces lightweight, standalone NN that can be
invoced within any C++ application. Being written a compiled language, the produced NN
are relatively fast and can be used in real applications and problems of small data size and NN
complexity.

2.1 The nnlib2 class structure

The nnlib2 library consists of several C++ class and class-template definitions, most of which
match typical NN parts, sub-components and components (processing nodes, connections, lay-
ers, groups of connections, complete NN etc). Sub-components include processing elements (PEs
a.k.a. nodes) and connections; these are grouped in components (layers of PEs, sets of connec-
tions, and complete NN) to provide typical NN functionality that can be inherited, overridden
and/or extended when implementing a specific new NN model behavior.

Two important virtual methods are provided by all component and sub-component classes:
encode() invoked when the NN is trained (training stage), and recall() applied when retrieving
data from the model (mapping stage), and thus should contain the core instructions for data
processing.

Some of the classes in namespace nnlib2 are briefly outlined below. A brief (and somewhat
simplified) outline of the most significant classes in nnlib2 is also shown in Figure 1. Significant
classes are:

� Class ’pe’ for nodes, processing elements (PEs). Provides typical PE (node) functionality
and placeholders for internal input, activation, and threshold functions. All objects of
this class maintain typical PE internal values s.a. input, bias, output etc. and inherit
functionality for collecting inputs, applying the internal PE functions, state serialization
etc. If left unmodified such objects will be referred to as generic PEs.

� Class ’connection’. Provides typical connection functionality for communicating data
between two PEs. Objects of this class maintain source and destination PE information as
well as functions and values (including weights) needed to modify the transferred value. If
used without modifications, objects of this class will be referred to as generic connections.

� Class ’component’ for a component of the NN topology, such as layers, sets of connections,
control components, etc. Provides a common interface and functionality shared by all
components (for processing, streaming, etc.). Component-type objects may be registered
(added) to the NN’s topology structure (discussed later) creating complex topologies.
Sub-classes that inherit ’component’, include the following:

� Class ’layer’, a ’component’ for a layer of PEs. It maintains the layer’s ’pe’ objects,
and provides functionality to initialize, interface with, trigger processing and in general,
manipulate the layer’s PEs. A template where generic or model-specific ’pe’ types can be

2

used (as well as a 2-d variation) is provided; it can be sub-classed to define new types of
’layer’ classes with specific behavior.

� Class ’connection set’, a ’component’ for a set of connections between any two ’layer’s
(can be the same layer), and a template where generic or model-specific ’connection’
types can be used and ’connection’ objects are maintained. It includes functionality to
create connections between two PEs, initialize, serialize, trigger processing and in general,
manipulate a set of connections; it too can be sub-classed to define new types of specialized
’connection set’ objects.

� Class ’nn’ a ’component’ for a neural network. While a ’component’ itself, its main pur-
pose is to maintain other ’component’s and control them. This is done in its topology,
implemented as a double-linked list-based structure that maintains the ’component’ ob-
jects (of any type) which constitute the NN. By default the order of components in the
topology corresponds to the order of processing performed when a NN executes a typical
feed-forward operation (or feed-backward if in reverse order), but this can be modified by
overriding the ’nn’ encode() and recall() methods. Alternatively, for simple NN topolo-
gies, a developer may choose to not use the topology structure, define the ’component’
objects as member variables and manipulate them in custom code. However, new com-
ponents that are registered to the topology are subsequently handled by the default ’nn’
predefined methods: encode/recall revocations, display, serialization, deletion etc. may
be performed with little or no extra code (subject to the specifics of the particular NN
model implemented). Registering the components in the topology structure also allows
implementation of dynamic and/or multilayer NN models, with complex topologies and
“deep(er)”-learning NN configurations. As already mentioned, ’nn’ class objects are also
derived from class ’component’, allowing embedment of a NN inside the topology of another
NN.

In addition to the above classes, nnlib2 includes a collection of several secondary classes. For
example, ’aux control’ components are classes of objects that can be used to provide auxiliary,
user-defined functionality (e.g. control, display output, user-break, handle other components
or sub-components [create, delete, communicate, call methods], perform data operations [filter,
mutate, which max, feature expansion] etc.). Being themselves ’component’ objects, they can be
added to NN’s topology, thus be activated during the NN’s data processing sequence via their
respective encode() and recall() methods. Other secondary classes include helper objects for
communicating data, sharing run-time error information etc.

Some ready-to-use NN model implementations are also included in nnlib2, such as versions
of Learning Vector Quantization (’lvq nn’ class, supervised, subclass of ’nn’) and Self-Organizing
Map (’som nn’ class, unsupervised, subclass of ’lvq nn’), Back-Propagation multilayer perceptron
(in ’bp nn’ class, supervised, subclass of ’nn’), Autoencoder (in ’bpu autoencoder nn’ class,
unsupervised, a subclass of ’bp nn’), and MAM (in ’mam nn’, supervised, subclass of ’nn’).

2.2 Expanding the library with new NN parts and models

This section discusses how a new NN and its parts can be defined in nnlib2. The implementation
of a simple Matrix Associative Memory (MAM) NN using nnlib2 classes will be presented in
this section as an example. MAM (and its building blocks) already exist in the library, thus they
do not need to be defined again. However, it may be instructional to discuss the steps taken in
defining a simple NN s.a. MAM for users who need to add new or customized NN components
or models that are not currently implemented.

3

Figure 1: Significant nnlib2 classes.

4

MAM is a simple supervised model trained by Hebbian learning that stores input-output
vector pairs (x, z) by computing their tensor product and storing it in a d x c matrix M (where d
and c is the dimensionality (length) of x and z vectors respectively). Encoding is a non-iterative
process, where

M = xT z (1)

is computed. Recall is also done in a single step where, given input x and matrix M ,

xM = xxT z (2)

is computed, which simplifies to
(x2

1 + x2
2 + . . . + x2

d)z (3)

i.e vector z multiplied by a number. Ideally, if this number equals to 1, a perfect recall of z
is performed. Multiple vector pairs can be stored in a single matrix Ms which is the sum of
the matrices Mi resulting for each vector pair i. MAM is the basis for several other associate
memory models, but even the simple version described here has interesting properties: MAMs
are bidirectional (x can be recalled from z as well as z from x) and allow deletion of stored vector
pairs. However, this MAM has limited and variable storage capacity which may be enhanced
by proper encoding and normalization of the input and output data. Another solution to the
storage issue is to employ a system of multiple MAMs, adding new MAMs when the current
ability to store a vector pair is exhausted.

While the MAM model is probably best implemented as a series of vector and matrix op-
erations, it can also be realized as a simple NN. Only two layers of PEs, for x and z vectors
respectively, are needed. These layers are fully connected (each PE in the first layer is linked to
all PEs in the second) with connections whose weights collectively form matrix Ms. PEs apply
simple functions: composition of inputs (the PE input function) is summation of the incoming
values, and the result is typically copied to the output (no activation function is used, while a
threshold function is optional in MAM NN PEs). During the MAM NN feed-forward encode
process, the x feature values are input to the corresponding layer PEs, similarly z is input to the
other layer, and connection weights (which are initially 0) are adjusted by

wij = wij + (xizj) (4)

where wij is the weight of the connection between the i-th PE in the first layer (having input
equal to xi [and same output, being the sum of the single input value]) to the j-th PE in the
second layer (having input zj). To retrieve vector z given vector x, x is presented as input to the
corresponding layer and a single feed-forward recall step is performed towards the other layer:
PEs in the first layer transfer their inputs unmodified (again being the sum of the single input
value) and pass them to the connections which multiply their weights and input the results to
the second layer PEs which sum them (as mentioned earlier) and output values that collectively
form the NN’s output vector (ideally resembling z).

To create the components of this simple NN (if they did not already exist) or define any
new NN model behavior using nnlib2, the user has to subclass and modify ’component’ classes
(the NN’s ’layer’ and ’connection set’ classes), sub-component classes (’pe’ and ’connection’
etc) with the model-specific processing behavior. In the first case, the new components should
have their encode() and recall() functions overridden (if the default behavior does not suf-
fice); if all required processing is defined in these functions, such components could even con-
tain only generic, unmodified ’pe’ and/or ’connection’ objects. In the second case, custom
’pe’ and ’connection’ classes are created and placed in (possibly unmodified) ’layer’ and
’connection set’-based objects. This second approach is used below, where MAM-specific ’pe’

5

and ’connection’ classes containing the functionality specific to a simple MAM NN (called
sMAM to distinguish it from the one already included in nnlib2), as follows:

(a) PEs. The generic (unmodified) ’pe’ class suffices for sMAM and no new ’pe’-based type
is needed. Its default encode() and recall() functions invoke three methods, with the result
of each (a single value) passed to the next, namely input function(), activation function()

and threshold function(). This last threshold function() produces the final PE output
value. The default input function() is summation, while the default activation function()

and threshold function() are both set to perform the identity function. Therefore generic,
unmodified, ’pe’ objects output the sum of their inputs. Modifying these methods and/or ’pe’
encode() and recall() customizes PE behavior. Any ’pe’ object collects and temporarily
stores the individual values received as input (via its receive input value() method) and uses
input function() to process them and produce a single final input value; alternatively, this
final input value can be accessed and computed directly (bypassing the collection of individual
values and invocation of input function(), as briefly discussed later). While this fits perfectly
the sMAM example, other NN models may require one or more PE types with modified behav-
ior; to illustrate how this is done, a ’pe’-type (’sMAM pe’) where a threshold function() applies
sin() to its incoming data will be defined and used in the sMAM example below:

class sMAM_pe : public pe

{

DATA threshold_function (DATA value) { return sin(value); }

};

Note: header nnlib2.h contains various important definitions that depend on the target plat-
form. DATA is one of them and is usually defined as double. Another useful macro is TEXTOUT

which can be used to stream text output to standard output (cout when the target in a C++
console application, Rout i.e. R console in R, etc.

(b) Connections. Unlike MAM PEs, connections do need to be modified to provide the MAM-
specific processing described earlier. Thus a ’connection’-based class (’sMAM connection’) is
defined and its encode() and recall() functions modified. Here the ’connection’ methods
source pe() and destin pe() (which return the source and destination PEs linked by the con-
nection) are also useful:

class sMAM_connection : public connection

{

public:

void encode()

{ weight() = weight() + source_pe().output * destin_pe().input; }

void recall()

{ destin_pe().receive_input_value(weight() * source_pe().output); }

};

Function encode() effectively performs (4), while decode() sends the input multiplied by weight
to the output layer PEs (via their receive input value()) to be summed during their decode()
step (as described earlier).

(c) Define the sMAM component types from component templates. ’Layer’ and ’Connection Set’
(note the upper-case letters) are templates for the corresponding base classes, and can be defined
to contain objects of the classes created above:

6

typedef Layer <sMAM_pe> sMAM_layer;

typedef Connection_Set <sMAM_connection> sMAM_connection_set;

If the defined layers were to contain generic ’pe’ objects instead of ’sMAM pe’s, the above
sMAM layer definition would be:

typedef Layer <pe> sMAM_layer;

While these suffice for sMAM, in other more complex NN models multiple ’layer’ and/or
’connection set’-type classes may need to be defined. Also (as mentioned earlier), in a NN
implementation the processing details could be defined at component objects (such as ’layer’
and ’connection set’) instead of modifying sub-components (’connection’ and/or ’pe’). This
is sometimes dictated by the model’s algorithm, and unavoidable, or could be useful for certain
optimizations. To implement this approach in the sMAM example, components would sub-classed
from templates ’Layer’ and ’Connection Set’ containing only generic ’pe’ and ’connection’
objects. Their encode() and recall() functions would need to be modified to provide the
needed behavior. For example, a MAM-specific ’connection set’ class could have its recall()
function modified to perform for each connection c in the set:

destin_pe(c).input = destin_pe(c).input + c.weight() * source_pe(c).output;

To allow data processing be defined at component level, the internal variables that sub-components
maintain (including weight for ’connection’ or input and output for ’pe’s are accessible from
components. Here it was also chosen to bypass the destination ’pe’ input function() and di-
rectly modify its final input value.

(d) finally, create the class for the actual MAM NN objects, based on ’nn’. Here the specific
components will be created and the topology defined. In the sMAM case, only a constructor
is needed; once the components are (dynamically) created and registered to the topology, the
default ’nn’ functions manipulating them suffice:

class sMAM_nn : public nn

{

public:

sMAM_nn(int input_length, int output_length)

:nn("MAM Neural Network")

{

topology.append(new sMAM_layer("Input layer", input_length, my_error_flag()));

topology.append(new sMAM_connection_set);

topology.append(new sMAM_layer("Output layer", output_length, my_error_flag()));

connect_consequent_layers();

set_ready();

}

};

A common, local to the NN, flag (my error flag()) is shared by the NN and its components
to communicate run-time errors between them; the ’nn’ method connect consequent layers()

is called to detect sequences of layers and setup their internal connection sets (fully connecting
them with 0 weights - other options, including random or pre-computed weights are available);
finally, set ready() sets a flag indicating that the ’nn’ is ready to encode or decode.

7

Once defined sMAM nn objects can be created and used in the C++ project. To create one
that maps input vectors of length 3 to output vectors of length 2:

sMAM_nn theMAM(3,2);

Two functions provided by parent ’nn’ class, namely encode u() and encode s() can be used
for unsupervised and supervised training respectively, presenting data to the NN and triggering
data encoding for the entire NN topology. The first, encode u() by default presents a single
data vector to the NN and initiates its encoding, while the second encode s() is similar but
presents a pair of vectors (input and desired output). Data recall functions are also provided by
’nn’ class. To encode an input-output vector pair (in corresponding vectors input and output

of length 3 and 2 respectively):

theMAM.encode_s(input, 3, output, 2);

and similarly, to get the sMAM output for given input:

theMAM.recall(input, 3, output_buffer, 2);

where output buffer is a buffer (of length 2) to receive the NN’s output.

To summarize, the entire code needed to define a simple MAM NN type is shown below. It
can be found in nnlib2 file nn mam.h.

#include "nn.h"

namespace nnlib2 {

class mam_connection: public connection

{

public:

void encode() { weight() = weight() + source_pe().output * destin_pe().input; }

void recall() { destin_pe().receive_input_value (weight()*source_pe().output); }

};

typedef Connection_Set<mam_connection> mam_connection_set;

class mam_nn : public NN_PARENT_CLASS

{

public:

mam_nn() :nn ("MAM Neural Network") {}

bool setup(int input_length,int output_length)

{

reset();

add_layer(new Layer < pe > ("Input layer" , input_length));

add_connection_set(new mam_connection_set);

add_layer(new Layer < pe > ("Output layer", output_length));;

connect_consecutive_layers();

return no_error();

}

8

};

}

A (very minimal) C++ application that uses this mam nn could be as follows:

#include "nn_mam.h"

int main()

{

DATA input[4][3] =

{

{ 1, 1, -1 }, // row 0

{ -1, -1, -1 }, // row 1

{ 1, -1, 1 }, // row 2

{ 1, 1, 1 }, // row 3

};

DATA output[4][2] =

{

{ 0, 1 }, // encode type 1 for row 0

{ 1, 0 }, // encode type 0 for row 1

{ 0, 1 }, // encode type 1 for row 2

{ 0, 1 }, // encode type 1 for row 3

};

mam_nn theMAM(3,2);

// train (encode) the input-output pairs to MAM...

for(int i=0;i<4;i++)

theMAM.encode_s(input[i],3,output[i],2);

// retrieve output from MAM for input #0

DATA nn_output_buffer[2];

theMAM.recall(input[0],3, nn_output_buffer,2);

// ...

return 0;

}

9

3 The nnlib2Rcpp R package

The nnlib2Rcpp R package includes nnlib2 in its source code, and uses in two ways: (a) to
provide wrapper R functions for some of the predefined NN models in nnlib2, and (b) to provide
an R module for creating NN that contain components (s.a. layers and sets of connections)
defined using nnlib2. Thus, package nnlib2Rcpp provides a small collection of ready-to-use
neural network models that can directly be used in moderately sized problems, and also some
tools to aid the experimentation with new neural network components and models (which may
be useful for prototyping custom NN models or for educational purposes). Below is a brief
discussion of how the predefined NN collection is used, while the implementation of new types
of NN components and models is discussed in later sections.

3.1 Using predefined neural network models in nnlib2Rcpp

The package contains ready-to-use R functions and modules for several NN types. These currently
include versions of an auto-encoding NN (Autoencoder, for PCA-like dimensionality reduction or
expansion), Back-Propagation (BP, for input-output mappings), unsupervised Learning Vector
Quantization (LVQu, for clustering), supervised LVQ (LVQs, for supervised classification), and
Matrix Associative Memory (MAM, for storing vector pairs). All implemented models accept and
process numerical data, usually in the form of vectors or matrices. Details and information for
each function can be found in the package reference manual or by invoking the package built-
in documentation (i.e. calling help(package=’nnlib2Rcpp’) in R). Two brief examples follow
below.

3.1.1 An unsupervised example

Functions are provided for the predefined NN models that employ an unsupervised training
approach (are not trained using a second dataset of desired output); such are the Auto-encoder
and Unsupervised-LVQ. For example, placing the iris data set (from R package datasets) in 3
clusters using Unsupervised LVQ can be done by invoking the related LVQu function, in a manner
similar to:

LVQu(iris_s, 3, number_of_training_epochs = 100, neighborhood_size = 1)

This will return a vector of cluster id numbers (0, 1 or 2) indicating the cluster assigned to each
iris case. Before doing so, however, some data pre-processing must be done. LVQs require
numerical data only, and this data needs to be in [0,1] range, so the complete example is:

Create data to use in examples below (scale iris features to 0..1 range):

iris_s <- as.matrix(iris [1 : 4])

c_min <- apply(iris_s, 2, FUN = "min")

c_max <- apply(iris_s, 2, FUN = "max")

c_rng <- c_max - c_min

iris_s <- sweep(iris_s, 2, FUN="-", c_min)

iris_s <- sweep(iris_s, 2, FUN="/", c_rng)

Apply unsupervised LVQ

ids <- LVQu(iris_s, 3, 100, 1)

which results in:

10

https://cran.r-project.org/web/packages/nnlib2Rcpp/nnlib2Rcpp.pdf

> ids

[1] 0

[39] 0 0 0 0 0 0 0 0 0 0 0 0 1

[77] 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1

[115] 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 1

3.1.2 A supervised example

Models that use supervised training (such as BP, Supervised-LVQ and MAM) are implemented
as modules. This allows them to be placed in R variables and structures (such as vectors) and
thus maintain state, be trained, used, saved to and restored from files, later retrained or applied
to new data etc. For example, "LVQs" module is a Supervised Learning LVQ. To train it with
iris s data, a proper known classification id, i.e. the desired output indicating the correct
species for each iris s case, is required. These ids should be integers from 0 to n-1, where n the
number of classes (here n=3 species):

iris_desired_class_ids <- as.integer(iris$Species) - 1

A supervised learning LVQ (LVQs) object is created and stored in variable lvq as follows:

lvq <- new("LVQs")

To encode input-output pairs in the lvq object (here for 100 training epochs):

lvq$encode(iris_s, iris_desired_class_ids, 100)

Once trained, the model can be used to recall the class id for given data by using its recall

method. To reclassify the original iris s data and plot results (Figure 2) :

lvq_recalled_class_ids <- lvq$recall(iris_s)

plot(iris_s, pch = lvq_recalled_class_ids + 1)

In addition to encode and recall, all supervised NN modules provide methods to display their
internal state (print) and store it (save) or retrieve it (load) using files. The ability to store a
NN to file allows a trained model to be applied on new data without retraining it, or interrupt
training and later resume it, or share a trained model with other nnlib2Rcpp users (or even
nnlib2 C++ apps), or include and invoke a trained model on Shiny web apps etc.

3.2 Expanding the library of NN components

The next sections outline the process of creating new, not currently implemented, or custom
neural network parts and models in nnlib2Rcpp using the included nnlib2 classes. Much of the
information provided here is discussed in greater detail earlier (see section 2). While many users of
the package may choose to skip these sections and only use predefined parts, components and/or
models, these sections provide insight on the underlying classes needed to create new ones which,
possibly combined with existing NN parts, can be employed in ’NN’ R module objects (discussed
later) to form NNs. Implementing new components does currently (as of version 0.1.4 described
herein) require the package source code, package Rcpp, Rtools and some familiarity with the
C++ language, but since significant NN functionality is provided by the included nnlib2 C++
base classes, this last requirement may be minimal.

All predefined neural network models in nnlib2Rcpp are implemented using a collection of
C++ base classes and templates for creating NN. This class library, called nnlib2, is included in
the package source and interfaced to R via package Rcpp. It contains classes that correspond to

11

Figure 2: Iris classes recalled by a Supervised LVQ NN.

12

the basic NN building elements described in classic practical related literature. Thus dissimilar
NN can be defined using a scheme common for all models, which breaks each model into the
same components and sub-components, organizes them in a network ”topology” and controls the
processing performed by each part during encoding or recalling (outputting) data. The nnlib2

base classes can be used for implementing different NN parts and models with code that follows
a common pattern, allowing functionality reuse and helping code readability. Being written in
a compiled language, the produced models are also relatively fast (at least for limited data sizes
and NN complexities) and, since nnlib2 is actually a separate standalone target-independent
C++ library, they can be included in various other types of C++ projects.

A brief (and somewhat simplified) outline of the most significant classes in nnlib2 is shown
in the class-diagram of Figure 1, and is as follows: All NN are based on class "nn" which main-
tains one or multiple "component"-class objects in its topology (an internal ordered list of NN
components). Such components may include "layer" objects, "connection set" objects (sets
of connections between two layers), entire other "nn" objects, special-purpose components etc.
The class "layer" defines components that are layers of processing nodes and provides prede-
fined layer-related functionality; objects of this class internally maintain the nodes (here called
’processing elements’) which are objects based on class "pe". Similarly, a "connection set" is
a set of connections between two "layer" objects, and maintains objects inherited from class
"connection" which connect particular nodes in the layers. To simplify the creation of layers and
sets of connections containing custom "pe" and "connection" types respectively, class templates
"Layer" (or "Layer2D" for 2-d layers) and "Connection Set" can be used (note that template
names use capital initial letters). New "layer" and "connection set" types or sub-classes can
also be defined based on these templates.

All aforementioned classes have an ’encode’ method, invoked when the NN is trained (training
stage), and a ’recall’ method invoked when data is retrieved (mapping stage). These two
methods contain the core instructions for a single step of data processing (for example a single
encoding step in an iterative encoding process). Calling the encode method of a "nn" object
(a neural network) probably -and by default- triggers a sequence of encode invocations in its
components which, in turn, invoke the encode method of their sub-components ("pe" objects
in a "layer", "connection" objects in a "connection set"). In any case, new NN parts and
models can be defined by sub-classing these base classes and overloading the methods (especially
constructors and ’encode’/’recall’) to modify their functionality. Some examples follow below.

3.2.1 Defining new types of nodes and layers

Assume a layer is needed with a new (rather useless) type of nodes that output the sum
of their inputs plus 10 when recalling data. First, the new node class needs to be defined,
based on"pe". The "pe" base class provides a method for receiving multiple incoming val-
ues (receive input value) and an overridable method for initial processing of these values
(input function) whose result is stored in its internal variable ’input’. Subsequent internal
processing will produce a final value, and place it in variable ’output’. By default, unmod-
ified (generic) "pe" objects simply output the sum of all incoming values. The new type of
nodes called "JustAdd10 pe" could be implemented as shown below, first invoking the base-
class recall and then adding 10 (note: this example may be already implemented in the package
”additional parts.h” file on the development version on GitHub i.e. at this link):

class JustAdd10_pe : public pe

{

public:

void recall() { pe::recall(); output = output + 10; }

13

https://github.com/VNNikolaidis/nnlib2

};

Below, the "Layer" template is used, to create (in variable r) a layer containing 25 such nodes
labeled ”test layer”:

Layer< JustAdd10_pe > r ("test layer", 25);

The same template can be used to define new "layer" component types, or sub-classes with
customized layer functionality. For example to define a type (named "JustAdd10 layer") :

typedef Layer < JustAdd10_pe > JustAdd10_layer;

3.2.2 Defining new types of connections and connection sets

To illustrate the definition of a new type of connections (and, later, of an entire NN that uses
them), the code for the (particularly simple) MAM NN (as included in file "nn mam.h" of the
package source) is analyzed below. The MAM connections encode data by multiplying the values
of the nodes they connect, adding the result to their (initially zeroed) weights. During recall,
the connection multiplies the incoming value to its weight and sends the result to the connected
(destination) node. With base-class "connection" methods source pe and destin pe providing
access to the connected source and destination nodes, a class for MAM-specific connections may
be defined as:

class mam_connection: public connection

{

public:

void encode() { weight() = weight() + source_pe().output * destin_pe().input; }

void recall() { destin_pe().receive_input_value (weight() * source_pe().output); }

};

Below, the "Connection Set" template is used to create (in variable q) an empty set of such
connections labeled ”test connections” (the actual connections will be added later):

Connection_Set < mam_connection > q ("test connections");

The same template can be used to define new "connection set" component types or sub-classes
with customized functionality. For example to define a type (named "mam connection set"):

typedef Connection_Set < mam_connection > mam_connection_set;

3.3 Defining new types of neural networks (with bare Rcpp bindings)

The obvious (but not particularly R-friendly) way to create a new NN model is to sub-class the
related nnlib2 ’nn’ C++ class, modify it for the desired model-specific functionality and expose
it to R via Rcpp. This approach was taken for the predefined models, and results in the best
run-time performing NN implementations. Since the NN class is the one actually presented to
the user, its implementation may vary. For example, the code for the MAM NN (taken from
file mam nn.h in the package source with only headers and comments removed) is shown below.
MAMs have a 2-layer, fully connected topology (each node in one layer has connections with all
nodes in the other); the simplest version of MAM (implemented here) uses two layers of generic
nodes with a set of MAM connections (as defined the previous section) between them:

14

class mam_nn : public nn

{

public:

mam_nn():nn("MAM Neural Network") {}

bool setup(int input_length,int output_length)

{

reset();

add_layer(new Layer < pe > ("Input layer" , input_length));

add_connection_set(new mam_connection_set);

add_layer(new Layer < pe > ("Output layer", output_length));

connect_consecutive_layers();

return no_error();

}

};

The setup method above adds the three components to the NN topology, i.e. two layers con-
taining generic "pe" and a set of MAM-specific connections between them; layers must be setup
before creating connections between their nodes, so "nn" method connect consecutive layers

is called last, which (by default) populates the set with all possible connections between the
nodes of the two layers, fully connecting them. For this very simple NN model no other code is
required, except the ”glue code” exposing this class (including the default encode and recall

methods inherited from parent "nn" class) as a module to R using typical Rcpp methodology
(see Eddelbuettel u.a. (2017)).

3.4 Creating neural networks with the ’NN’ R module

A more versatile, R-based way to combine layers and connections into a neural network is pro-
vided by the NN module which nnlib2Rcpp package includes (as of version 0.1.4). This module
maintains a neural network object (with initialy empty topology) and provides an interface to
build it from components, monitor it, input to and output data from it, train and generally
use it from R. Any of the component types (such as layers and connection sets) created for
the predefined NN in the package, or any other custom components defined by the user can be
added to its topology. The module can be used to create NN models with mixed component
types, recursive or reverse-direction connections, unusual encoding or recalling sequences and,
generally, aids experimentation by allowing significant control of the models from R. Once a NN

module object is created, it can be manipulated by methods such as:

� add layer: to create (and append to the topology) a new layer containing a given number
of nodes; the type of this layer (and thus also of the nodes it contains) is defined by ’name’
parameter, with names available for several predefined layer types while additional names
can be supported for user-defined components.

� add connection set: to create (and append to the topology) a new empty set of con-
nections. It does not connect any layers (as they may not be setup yet) nor contains any
connections. The type of this set (and thus also of the connections it will contain) is defined
by ’name’ parameter, with names available for several predefined types of such sets; again
additional names can be supported for user-defined ones.

� create connections in sets: to fill connection sets with connections, fully connecting
adjacent layers by adding all possible connections between their nodes.

15

� connect layers at: to insert a new empty set of connections (whose type is specified by
’name’ parameter) between two layers and prepare it to connect them (no actual connections
between layer nodes are created).

� fully connect layers at: as above, but also fills the set with all possible connections
between the nodes of the two layers.

� add single connection: to add a single connection between two nodes.

� remove single connection: to remove a single connection between two nodes.

� input at: to input a data vector to a component in the topology.

� encode at: to trigger the encoding operation of a component in the topology.

� recall at: to trigger the recall (mapping, data retrieval) operation of a component in the
topology.

� encode all: to trigger the encoding operation of all components in the topology, in forward
(first-to-last) or backward (last-to-first) order.

� recall all: to trigger the recall (mapping, data retrieval) operation of all components in
the topology, in forward or backward order.

� get output from: to get the current output of a component.

� get input at: to get the current input at a component.

� get weights at: to get the current weights of the connections in a connection set com-
ponent.

� get weight at: to get the current weights of a particular connection in a connection set.

� set weight at: to set the current weight of a particular connection in a connection set.

� print: to print the internal NN state, including the state of each component in topology.

� outline: to show a summary of the NN topology.

� ...and others. More information is available in the package documentation (type ?NN in R).

For example, the NN module can be used to create a NN similar in functionality to the simple
MAM described earlier; To define a NN that accepts input-output pairs of 3 element vectors,
first a NN object is created (in variable m) and then two generic layers of 3 nodes are added to its
topology:

m <- new("NN") # create NN object in variable m

m$add_layer("generic" , 3) # add a layer of 4 generic nodes

m$add_layer("generic" , 3) # add another layer of 3 generic nodes

next, add a full set of MAM connections between the two

layers which currently are at positions 1 and 2 in topology:

m$fully_connect_layers_at(1, 2, "MAM", 0, 0)

16

As specified by its parameters, the last step where fully connect layers at is called effectively
inserts a "mam connection set" component between positions 1 and 2 of the topology and
connects all corresponding layer nodes by adding connections having weights initialized to 0.
The final topology contains three components, a layer currently in topology position 1, a set of
9 MAM connections in 2, and another layer in position 3. This can be verified by using the
outline method, which results in:

> m$outline()

------Network outline (BEGIN)--------

Neural Network (Ready - No Error)

Current NN topology:

@1 (c=0) component (id=67) is Layer : generic of size 3

@2 (c=1) component (id=69) is Connection Set : MAM (Fully Connected) 67-->68 of size 9

@3 (c=2) component (id=68) is Layer : generic of size 3

--------Network outline (END)--------

(note that component ids are assigned at run-time, and may differ). This NN stores input-output
vector pairs. Two such vector pairs are encoded below (this simple MAM is not very powerful
in mapping data, so ideal examples were selected):

m$input_at(1, c(1, 0, 0)) # input 1st vector of a pair to layer at 1

m$input_at(3, c(0, 0, 1)) # input 2nd vector of a pair to layer at 3

m$encode_all(TRUE) # encode, adjusting weights (fwd-direction)

m$input_at(1, c(0, 0, 1)) # input 1st vector of a pair to layer at 1

m$input_at(3, c(1, 0, 0)) # input 2nd vector of a pair to layer at 3

m$encode_all(TRUE) # encode, adjusting weights (fwd-direction)

To recall the second vector given the first:

m$input_at(1, c(1, 0, 0)) # input vector to layer at topology position 1

m$recall_all(TRUE) # recall (fwd-direction)

m$get_output_from(3) # get 2nd vector of the pair from layer at 3

which returns:

[1] 0 0 1

and similarly,

m$input_at(1, c(0, 0, 1)) # input another vector to layer at position 1

m$recall_all(TRUE) # recall (fwd-direction)

m$get_output_from(3) # get 2nd vector from layer at position 3

which returns:

[1] 1 0 0

In the next example, a back-propagation-based auto-encoding NN is created, with a the
network topology composed mostly of predefined back-propagation (BP) components:

a <- new("NN") # create a NN object in variable a

a$add_layer("generic", 4) # 1. a layer of 4 generic nodes

a$add_connection_set("BP") # 2. a set of BP connections

17

a$add_layer("BP-hidden", 3) # 3. a layer of 3 BP pes

a$add_connection_set("BP") # 4. another set of BP connections

a$add_layer("BP-hidden", 2) # 5. another layer of 2 BP pes

a$add_connection_set("BP") # 6. another set of BP connections

a$add_layer("BP-hidden", 3) # 7. another layer of 3 BP pes

a$add_connection_set("BP") # 8. another set of BP connections

a$add_layer("BP-output", 4) # 9. a layer of 4 BP output pes

a$create_connections_in_sets (0, 1) # Populate sets with actual connections

This defines a network of 5 layers (sized 4, 3, 2, 3, and 4 nodes respectively) and sets of BP
connections (with random initial weights in [0 1]) between them. The data encoding example
shown below (for the scaled iris s data defined earlier) presents each data vector to the first layer
and performs a recall. It then presents the same vector to the last layer as the correct (desired)
value, and performs encoding in all the components (from last to first), where discrepancies
between recalled and desired output values are used to adjust connection weights, a functionality
provided by the BP components used. The process is repeated for 1000 epochs:

for(e in 1:1000) # for 1000 epochs

for(r in 1:nrow(iris_s)) # for each data case

{

a$input_at(1, iris_s[r ,]) # present data at 1st layer

a$recall_all(TRUE) # recall (fwd direction, entire topology)

a$input_at(9, iris_s[r ,]) # present data at last layer

a$encode_all (FALSE) # encode, adjusting weights (bwd-direction in topology)

}

Once the data is encoded (or auto-encoded since input and desired output are the same), new
composite variables for the data can be collected at an intermediate layer. Below, the layer of 2
nodes (in position 5 of the topology) is used, so a set of 2 variables will be collected:

result <- NULL

for(r in 1:nrow(iris_s)) # for each data case

{

a$input_at(1, iris_s[r ,]) # present data at 1st layer

a$recall_all(TRUE) # recall (in fwd direction) entire topology

z <- a$get_output_from(5) # collect output from layer at position 5

result <- rbind(result, z) # append this to a ’result’ matrix, to plot it etc

}

plot(result, pch = unclass(iris$Species))

The plot of a typical output resulting from the above, is shown in Figure 3, with corresponding
iris species used for symbols (due to random initial weights, output may differ).

3.5 Using custom NN components in ’NN’ module

In addition to predefined ones, new neural network component types can be defined and used by
NN objects. Currently, the definition of new components must be done in C++, using nnlib2

classes as discussed in several above sections of this document. Thus it requires the nnlib2Rcpp

package source code (which includes the nnlib2 base classes) and the ability to compile it. In
particular:

18

Figure 3: Results from a custom auto-encoding NN on Iris data.

19

1. New component types can be added to a single header file called ”additional parts.h”
(which is included in the package source). All new components to be employed by the ’NN’
R module must be defined in this file (or be accessible from generate custom layer()

and generate custom connection set() functions in the file).

2. The new "pe", "layer", "connection" or "connection set" definitions must (at least
loosely) comply to the nnlib2 base class hierarchy and structure, and follow the related
guidelines outlined earlier (minimal examples can be found in the ”additional parts.h”
file itself).

3. A name must be reserved for the new "layer" and "connection set" types or classes, to be
used as parameter in ’NN’ module methods that require a name to create a component. This
can be as simple as a single line of code where, given the textual name, the corresponding
component object is generated and returned. This code must be added (as appropriate) to
either generate custom layer() or generate custom connection set() functions found
in the same ”additional parts.h” header file.

In an earlier example, a custom layer component type (called "JustAdd10 layer") was defined;
it contains "JustAdd10 pe" nodes, which ’recall’ the sum of their inputs plus 10. Should the
definitions be placed in the ”additional parts.h” header file, the new layer type can be used
in ’NN’ objects. The only other modification required, is to register a name for such layers, which
can be done by adding the following line of code to function generate custom layer (also in
”additional parts.h”):

if(name == "JustAdd10") return new JustAdd10_layer (name,size);

(note: this example may be already implemented in the package ”additional parts.h” file on
the development version on GitHub i.e. at this link.

With these two steps completed and the modified package compiled, specifying the name
"JustAdd10" when creating a layer in ’NN’ objects will result in a layer of "JustAdd10 pe"

nodes:

x <- new("NN") # create NN object in variable x

x$add_layer("JustAdd10" , 3) # add layer of 3 ’JustAdd10_pe’ nodes

x$add_connection_set("pass-through") # add set of pass-through connections

x$add_layer("JustAdd10" , 1) # add layer of 1 ’JustAdd10_pe’ nodes

x$create_connections_in_sets (1, 1) # fill sets with connections

The network, with 3 nodes at its first layer, a set of 3 connections (that pass data unmodified)
and a single node in the last layer, will effectively output sum(i + 10) + 10 for any 3 element
input vector i. For input c(0, 10, 20) output is expected to be 70. To verify this:

x$input_at(1, c(0, 10, 20)) # present data at 1st layer

x$recall_all(TRUE) # recall (fwd entire topology)

If output at 1st layer is checked, the initial values are increased by 10:

> x$get_output_from(1)

[1] 10 20 30

while at the last layer (3rd topology component), summation is done on these incoming values,
and the result also increased by 10, producing the final output:

> x$get_output_from(3)

[1] 70

20

https://github.com/VNNikolaidis/nnlib2

3.5.1 A step-by-step example using Rtools and RStudio

An example of the steps needed to add a new custom NN component to the package (and then
use it in ’NN’ objects) is outlined below.

(a) Preparation.

1. Tools required for this example are R, Rtools, and RStudio. Download and install them, if
necessary. In R, install package Rcpp and its dependencies. You may also want to install
package devtools and its dependencies.

2. Download the nnlib2Rcpp source code from either CRAN or GitHub. Extract if necessary,
placing all files in a directory of your choice. You will be building your version of the package
(with your custom components added) from this directory.

3. Just to verify all is ok, rebuild the package. Go to the directory containing file ”nnlib2Rcpp.Rproj”
(an RStudio project file) and open it in RStudio. Next, rebuild the package (select Build

/ Clean and Rebuild on the RStudio menu). If successful, the package will be installed
and loaded.

(b) Create your own types of NN parts (nodes, layers, connections etc).

1. When creating a new NN part, you will have to consider how it will cooperate with other
parts you plan to include in the model. This is unavoidable in NN design, where all
components cooperate with each other towards the final result. Traditionally -but not
necessarily-, each part of a NN has two different modes of operation, one performed while
encoding (training, learning) and another performed when recalling (mapping) data. To
add your new NN part, you will subclass nnlib2 C++ classes to define new parts (nodes,
node layers, connections, sets of connections etc) with customized behavior. The particulars
will determine whether you need to add extra variables to your class, or overload any of the
base methods (usually methods setup(), encode() and recall()). Only minimal experi-
ence with C++ is required. The nnlib2 base classes are already available in nnlib2Rcpp,
under its src directory and you may place your creations is the additional parts.h file.
This file already contains some minimal examples of NN parts (nodes, layers etc). Al-
ternately, you can create your own source code files (again in src directory) and include
appropriate header files in additional parts.h. In any case, new user-defined compo-
nents should be accessible from this file, and exist inside namespace nnlib2 (similarly to
the examples). For this short guide, all changes (below) will be done exclusively inside
additional parts.h file.

2. Define a new NN part, for example a new type of ’pe’s or ’connection’s. In the example
below we will create a type of ’connection’s and call them ’MEX connection’s (MEX for
Manual EXample). The definition must be inside namespace nnlib2. The appropriate
base class (’connection’) will be sub-classed, and only encode() and recall() will be
modified (as often the case in many new NN parts regardless of type). This being a
’connection’ it connects a source node (source pe()) to a destination node (destin pe())
and can send or receive data to them via their methods.

class MEX_connection: public connection

{

public:

21

// model-specific behavior during mapping stage:

void recall()

{

destin_pe().receive_input_value(pow(source_pe().output - weight() , 2));

}

// model-specific behavior during training stage:

// in this example, only the current connection weight (i.e. weight())

// and incoming value from the source node (i.e. source_pe().output) are

// used in a series of calculations that eventually change the

// connection weight (see last line).

void encode()

{

double x = source_pe().output - weight();

double s = .3;

double m = weight();

double pi = 2*acos(0.0);

double f = 1/(s*sqrt(2*pi)) * exp(-0.5*pow((x-m)/s,2));

double d = (f * x) / 2;

weight() = weight() + d;

}

};

Next, you may define a new NN component for your type, in this example a ’connection set’
that will contain this new type of connections. Below this is done using the template
Connection Set which is a template for defining sets containing only a given connection

type. We will call the new type ’MEX connection set’:

typedef Connection_Set < MEX_connection > MEX_connection_set;

3. Finally, locate the generate custom connection set() in additional parts.h file and
add the following line:

if(name == "MEX") return new MEX_connection_set(name);

This will create a set of ’MEX connection’s when the text ”MEX” is specified as parameter
to ’NN’ methods such as add connection set. Note: the name passed as parameter in the
right side of the above simply copies it (i.e. ”MEX”) as the name of the new set (this is a
label used only for display purposes and can be changed at any time).

[A side-note: the above steps are similar to those needed for defining new nodes (or pro-
cessing elements , pes) and layers of such nodes. Below is a simple example where a new
type of ’pe’ and a ’layer’ containing such nodes is defined (new names used also start with
MEX , for Manual EXample):

class MEX_pe : public pe

{

22

public:

// during mapping, do the default ’pe’ behavior (which adds incoming values)

// and then take its square root for final output.

void recall()

{

pe::recall();

output = sqrt(output);

}

};

typedef Layer < MEX_pe > MEX_layer;

There is a corresponding generate custom layer() function in additional parts.h file
where the following line could be added to make this new type of layer available in R, s.a.:

if(name == "MEX") return new MEX_layer(name, size);

Thus a layer of this specific type will be used when the text "MEX" is passed as parameter
to ’NN’ methods such as add layer.]

4. Build the package. In RStudio, select Build / Install and Restart menu option. Once
finished your new part definition will be available in the package. From now on you can
directly go to (c) below where your new parts (along with other available components) can
be combined in R to form NNs.

(c) Use your NN parts in R. As mentioned earlier, you only do (a) and (b) once to ’install’ your
user-defined type in your version of the package. From now on you can bypass them and directly
go to R to use your new parts (along with other available components) in a NN. You can now
create NNs in R that employ your newly defined parts (along with others already available in
the package). This is done using ’NN’ R objects (type ?NN for more information, or see earlier
section). An example using the iris data set and the MEX types created in (b) above. Output
is shown in Figure 4:

library(nnlib2Rcpp)

set.seed(123456)

scale and shuffle iris data

rr <- sample(nrow(iris))

suffled_iris <- iris[rr,]

iris_s <- as.matrix(suffled_iris [1 : 4])

c_min <- apply(iris_s, 2, FUN = "min")

c_max <- apply(iris_s, 2, FUN = "max")

c_rng <- c_max - c_min

iris_s <- sweep(iris_s, 2, FUN="-", c_min)

iris_s <- sweep(iris_s, 2, FUN="/", c_rng)

iris_s <- (iris_s*2)-1

23

Figure 4: Results from a NN with custom parts on Iris data.

24

create a nn with the new components:

ann <- new("NN")

ann$add_layer("generic",4)

ann$add_connection_set("MEX")

ann$add_layer("MEX",4)

ann$create_connections_in_sets(-.5,.5)

(optional) show the NN topology

ann$outline()

(optional) show the NN internal state

ann$print()

train it. Present data to component at position 1,

do 200 epochs, encode from first to last component:

ann$encode_dataset_unsupervised(iris_s,1,200,TRUE)

use it to recall (map) the iris data and collect output

recalled_values <- ann$recall_dataset(iris_s,1,3,TRUE)

in this toy-model the output node with smallest output is

the ’winner’ (similar to LVQ). Find it and plot results

find_best<-apply(recalled_values,1,which.min)

plot(iris_s, pch = find_best, col=find_best)

pairs(iris_s, pch = find_best, col=find_best)

4 One last note

Please consider submitting any useful NN parts, components, or entire models you define, so
they may enrich future versions of nnlib2 and nnlib2Rcpp. For more information, contact the
author of this document.

5 Summary

This document introduces nnlib2, a collection of C++ classes for defining neural network com-
ponents and models. This document also introduces nnlib2Rcpp, an R package that provides a
module (’NN’) to employ nnlib2 components (s.a. layers, connections etc) in arbitrary network
topologies and processing sequences. Both also contain predefined, ready-to-use NN parts and
models.

References

Eddelbuettel, Dirk / Francois, Romain (2017): Exposing C++ functions and classes with Rcpp
modules
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-modules.pdf, Accessed: 2019-12-15.

25

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-modules.pdf

	Introduction
	The nnlib2 C++ library
	The nnlib2Rcpp R package

	The nnlib2 C++ library
	The nnlib2 class structure
	Expanding the library with new NN parts and models

	The nnlib2Rcpp R package
	Using predefined neural network models in nnlib2Rcpp
	An unsupervised example
	A supervised example

	Expanding the library of NN components
	Defining new types of nodes and layers
	Defining new types of connections and connection sets

	Defining new types of neural networks (with bare Rcpp bindings)
	Creating neural networks with the 'NN' R module
	Using custom NN components in 'NN' module
	A step-by-step example using Rtools and RStudio

	One last note
	Summary

