The New ImerTest Package
Rune Haubo B Christensen on behalf of the lmerTest authors
March 2018

The lmerTest package has been re-written and is released as package version > 3.0. We call this The New
IlmerTest Package. This document describes the key changes in the new version.

The ImerTest package provides p-values in type I, II or III anova and summary tables for linear mixed
models (lmer model fits cf. lme4) via Satterthwaite’s degrees of freedom method; a Kenward-Roger method
is also available via the pbkrtest package. Model selection and assessment methods include step, dropi,
anova-like tables for random effects (ranova), least-square means (LS-means; 1s_means) and tests of linear
contrasts of fixed effects (contest).

The most important changes for end-users are:
1. More robust and less error-prone implementation with much better test coverage
2. Faster evaluation of summary and anova tables - much faster for time-consuming model fits

3. New functions including drop1(), contest (), as_lmerModLmerTest (), show_test(), and ranova() —
see details below.

Given that the codebase has been rewritten completely from scratch it is not unlikely that a few ‘childhood
diseases’ are lurking in the details. Please help us cure out such maladies and report bugs if you see them at
https://github.com/runehaubo/lmerTestR /issues. Comments and suggestions are most welcome.

The new user interface is almost 100% backward compatible with previous versions (see details below). An
up-to-date version of this document is available here.

New features:

1. ranova() - ANOVA-like table of random effects via likelihood ratio tests with methods for both
lmerMod and lmerModLmerTest objects. ranova() is similar to the old rand () and essentially produces
a drop1() table for random-effect terms. ranova() can either test reduction of random-effect terms
to simpler structures or it can test removal of entire random-effect terms; the rules for how complex
random-effect terms are reduced is described in help(ranova).

2. drop1 () - F-tests of fixed-effect terms using Satterthwaite or Kenward-Roger methods for denominator
degrees of freedom. These ‘single term deletion’ tables are useful for model selection and tests of
marginal terms. Compared to the likelihood ratio tests of 1lme4::dropl the F-tests and p-values
of lmerTest: :dropl are more accurate and considerably faster since no additional model fitting is
required.

3. as_lmerModLmerTest () - an explicit coerce function from class 'lmerMod' to 'lmerModLmerTest'.

4. contest () - tests of contrasts, i.e. tests of linear functions of the fixed-effect coefficients. A user-friendly
interface for tests of contrasts with outputs either as a summary-like table of ¢-tests or an anova-like
table of F-tests (or a list of either). Contrasts can optionally be tested for estimability. Contrasts are
allowed to be rank-deficient as the rank is automatically detected and appropriate adjustments made.
Methods for 'lmerModLmerTest' as well as 'lmerMod' objects — the latter avoids the Satterthwaite
specific computations when the Kenward-Roger method is used.

5. A show_test () function which operates on anova tables and LS-means tables (produced by 1s_means)
makes it possible to see exactly which functions of the coefficients are being tested. This is very helpful
when differences between type I, IT and IIT anova tables are being considered and discussed.


https://github.com/runehaubo/lmerTestR/issues
https://github.com/runehaubo/lmerTestR/tree/master/pkg_notes/new_lmerTest.pdf

10.
11.

. An 1s_means functions is provided as an alias for the 1smeansLT. As the name implies the function

computes the so-called least-squares means (classical Yates contrasts) as well as pairwise differences of
these.

. IlmerTest: :1mer returns an object of class 'lmerModLmerTest' (previously 'merModLmerTest') to

clarify that 'lmerModLmerTest' extends 'lmerMod' — not 'merMod'. The merMod class includes
generalized and nonlinear mixed models and lmerTest is only designed for linear mixed models.

. Test coverage has been greatly improved providing confidence that lmerTest functionality works as

expected even in boundary situations (e.g. such that anova and summary tables have the expected
format even if there are no fixed effects - and even if the intercept has been suppressed as well.)

. The computational approach is to let lmerTest: : lmer compute the required Hessian and derivatives

needed for evaluation of degrees of freedom and ¢- and F-tests. Previously these quantities were computed
following calls to anova and summary methods which meant that the computationally intensive parts
had to be evaluated anew with each summary or anova table; the model even had to be refitted as well.
With the new implementation refitting the model is avoided and the required Hessian and derivaties
have to be computed only once per model fit.

The number of dependent packages has been reduced easing the installation of lmerTest.

Consistency of output - user visible functions as well as internal functions take care to return objects of
the appropriate form even in boundary situations, e.g. always a matrix or always a list.

Changes to the user interface

The user interface has been updated with new functionality and extra features as described above. We have
tried our best to keep the new version backward compatible, but a few things from the old API have been
changed out of necessity:

1.

4.

In step() the argument type is now being ignored (with a warning) as drop1() is always used for
reduction of the fixed-effect structure. type used to indicate the type of anova table to use for tests
of fixed-effect terms, but since it only makes sense to remove marginal terms and drop1() provides
the test of these terms it does not make sense to use anything but drop1() to test the fixed-effect
terms. Furthermore type II and III anova tables provide identical tests of marginal terms. Additionally,
the arguments fixed.calc, lsmeans.calc, difflsmeans.calc, and test.effs are deprecated and
attempts to set them leads to a warning; also keep.effs has been reduced to keep.

The documented behavior of rand (which is based on ranova) has not changed, but being a new
implementation it may behave differently in ‘corner’ cases.

anova tables have a column F value (previously F.value) being consistent with anova.lm and
anova.merMod.

The headers for summary and anova tables have been modernized.

Plans for future releases:

1.

2.
3.

calcSatterth() will be .Deprecated and eventually .Defunct since its functionality is covered by
the new function contest ().

rand() is an alias for the new function ranova(). rand may be .Deprecated in future releases.

Plot methods for 1s_means and step objects may be discontinued (and they have never been documented
and part of the public API) since much better alternatives are available in the emmeans package.



Changes relevant for programmers and downstream packages

1. ImerTest: :1lmer produces an object of (S4) class 'lmerModLmerTest' (previously 'merModLmerTest')
which extends the 'lmerMod' class - objects of class 'lmerMod' are produced by lme4: :1lmer.

2. anova and summary methods for objects of class 'lmerModLmerTest' are S3 and should only be
called using method dispatch, i.e. they should be called with objects of class 'lmerModLmerTest'
as the first argument. If you have an object of class 'lmerMod' and want to compute p-values use
anova(as_lmerModLmerTest (object)) or summary(as_lmerModLmerTest (object)). (The previous
lmerTest package defined S4 anova and summary methods.)

3. anova and summary methods are not exported functions and they are not designed to be called
with 1lmerTest::summary and lmerTest::anova. Use anova(as_lmerModLmerTest(object)) or
summary (as_lmerModLmerTest (object)) instead if object is of class lmerMod, i.e. the result of
calling 1me4: : lmer.

4. If your package suggests (rather than imports or depends on) lmerTest, the canonical way to enforce
calls to the anova and summary methods defined by lmerTest is as follows:

# For packageVersion("lmerTest") >= "3.0.0" :
if (requireNamespace("lmerTest", quietly = TRUE)) {

# for summary() change anova -> summary here:

anova(lmerTest: :as_lmerModLmerTest(object)) # optionally add add. args.
} else stop("Package lmerTest is not available.")

Bridging between versions for package programmers

1. If you want to test if an object is of class 'lmerModLmerTest' or 'merModLmerTest', use
inherits(object, "merModLmerTest") || inherits(object, "lmerModLmerTest"): this tests
TRUE for both classes.

2. If you are working with anova and summary methods for Imer objects (lme4: : 1lmer or lmerTest: : lmer)
in your package, and you want to make sure to call the anova and summary methods defined by lmerTest
you may use the following functions to transition from the old to the new lmerTest package.

lmerTest_anova <- function(object, ...) {
# Produce lmerTest-anova table for lmer-model fits (lme4 or lmerTest) with old
# as well as new lmerTest package.
# Standard method dispatch for all mon-lmerMod objects.
if (!inherits(object, "lmerMod")) return(anova(object, ...)) # non-lmer objects
if (requireNamespace("lmerTest", quietly=TRUE) && packageVersion("lmerTest") < "3.0.0") {
if (inherits(object, '"merModLmerTest"))
return(lmerTest: :anova(object, ...)) else # lmerTest object
return(lmerTest: :anova(as(object, "merModLmerTest"), ...)) # lme4 object
}
if (requireNamespace("lmerTest", quietly=TRUE) && packageVersion("lmerTest") >= "3.0.0") {
if (inherits(object, "lmerModLmerTest"))

return(anova(object, ...)) else # lmerTest object
return(anova(lmerTest: :as_lmerModLmerTest(object), ...)) # lme4 object
}
return(anova(object, ...)) # *merModLmerTest objects and/or 'lmerTest' is not available
}
lmerTest_summary <- function(object, ...) {

# Produce lmerTest-summary for lmer-model fits (lme4 or lmerTest) with old
# as well as new lmerTest package.



# Standard method dispatch for all mon-lmerMod objects.
if (!inherits(object, "lmerMod")) return(summary(object, ...)) # non-lmer objects
if (requireNamespace("lmerTest", quietly=TRUE) && packageVersion("lmerTest") < "3.0.0") {
if (inherits(object, "merModLmerTest"))
return(lmerTest: :summary(object, ...)) else # lmerTest object
return(lmerTest: :summary(as(object, "merModLmerTest"), ...)) # lme4 object
}
if (requireNamespace("lmerTest", quietly=TRUE) && packageVersion("lmerTest") >= "3.0.0") {
if (inherits(object, "lmerModLmerTest"))

return(summary(object, ...)) else # lmerTest object
return(summary (lmerTest: :as_lmerModLmerTest (object), ...)) # lme4 object
}
return(summary(object, ...)) # #*merModLmerTest objects and/or 'lmerTest' is not available

3. In practice you include these two functions in a file, say <my-package>/R/1lmerTest_utils.R and
then change all calls of the type lmerTest::anova and lmerTest::summary to lmerTest_anova
and lmerTest_summary respectively. You will also need to add importFrom(methods, as),
importFrom(utils, packageVersion) and importFrom(stats, anova) to the NAMESPACE file if they
are not there already; also add methods under Imports in the DESCRIPTION file.

4. When the new version of ImerTest is on CRAN you don’t need (but can use) lmerTest_anova and
lmerTest_summary in your package anymore. Going forward all that is needed is summary (object)
and anova(object) (without lmerTest:: prepended!) if object is of class lmerModLmerTest.
If object is of class lmerMod (i.e. fitted with lme4::1lmer) then you need to coerce to class
lmerModLmerTest before you can use the anova and summary methods from lmerTest: first obj
<- as_lmerModLmerTest (object) (or obj <- lmerTest::as_lmerModLmerTest(object)) then
summary (obj) or anova(obj).



	New features:
	Changes to the user interface
	Plans for future releases:
	Changes relevant for programmers and downstream packages
	Bridging between versions for package programmers

