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Latin hypercube sampling (McKay, Conover, and Beckman 1979) is a method of sampling 
that can be used to produce input values for estimation of expectations of functions of output 
variables. The asymptotic variance of such an estimate is obtained. The estimate is also shown 
to be asymptotically normal. Asymptotically, the variance is less than that obtained using 
simple random sampling, with the degree of variance reduction depending on the degree of 
additivity in the function being integrated. A method for producing Latin hypercube samples 
when the components of the input variables are statistically dependent is also described. These 
techniques are applied to a simulation of the performance of a printer actuator. 
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1 INTRODUCTION 

Suppose we have some device or process the be- 
havior of which depends on a random vector X = 
(Xi, . , X,) of fixed length K. For example, consider 
an electrical circuit the performance of which de- 
pends on a number of quantities (capacitances, resist- 
ances) that vary from circuit to circuit in some 
random fashion. A mathematical model for the 
device is developed (e.g., a set of differential equa- 
tions) from which we can simulate the behavior of 
the device on a computer. Very often, we want to 
estimate the expected value of some measure of per- 
formance of the device, given by the function h(X). 
Thus we have the problem of approximating the ex- 
pected value of some function. If K, the number of 
variables, is large, then deterministic methods are dif- 
ficult to use. Hence, Monte Carlo methods are usu- 
ally used for high-dimensional problems. That is, N 
values of the input random vector, X,, . . . , X,, are 
generated in some fashion such that the expected 
value G(X) can be estimated by 

N 

h = N-l c h(Xj). 
j=l 

Since h(x) may be difficult to compute for each new 
value of x [we may have to solve numerically a large 
system of differential equations to obtain h(x)], it is 
important to pick a sampling scheme that allows us 
to estimate E/t(X) well while keeping N, the number 
of simulations, to a minimum. Many methods for 

choosing X,, . . . , X, exist. The simplest is to generate 
N iid random vectors with the distribution of X, a 
method that I shall refer to as simple random sam- 
pling. McKay, Conover, and Beckman (1979) sug- 
gested an alternative method of generating Xi, . , ., 
X, that they call Latin hypercube sampling. In Sec- 
tion 2, I describe this procedure. In Section 3, I 
derive the asymptotic variance of i;, the estimator of 
Eh(X), based on a Latin hypercube sample. I find 
that as long as N, the number of simulations, is large 
compared with K, the number of variables, Latin 
hypercube sampling gives an estimator with lower 
variance than simple random sampling for any func- 
tion h( ) having finite second moment. Moreover, the 
closer h(X) is to additive in the components of X, the 
more Latin hypercube sampling helps relative to 
simple random sampling. I also show that i; based on 
a Latin hypercube sample is asymptotically normal 
as N increases. In Section 4, I briefly consider esti- 
mating the variance of i; when using Latin hypercube 
sampling. In Section 5, I give a method for producing 
Latin hypercube samples when the components of X 
are statistically dependent such that Xi, . . . , X, have 
approximately the correct joint distribution for their 
components. In Section 6, I apply these methods to a 
model for a printer actuator. 

2. LATIN HYPERCUBE SAMPLING 

Suppose that the joint distribution of the random 
vector of parameters X is given by F. Throughout 
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Figure 1. A Latin Hypercube Sample With N = 6, K = 2 for X 
Distributed Uniformly on the Unit Square. 

this work, we will assume that F is specified. For 
now, we will also assume that the components of X 
are independent. Denote by F, the cumulative distri- 
bution function of X,, and let Xi, be the kth compo- 
nent of Xj, thejth simulated value. 

I now describe the procedure for producing a 
Latin hypercube sample of size N as given by 
McKay et al. (1979). Define P = (pj,) to be an N x K 
matrix, where each column of P is an independent 
random permutation of (1, 2, . . ., N). Moreover, let 
tjt (j = 1, . .., N; k = 1, . . . . K) be NK iid U[O, l] 
(uniformly distributed on [0, 11) random variables 
independent of P. Then Xi, is defined by 

Xjk = F; ‘(N - ‘Cpjk - 1 + tjk)). (2) 

An example of a Latin hypercube sample when X 
is uniformly distributed on the unit square is shown 
in Figure 1. We see that pjl, . . ., pjK determine in 
which “cell” Xj is located, and ljl, . . . , tjK determine 
where in the cell Xj is located. Note that there is 
exactly one observation in each row in Figure 1. 
Roughly speaking, Latin hypercube sampling strat- 
ifies each marginal distribution of X,, . . ., X, as 
much as possible but otherwise picks the X,‘s ran- 
domly. 

3. THE ASYMPTOTIC DISTRIBUTION BASED 
ON LATIN HYPERCUBE SAMPLING 

I now compare the variance of A, our estimator of 
Eh(X) [Eq. (l)], depending on whether simple 
random sampling or Latin hypercube sampling is 
used. If simple random sampling is used to produce 
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X,, . , X,, then the estimator is unbiased and 

var(h) = N -’ var(h(X)). 

If Latin hypercube sampling as described in Section 2 
is used, then h is still unbiased, and 

var(&) = N ~’ var(h(X)) 

+ N-‘(N - l)cov(h(X,), h(X,)) (3) 

(McKay et al. 1979, p. 245). Thus Latin hypercube 
sampling lowers the variance if and only if cov(h(X,), 
h(X,)) < 0. Iman and Conover (1980) gave various 
exact expressions for the variance given in (3), but 
these expressions are difticult to apply in practice. 
McKay et al. (1979) showed that this covariance is 
negative whenever h(x) is monotonic in each of its 
components. In many problems, monotonicity will 
not hold. For example, if h(x) is an indicator of fail- 
ure in an electrical circuit, then since failures will 
tend to occur when one or more of the parameters 
take on very high or low values, h(x) will usually not 
be monotonic. I will show, however, that as N+ co, 
the covariance term is asymptotically nonpositive. 
Define 

gk(Xk) = 
s 

h(X) fi dFi(xJ 
i=l 
i#k 

Moreover, let {XjN) (j = 1, . . ., N; N = 1, 2, . . .) be 
an infinite triangular array of random vectors such 
that X lN, . . . . X,, is a Latin hypercube sample as 
defined in Section 2. Then we have the following: 

Theorem I. If Eh2 < co, then as N--t co, 

cov(h(X,,), h(X,,)) = KN- ‘(Eh)’ 

- N - ’ 5 Sk(x)’ dF,(X) + o(N - ‘). (4) 
k=l I 

The proof is in Appendix A. By Jensen’s inequality, 

f 
9k(X)2 dF,(x) 2 ($h&) d&(x))2 = (Eh)‘; 

thus the highest-order term in the expansion of cov 
(h(X,& h(X,,)) is nonpositive. That is, 

lim N cov(h(X,,), h(X,,)) I 0. 
N-r03 

We see that, for any square integrable h(X), Latin 
hypercube sampling does at least as well asymp- 
totically as simple random sampling. We can write 
Theorem 1 in a more interpretable form. Define 

h,(x) = 5 s&A - W - l)Eh 
k=l 

(5) 
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and 

r(x) = h(x) - h,,(x). (6) 

The function h,(x) is the best additive fit to h(x); that 
is, 

s 
r2(X) dF(x) I 

s 
(h(x) - 5 hk(Xk))2 dF(x) 

k=l 

for any set of univariate functions h,, . . . , h, . A proof 
is given in Appendix B. Then we have the following: 

Corollary I. Define XjN as in Theorem 1. As 
N--r co, 

var 
( 

N-‘i h(Xj,) 
j=l > s 

= N-’ r(x)2 dF(x) + o(N- ‘). 

(7) 

By using Latin hypercube sampling, we essentially 
filter out the additive component of h(x). Fur- 
thermore, for large N, we do no worse with the non- 
additive part of h(x) [the function r(x)] than we 
would with simple random sampling. Thus we see 
that the closer h(x) is to additive, the more Latin 
hypercube sampling will help. An important aspect of 
this theorem is that it is relevant whenever N is much 
larger than K. Appendix A shows that, in a reason- 
able sense, the error in Corollary 1 is small relative to 
K/N. This appendix also shows that under additional 
conditions, the error in Corollary 1 is, in a reason- 
able sense, O((K/N)‘). 

In Appendix A, under the additional condition 
that h(X) has a finite fourth moment, I show that i; is 
asymptotically normal as N--r co. That is, we have 
the following: 

Theorem 2. If Eh(X)4 < co, then as N-, cc 

N”’ N-l 5 h(XjN)-Eh(X) 
j=l 

where 3 means converges in distribution. 

4. ESTIMATION OF VARIANCE 

Along with the estimator i;, it is usually important 
to produce some estimate of error of i;. If simple 
random sampling is used, then a consistent estimate 
of the var i; = N- ’ var h(X) is obtained by using the 
sample variance divided by N. If we use this estimate 
with a Latin hypercube sample, we will essentially 
still estimate N - i var h(X), and not the variance of 
the estimator. We can use the fact that for N large, 

var@) z N-’ 
s 

4~)~ dF(x) 

for a Latin hypercube sample to produce estimates of 
the variance. One possibility is to approximate h,(x), 
the best additive fit to h(x) [see (S)] by a regression 
equation. Some preliminary investigations into such 
estimators have been done (details available from 
me). Unfortunately, the performance of these esti- 
mators is uncertain, so it is difficult to assess their 
usefulness. 

A simple way to get an estimate of the variance of 
i;: is to produce several independent Latin hypercube 
samples and then estimate the variance using the 
sample variance between samples, a method called 
replicated Latin hypercube sampling by Iman and 
Conover (1980). More specifically, if we are planning 
to do N simulations, instead of producing one Latin 
hypercube sample of size N, we can produce a inde- 
pendent Latin hypercube samples of size M, where 
Ma = N. Define Xi, . . . . XL to be the ith sample so 
that (Xi, . . . , XL), . . . , (X”,, . . . , X”,) are TV independent 
Latin hypercube samples of size M, and let 

hi = M - ’ 5 h(Xj). 
j=l 

Then 

[a(a - l)]-’ i t;F - 
[i=l ’ (a-$i)‘l (*I 

is an unbiased estimator for the variance of a- ’ ES= 1 
hi, our estimator of Eh. Of course, if a is small, then 
this estimator of the variance will be imprecise. By 
considering the second term in the asymptotic ex- 
pansion of var h (App. A), we see that increasing a 
(and keeping N fixed) will increase the variance of 
our estimator of Eh. As long as MK- ’ is large, how- 
ever, the increase in variance will tend to be small. 
Thus if we had 20 variables and were planning to do 
1,000 simulations, we might consider using 5 inde- 
pendent Latin hypercube samples of size 200, for 
which MK- ’ = 10. 

5. LATIN HYPERCUBE SAMPLING WITH 
DEPENDENT VARIABLES 

The results of the previous sections all depend on 
the assumption that the components of X are inde- 
pendent. In many applications, strong dependencies 
among the components may exist. In this section, I 
introduce a procedure for producing Latin hypercube 
samples such that each sample vector has approxi- 
mately the correct joint distribution when the sample 
size is large. In Section 6, another application of such 
a sampling scheme appears, one in which transform- 
ing variables to increase the effectiveness of Latin 
hypercube sampling is considered. In this case, the 
transformed variables are dependent even though the 
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original variables are independent, so I need to pro- 
duce Latin hypercube samples with dependent vari- 
ables to implement this procedure. 

Iman and Conover (1982) described a method for 
producing a Latin hypercube sample with rank cor- 
relation matrix of the sample approximately equal to 
a specified value. Although this procedure will tend 
to reproduce joint distributions more accurately than 
assuming the components are independent, the 
points produced under this scheme do not necessarily 
have even approximately the correct joint distri- 
bution for large N. For example, if X = (X,X,)’ and 
the conditional expectation of X, given X2 is not 
monotonic in X2, then using rank correlations to 
describe the joint distributions of the components 
would be highly inappropriate. 

I now describe a procedure for producing a Latin 
hypercube sample of size N such that each sample 
vector has approximately the correct joint distri- 
bution when N is large. Assume that we are able to 
produce an iid sample Y,, . . . . Y, such that each Yi 
has the correct joint distribution F. Now, make Yi 
the ith row of an N x K matrix gy; that is, let 

Yl 
JyY= : . 

0 YN 

(9) 

For k = 1, . . . . K, replace each element of the kth 
column of g by its rank in the column (assume that 
each component of Y is continuous so that there are 
no ties), producing an N x K matrix of ranks R 
whose jkth element is denoted by rjk. Obtain a Latin 
hypercube sample Z,, . .., Z, by defining the kth 
component of Zj by 

Zjk = FL ‘(N ‘(rjk + tjk - 1)). (10) 

Although this method is based on ranks like the pro- 
cedure by Iman and Conover (1982), it uses more 
than just the rank correlation structure and thus is 
able to reproduce the joint distribution more faith- 
fully (see point 6 following). This procedure has the 
following properties: 

1. It is easy to implement. The only problem 
might be in the last step, in which we need to know 
Fkl, the inverse cumulative distribution function of 
Y,. When we cannot obtain a good analytic approxi- 
mation to F;l, however, we may be able to simulate 
it. When the cost of computing h( .) is much greater 
than the cost of computing Y, then, with a relatively 
small increase in total computing time, we can obtain 
a good approximation of the cumulative distribution 
functions of the Yk’s by simulating a large number 
(much greater than N) of Y’s and using the empirical 
marginal distributions to estimate the actual margin- 
al distributions. 
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2. Each Zjk has the correct distribution F, . 
3. If the components of Y are independent, then 

Z,, .., Z, will have the correct joint distribution; 
that is, they have the same joint distribution as a 
Latin hypercube sample Y i, . . . , Y, produced using 
the procedure given in Section 2. 

4. By construction, the marginals of Z,, . . . , Z, are 
stratified. Thus if h(T- ‘(Y)) is exactly additive in the 
components of Y, then 

var 
( 

N-’ 2 h(T-‘(Zj)) = o(N-‘) 
j=l 1 

for any square integrable h( . ). 
5. z i, . . , Z, have the same ordering for every 

component as Y,, . . . , Y,, the iid sample on which 
the Zis are based. Thus, in particular, the rank corre- 
lations of the Zj’s are identical to the rank corre- 
lations of the Yis. 

6. Ij Zj - Yj (1 = o,(l), where (1 . I( indicates Euclid- 
ean distance and oP(. ) means of smaller order in 
probability (Cox and Hinkley 1974, p. 282). A proof 
is given in Appendix C. Thus Zj must have approxi- 
mately the correct joint distribution F, since Yj N F. 

This last property is not nearly strong enough to 
obtain an asymptotic expansion for var(N- ’ cj”= i 
h(T- ‘(Z,))). Thus it is possible that in certain situ- 
ations this estimator will have a substantially higher 
mean squared error (MSE) than an estimator based 
on a simple random sample of size N. In particular, if 
N is not large enough, then the joint distribution of 
Zj may be substantially distorted, which could lead 
to bias problems. For example, if the range of Y is 
not rectangular (or, more precisely, a product space), 
then the Zj’s do not necessarily fall in the range of Y. 

6. APPLICATION TO A PRINTER ACTUATOR 

In this section, I apply the techniques discussed in 
the previous sections to a model for an impact print- 
er actuator. The actuator is made up of a permanent 
magnet, an armature coil, an electromagnet, and a 
spring. The motion of the armature of the printer 
actuator is modeled by the following set of differ- 

Table I. Distributions of Variables 

Variable Mean Standard deviation 

R (ohms) 61.3 2 
L (millihenrys) 2.92 .2 
m (grams) ,403 .04 
B (gauss) 9.67 .6 
K (newton/meter) 117.5 12 
I (meters) 6.67 .3 
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Table 2. Comparison of Simple Random Sampling 
to Latin Hypercube Sampling 

Variance based on sample size of 100 

Simple random Latin hypercube 
Function” sampling samplingb Mean 

h:E .00183 .00143 .2318 

h:, .00959 .00527 .6940 

h& .00129 .000447 .1425 

ht., 2.51 x IO-” 7.91 x 10-l’ 3.164 x 1O-5 

1 Functvx whose integral 1s being estimated. Functions are defined in Equation 

(19). 
’ Estimated by 100 Independent rephcations of Latin hypercube samples of size 

100. 

ential equations : 

m(d2x/dt2) = BZi - Kx - Q&x) 

I/ = iR + L(di/dt) + Bl(dx/dt), (11) 

where x gives the displacement of the armature, t is 
time, m is the mass of the armature, B is the magnetic 
flux generated by the permanent magnet, I is the 
length of each conductor in the coil, i is the current, 
K is the spring constant, V is the external voltage 
applied to the actuator, R is the resistance, L is the 
inductance, and Fpaper is the external force applied to 
the armature when it is in contact with the paper. 
Unlike the other terms, Fpaper is highly nonlinear in 
x. This model was described in detail by Hendriks 
(1983). The two performance functions that we will 
consider are impact energy (in kiloergs) when the 
armature hits the paper and the length of time (in 
milliseconds) the armature is in contact with the 
paper. Both functions are functionals of the solution 
to the differential equation in (ll), so it takes no 
more effort to compute the contact time and impact 
energy than to compute just the contact time. There 
are six random quantities, and I take them to be 
independent and normally distributed with means 

and standard deviations given in Table 1. The mean 
values are taken from Chen, Wang, and Zug (1984, 
fig. 6.4) and the standard deviations are hypothetical. 

I am interested in estimating how much impact 
energy and contact time deviate from some desired 
value or how often they fall outside some desired 
range. Thus we will consider estimating the expected 
values of the following four functions: 

h:Jx) = 0 if 12 I impact energy I 14 

= 1 otherwise 

hiE(x) = (impact energy - 13)2 

h&(x) = 0 if .155 I contact time I .17 

= 1 otherwise 

h&(x) = (contact time -.162)2. (12) 

Comparing simple random sampling to Latin hyper- 
cube sampling, both with sample sizes of 100, we see 
that in all four cases, Latin hypercube sampling pro- 
duces considerable reductions in variance (from 22% 
to 69% ; see Table 2). 

Impact energy and, to a lesser extent, contact time 
can be fit quite well by a linear combination of the 
six variables. Using this fact, I now describe a pro- 
cedure for transforming the variables to make Latin 
hypercube sampling more effective. The idea is to 
transform the variables so that the functions whose 
expectations we are estimating are more nearly addi- 
tive in the transformed variables than in the original 
variables. Ten iid random vectors, X,, . . ., X,,, were 
generated using a normal distribution with indepen- 
dent components and means and standard deviations 
given in Table 1. Impact energy and contact time 
were computed for each of these sample values, and 
these outputs were regressed on the six inputs, lead- 
ing to the following least squares fits: impact energy 
cx) = aIE + I&X; contact time (X) z aCT + b&.X. 

Table 3. Comparison of Latin Hypercube Sampling Based on Original 
and Transformed Variables 

Function a 

h:, 
h:, 
h& 
ht., 

Original variables b 

Mean Variance 

.2318 .00143 

.6940 .00527 

.I425 .000447 
3.164 x lo-’ 7.91 x 10-12 

Transformed variables ’ 

Mean MSEd 

.229a .000302 

.7062 .00121 

.I 496 .000510 
3.263 x lo-’ 1.06 x lo-” 

* Function whose integral is being estimated. defined as in (12). 
b Sample means and variances based on 100 Latin hypercube samples of size 100. 
r Defined es I” (13). Fifty Latin hvpercube samples of we 100 were obtained usmg the procedure described in Section 5 for 

producmg Latm hypercube samples wth dependent parameters. 
d Mean squared error. Estimated by wng the sample means based on the original parameterization (second column of this table) as 

the true mew 
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We can then use the transformation 

Y = T(X) = (bIEX b&X x, x2 x, X4). (13) 

If the preceding approximations for impact energy 
and contact time are good, we would have that h:,( .) 
and h&(. ) are largely determined by the first compo- 
nent of Y and h&( .) and h$( .) by the second com- 
ponent of Y. Thus, by taking this transformation, we 
try to make the four functions nearly additive in the 
components of Y. The first two components of Y are 
not independent, so we use the procedure for produc- 
ing Latin hypercube samples with dependent vari- 
ables described in Section 5. The marginals of Y are 
all normal, so the last step of this procedure, Equa- 
tion (lo), is easy to implement. Based on 50 samples 
of size 100, the bias and variance of the estimates of 
the four functions in (11) were obtained; the results 
are given in Table 3. There does not appear to be any 
substantial bias in the estimates of any of the four 
integrals, although there is evidence of slight upward 
bias in the estimates of Eh& and Eh&.. We see that 
by using this sampling procedure, we obtained quite 
large reductions in MSE relative to using Latin hy- 
percube sampling with the marginals of the original 
variables stratified for estimating Ehi, and Eh:,. 
There was a slight increase in MSE for estimating 
Eh& and Eh&., however, although the MSE was still 
less than that which is obtained by using simple 
random samples of size 100. These results are not 
surprising, because impact energy is very well fit by a 
linear model and contact time is fit less well. By 
taking the linear transformation of the variables, the 
additive components of h&(. ) and h;,(. ) were appar- 
ently greatly increased, but the additive components 
of h&j. ) and h&( ‘) were apparently not increased, 
or at least not increased enough to compensate for 
any errors introduced by the sampling scheme. Thus, 
based on a very small preliminary sample (sample 
size lo), I was able to obtain a transformation that 
substantially improved estimation of two of the four 
expected values of interest. Of course, these compari- 
sons do not take into account the 10 initial simula- 
tions used to obtain the transformation. More im- 
portant, there are no general guidelines as to when 
transforming will yield an improved estimator. As the 

,gains can be dramatic, however, as in the cases of 
estimating Eh:, and Eh&, this procedure deserves 
further study. 

7. CONCLUSIONS 

We have considered the use of Latin hypercube 
sampling for variance reduction in simulations of 
high dimensional integrals. By computing the asymp- 
totic variance of an estimator based on Latin hyper- 
cube sampling, I showed that Latin hypercube sam- 

pling does reduce the variance relative to simple 
random sampling in a relevant asymptotic sense (Sec. 
3 and App. A). The amount of variance reduction 
increases with the degree of additivity in the random 
quantities on which the function we are simulating 
depends. I have also given a method for producing 
Latin hypercube samples when the parameters are 
dependent that, for large sample sizes, gives approxi- 
mately the correct joint distribution for each sample 
point (Sec. 5). These procedures were tested using a 
model for a printer actuator, with reductions in MSE 
relative to simple random sampling ranging from 
22% to 87% (Tables 2 and 3). 
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APPENDIX A: PROOFS OF THE THEOREMS 

I outline the derivation of the asymptotic variance 
of i;, = N-i cj”=l h(XjN) as N--t co, where Xi,, . . . . 
X,, is a Latin hypercube sample of size N defined as 
in Section 2. I also prove that i;, is asymptotically 
normal as N-, co. An additional result, Theorem 3, 
giving the next order term in the asymptotic ex- 
pansion of the variance, is stated without proof. De- 
tails are available from me. Assume that the compo- 
nents of X are independent. Then we have the follow- 
ing results : 

Theorem I. If Eh(X)’ < co, then as N+ co, 

cov (h(X,,), h(X,,)) = KN - ‘(Eh)’ 

- N - ’ f [ g;(x) dF,(x) + o(N - ‘), 
k=l J 

where F, is the distribution of the kth component of 
X and 

gk(Xk) = 
J 

h(x) fi dFi(XJ. 
i=l 
ifk 

Corollary I. Under the same conditions as Theo- 
rem 1, 

var(&,) = N - r J r(x)’ dF(x) + o(N - ‘), 

where r(x) = h(x) - cf= I gk(xk) + (K - l)Eh. 
Under the additional condition that h(X) has a 

finite fourth moment, 6, is asymptotically normal. 

Theorem 2. If Eh(X)4 < co, then as N + co, 
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N”2(i;N - Eh(X)) 3 N ( 0 2 1 W2 dF(x))> 

where 5 means converges in distribution, 
Now define 

A;(Y) = grV’; ‘(Y)) - N g@‘k ‘(~1) dy, (A. 1) 

where Z,(y) is the interval 

Z,(y) = [(a - l)N-‘, UN-‘) 

for the positive integer a satisfying y E [(a - l)N-‘, 
aN- ‘). If the kth component of X has a continuous 
distribution, A:(y) is equivalent to 

@‘(x) = g.dx) - N g&4 dF,(x)> 64.2) 

where y = F&x). Then we have the following exten- 
sion of Corollary 1: 

Theorem 3. Under the same conditions as in The- 
orem 1, 

var &,=N-’ 
s 

r(x)2 dF(x)+N-’ ; 
s 

1 

($3~))~ & 
k=l 0 

+N-2 k$2:$; ~[ak,(xk,X,)--Yk(Xk)-gI(Xl)+Eh12 

x dF,(x,) @Lx,) + 4N - 2), 

where 

gklcXk 3 XJ = 
s 

4x1 fi dFi(xJ 
i=l 

i#k,f 

If the kth component of X has a continuous distri- 
bution, then we have by (A.2), 

s 

1 

@C(Y))~ dy = @;(x,,~ dF,(x). 
0 s 

Corollary 1 essentially says that J(Af(y))’ dy = o(l), 
but it may in fact be as small as O(Ne2), as we shall 
see later. 

To obtain Theorem 1, I first prove it in the case of 
X distributed uniformly on the K-dimensional unit 
hypercube and then extend it to the case of an arbi- 
trary distribution with independent components. 
Define for 0 I zl, z2 < 1, 

rN(zl, z2) = 1 if [Nz,] = [Nz2] 

= 0 otherwise, 

where [x] is the greatest integer less than or equal to 
x. When X is uniformly distributed, the joint density 
of (Xl,, X,,) = (x,, x2) can be easily derived, and is 

given by 

P(X,, x2) = CNIW - l)lK fi (1 - rN(xkl, xk2)) 
k=l 

(see McKay et al. 1979). Then 

cM@Lvl h&v)) 

= ’ hWk)CNl(N - 111” 
J 

K 

X n (1 - r,(Xkl, xk2)) 6 dx, - (W2 
k=l 

= [N/(N - l)]” 
s 

h(x,W,) dx, dx, 

- [N/W - l)lK 
s 

hh)h(x,)r,(x,,, xk2) dx, dx, 

- (Eh)2 + O(N-2), 

where the remainder includes all lower-order terms 
in the expansion of the product; this equals 

[KN ’ + O(N - 2)](Eh)2 - [ 1 + O(N- ‘)I 
K 

XC 
s 

h(xl)h(x2)rN(xkl, xk2) 6 dx2 + O(N-2). 
k=l 

(A.3) 

Define Zj, = [(j - l)N-‘, jN-‘). Then 

s 
h(Xl)h(%)rd%l, xk2) dx, dx2 

= 
s 

gk(X1)gk(X2)rN(X1t X2) dx, dx, 

N 2 

= 

x(s 
gktX) dx . 

j=l ZIN > 

If gz is Riemann integrable, we immediately have 

N!l(s,, gk(x) dx)l- sgk(x)’ dx. (A.4) 

Substituting (A.4) into (A.3), we obtain Theorem 1 
when each of the gk’s are square Riemann integrable. 
Corollary 1 is obtained by applying Theorem 1 to 
Equation (3). When g,’ is not Riemann integrable, 
Equation (A.4), and hence Theorem 1 and Corollary 
1 are still valid as long as Eh2 < co, which implies 
j gl < co, for all k (details are available from me). 

To obtain Theorem 1 for X with independent com- 
ponents but arbitrary marginal distributions, we 
merely replace h(X) by h*(Y) = h(F-l(Y)), where Y is 
uniformly distributed; note that we can apply Theo- 
rem 1 to h*(Y), since Eh(X)’ < cc implies that 
Eh*(Y)2 < co. Rewriting Theorem 1 in terms of X 
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and h( .) instead of in terms of Y and h*( .), we 
obtain the general case of Theorem 1. 

Theorem 2 is proved using a central limit theorem 
for exchangeable random variables (Weber 1980). We 
have 

fiN = N-’ t ho(XjN) + N-’ : r(XjN). (A.3 
j=l j= 1 

Applying Corollary 1 to h,(x), we obtain 

N”’ 
( 

N- ’ ; h,(XjN) - Eh(X) 
> 

2 0, (A.6) 
j=l 

since h,(x) is additive. By Theorem 1, 

cov(r(xlN)T r(X2N)) = W-‘1. (A.7) 

Applying Theorem 1 to r(x)2 and using Eh(X)4 < co, 
we have 

co~(r(X,~)~, r(X2N)2) = O(N-‘). 

Thus, as N---f 00, 

= cov(r(XlN)2~ r(x2N)2) + [Er(XlN)212 

+ [%J2 W4~. (A.@ 

We also have that r(X,,), . . . , I-(X,,) are ex- 
changeable (Weber 1980). By (A.7) and (A.8), the con- 
ditions of corollary 2 of Weber (1980) for the asymp- 
totic normality of sums of exchangeable random 
variables are met, so we can conclude that 

the following corollary to Theorem 3 : 

Corollary 2. If Eh(X)* < co and 

((d/dx)gk(x))/fk(x) is bounded for all k, (A.lO) 

then 

var i;, = N-’ 
s 

r(x)’ dF(x) + N-’ 

K k-l 

x c c bkIhk 9 
s 

XI) - gkcXk) - am + Eh12 
k=2 I=1 

x dF,(X,) dF,(x,) + o(N - ‘). 

I can show that the second-order term is less than 
+N P2K(K - 1)var h(X). Thus, in a reasonable sense 
the error in Corollary 1 is O(K2Nm2) if (A.lO) is satis- 
fied. Note that this extra condition can be very 
strong iffk has thin tails, such as with a normal dis- 
tribution. If (d/dx)g,(x) is 0 outside some bounded 
interval, however, then the tail behavior off,(x) will 
not cause (A.5) not to be satisfied. For example, sup- 
pose a device does not work at all if the kth compo- 
nent of X is outside some interval, no matter what 
values the other components of X take. If h(X) is 
some constant for all values of X for which the device 
does not work at all, then (d/dx) g,(x) will be 0 for x 
outside this interval. 

Based on Theorem 3, we can assess the effect on 
the variance of our estimator of Eh of using a sam- 
ples of size M, where Ma = N, as suggested in Sec- 
tion 4. Considering a fixed and letting M-r co, we 
get the following (see Sec. 4 for notation): 

Theorem 2 follows from (A.5) (A.6), and (A.9). 

N 

N-1’2xr(XjN)q N 0 
j=l 

( v j r(x12 Wx)). (A.9) 

Equation (A.4) is equivalent to sh (A~(Y))~ dy+ 0 
as N--f co. Comparing Theorem 3 with Corollary 1, 
we may conclude that Corollary 1 gives a good ap- 
proximation to the variance whenever N is much 
larger than K. In fact, j: (a:(~))~ dy will, under ad- 
ditional conditions, converge to 0 at a faster rate. If 
gk(F; i(y)) has a bounded first derivative, then 

r(x)’ dF(x) + M-’ : 
s 

1 

(A?(Y))’ & 

var( N - ‘il ji/r(X$) 

=a 
k=l 0 

s 

1 

(A,“(Y))~ & = 2 
s 

(A:(Y))” 4 
0 j=l ZjN 

1 (y - (j + $N-‘)2C2 dy 
j=l ZjN 

= C2/12N2, 

where C is the bound on the absolute value of 
(d/dy)g,(F; ‘(y)). If F, has a density f,, then 
(d/dy)gk(F; ‘(y)) being bounded is equivalent to 
((d/dx)g,(x))/f,(x) being bounded. Thus we can obtain 

K k-l P 

+ M - 2 c c bkltxk 3 xl) - gkcXk) 
k=2 I=1 J 

- Sr(-d + Ehl 2 dF,(x,) dF,(x,) 1 + a@’ - 2, 
J 

s 
r(x)’ dF(x) + N - ’ 5 

s 

1 

=N-’ @,M(Y))’ & 
k=l 0 

K k-l 

+ (NM) - ’ c c h(xk 3 XI) - dXk) 
k=2 I=1 s 

- g,(x,) + Eh12 dFk(xk) dF,(x,) + o(N-~). (A.ll) 

Now, since N is a multiple of M, I can show that 

s 
(43~))~ dy 2 

I 
(At’(v))’ dy, 
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Comparing (A.ll) with Theorem 3, the highest- 
order term in the variance is unchanged by using 
CI > 1, but the two terms that are o(N-‘) and poten- 
tially not o(N-‘) are both increased by using CI > 1. 
Thus we lose some precision by choosing c( > 1, but 
if M is sufficiently large, the loss will be negligible. 

APPENDIX B: BEST ADDITIVE FITS 

I prove that h,(x), as defined in (5), provides the 
best additive fit to h(x). For any set of functions hi, 
. . . . h K, 

0) - f 4&c) 2 Wx) 
k=l > (h(x) - h,(x)) + h,(x) - 5 h&k) ( 2 = dF(4 

k=l 

= 
s 

(h(x) - h,(x))2 dF(x) 

+ h,(x) - 5 h&k) 2 Wx) 
k=l 2 s (h(x) - k&N2 Wx), 

as required, where the second equality follows by 
noting that 

h,(x) - 5 hb,) (h(x) - h,(x)) dF(x) 
k=l 

K-l = gk(xk) - K - Eh - h,(x,) 

h(X) - ; gj(Xj) + (K - l)Eh dF(x) 
j=l 

K-l = gktXk) - K - Eh - h,(x,) 

X 

I( 

h(x) - ; g,(xj) + (K - l)Eh 
j=l 

X n dFi(xJ dFk(xJ 
ifk 1 

K-l z.z gkcXk) - K - Eh - h,(x,) 

x bktXk) - gktXk) -(K - 1Wh + (K - lIEhI dF,(x,) 
zz 0. 

APPENDIX C: A PROPERTY OF THE 
DEPENDENT LATIN HYPERCUBE 

SAMPLING SCHEME 

I now prove point 6 in Section 5. Using the defini- 
tions from that section, 

11 Zj - Yj 11’ = 5 [F;‘(N-‘(rjk + (jk - 1)) - ?;.,I”. 
k=l 

(C.1) 

For F continuous, conditional on qk, rjk - 1 has a 
binomial distribution with parameters N - 1 and 
Fk( q,). It follows that, conditional on qk, 

N-‘(rjk - 1) - Fk(Tk) = O&N-“‘); 

hence 

N-‘(rjk + tjk - 1) - Fk(yk) = Op(N-1’2). 

Now, if FL’ is continuously differentiable, for any 
E > 0, FL1 has a bounded first derivative on [E, 
1 - a]. Thus, conditional on E I Fk(qk) I 1 - E, 

F; ‘(N - ‘(rjk + tjk - 1)) - Tk = O&N-“‘). 

Since E is arbitrary, we have, unconditionally, 

FL ‘(N -‘(rjk + tjk - 1)) - yk = o,(l). (C.2) 

Point 6 follows from (C.l) and (C.2). Under stronger 
conditions on F(F;’ is boundedly differentiable for 
each k, for example), we would have 1) Zj - Yj 11 = 
O,(N l”). 
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