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ABSTRACT 
 
 

 The Department of Defense uses complex high-dimensional simulation models as 

an important tool in its decision-making process.  To improve on the ability to efficiently 

explore larger subspaces of these models, this dissertation develops a set of experimental 

designs for searching over as many as 22 variables in as few as 129 runs.  These new 

designs combine orthogonal Latin hypercubes and uniform designs to create designs 

having near orthogonality and excellent space-filling properties.  Multiple measures are 

used to assess the quality of candidate designs and to identify the best one.  For situations 

in which more than the minimum number of required runs are available, the designs can 

be permuted and appended to create additional design points that improve upon the 

design’s orthogonality and space-filling.   

 The designs are used to explore two surfaces.   For a known 11 dimensional 

stochastic response function containing nonlinear and interaction terms, it is shown that 

the near orthogonal Latin hypercube is substantially better than the orthogonal Latin 

hypercube in estimating model coefficients.  The other exploration uses the agent-based 

simulation MANA to analyze 22 variables in a complex military peace enforcement 

operation.  The need for maintaining the initiative and speed of execution during these 

peace enforcement operations is identified. 
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EXECUTIVE SUMMARY 
 
 

The United States Department of Defense uses simulation models to support its 

decision-making process.  Defense analysts need experimental designs capable of 

efficiently searching an intricate simulation model that has a high-dimensional input 

space characterized by a complex response surface (substantial non-linearities may be 

prevalent).  To efficiently explore these simulations, the experimental designs should 

have the following desirable characteristics:  

• approximate orthogonality of the input variables, 

• space-filling, that is, the collection of experimental cases should be a 
representative subset of the points in the hypercube of explanatory variables, 

• ability to examine many variables (20 or more) efficiently,  

• flexibility in analyzing and estimating as many effects, interactions, and 
thresholds as possible, 

• requiring minimal a priori assumptions on the response, 

• ease in generating the design, and 

• ability to gracefully handle premature experiment termination. 

This dissertation develops experimental designs, satisfying each of the above 

characteristics, that provide the ability to search a high-dimensional (up to 22 variables) 

simulation model and reliably identify critical variables, important interactions, and the 

ranges of the variables where these effects occur.  Furthermore, the number of runs 

required is small (e.g., a minimum of 129 runs for 22 variables) when compared to most 

existing experimental designs. 

 The two most important characteristics for these designs are orthogonality and 

space-filling.  Two measures are used to assess the orthogonality of a design matrix.  

These measures are the maximum pairwise correlation and singular value decomposition 

condition number.  The use of both measures provides a better ability to differentiate 

between the orthogonality of candidate designs.  We also show how to improve upon the 

orthogonality of a design matrix. 

 There are two measures used to assess the space-filling of a design matrix.  These 

measures are the Euclidian maximum minimum distance between design points and, from 



 xiv

uniform design theory, the modified L2 discrepancy.  The use of both measures provides 

a better ability to differentiate between the space-filling of candidate designs.  

 The designs are constructed by taking a current algorithm from Ye [1998] that 

creates orthogonal Latin hypercube designs and expanding on the number of variables 

that these designs can have.  By doing this, one is able to significantly increase the 

number of variables that can be examined within a fixed number of runs (see Table E.1).  

While we are able to generate orthogonal Latin hypercubes for more variables, some of 

the orthogonality is deliberately sacrificed in order to get better space-filling.  Designs for 

up to 22 variables are included in the dissertation, but the algorithm generalizes for an 

arbitrary number of variables. 

Number of 
experiments 

Number of variables 
examined in the 

orthogonal or nearly 
orthogonal designs 

Number of variables 
examined in previous 

orthogonal designs 

Percent increase in number 
of variables examined 

17 7 6 17% 
33 11 8 38% 
65 16 10 60% 

129 22 12 83% 
Table E.1.  The designs developed in this dissertation are able to examine a greater 
number of variables than similar previous designs in the same number of runs.  
These new designs still have excellent orthogonality and space-filling characteristics.  

The experimental design for 11 variables is used on a known response function.  

The design is able to efficiently identify nonlinear terms and interactions in the associated 

regression equation.  The advantages of this design over Latin hypercubes and orthogonal 

Latin hypercubes are shown. 

 The experimental design for 22 variables is used to analyze a complex military 

peace enforcement operation using an agent-based simulation.  The subsequent data 

analysis, coupled with the author’s military experience, identifies potential insights that 

may benefit senior military decision-makers in preparing for future peace enforcement 

operations.  Furthermore, we identify a possible flaw in the agent-based simulation. 

 Two major United States Army analytical organizations (Center for Army 

Analysis and Training and Doctrine Command Analytical Center) are using or 

considering the use of these designs for studies that have multi-billion dollar 
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implications.  Furthermore, two Naval Postgraduate School Masters students are using 

these designs and the peace enforcement scenario in their research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xvi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 1

I.  INTRODUCTION 
 
 

The goal of this dissertation is to provide new experimental designs that can 

enable analysts to conduct more thorough investigations of simulation models.  A 

computer simulation1 is a computerized model that attempts to imitate or characterize a 

real-world problem, scenario, or an abstraction of it.  In this dissertation, the terms 

“simulation model” and “simulation” are used interchangeably.  It is also assumed that 

the analyst can chose, or specify, the input variable values that are used to generate 

output from the simulation model.  For stochastic simulation models, some of these input 

variables may represent distribution parameters.  An experimental design is defined as a 

matrix of input variable2 values (X), where each column of X represents a variable and 

each row represents the combination of input variable values for a single run. 

A.   MOTIVATING PROBLEM 

The United States (U.S.) Department of Defense (DoD) uses simulation models to 

support its decision-making process.  These models are used to help test war plans 

against adversaries, decide what equipment to acquire, determine the best combination of 

forces, determine the best combination and use of weapons, and much more (e.g., 

Schmidt [1992], Rodgers and Prueitt [1993], Wilmer [1994], Appelget [1995], Barnes 

and Steffey [1995], Loerch et al. [1996], Shupenas and Armstrong [1998], Posadas 

[2001]).  Since it is nearly impossible to conduct actual physical experiments to 

determine the effectiveness of war plans, force designs, or weapon system capabilities in 

actual conflict, the DoD relies on these simulation models to capture significant insights 

that enable senior leadership to make informed decisions. 

Examples of simulation models used by the U.S. Army include the deterministic 

Vector-In-Commander (VIC) model, the stochastic Combined Arms and Support Task 

Force Evaluation Model (CASTFOREM), and the stochastic Joint Warfare System 

(JWARS).3  VIC, developed by the Training and Doctrine Command Analysis Center 

                                                 
1Important terms and concepts will be italicized when they are defined.  
2Unless otherwise specified, a variable is assumed to be continuous.  
3Up-to-date information on these and other combat simulation models is available from 
http://www.dmso.mil/public and http://www.amso.army.mil. 
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(TRAC) in 1982, serves as the Army's principle Corps-level simulation.  CASTFOREM 

was developed and is principally used by TRAC at White Sands, New Mexico for 

simulating force-on-force conflict between brigade and smaller forces.  The DoD is 

sponsoring the development of JWARS, which will be a state-of-the art, object-oriented, 

stochastic, constructive simulation capable of modeling joint, theater-level warfare.   

A new and stimulating area of combat models involves complex adaptive 

systems.  The concept is to use multi-agent-based software tools to examine the 

relationship between numerous input variables and output measures.  The self-adaptive 

nature of these models facilitates broad exploration and permits the possibility of gaining 

substantial insights into emergent behaviors on the battlefield (Horne and Leonardi 

[2001]).  The major proponent of this current research is the Marine Corps Combat 

Development Command’s Project Albert.4 

A common characteristic of the above-mentioned models is the vast number 

(sometimes even greater than 100,000) of variables or data elements present—many of 

which are uncertain.  Conducting a comprehensive experimental design on these 

numerous variables is prohibitive.  Often, a small subset of the variables (usually no more 

than two or three) is chosen for experimentation.  In such a case, the results are 

necessarily assumed to be invariant to the large number of uncertain variables held 

constant, but no empirical assessment is made.  In addition, even a small, manageable 

subset does not guarantee that a detailed experimental design will be used.  The problem 

is compounded since even if a manageable subset of input variables is chosen, 

determining the appropriate levels or settings of the variables remains an issue.  

Remembering that the main thrust of the experimentation is to identify significant 

insights, this goal may be jeopardized when a small subset of variables or inappropriate 

levels of the variables are used. 

What is needed by the DoD to analyze simulation models in order to gain 

significant insights to make better, informed decisions?  Defense analysts need 

experimental designs capable of efficiently searching an intricate simulation model that 

has a high-dimensional input space, characterized by a complicated response surface 

                                                 
4 Additional information may be obtained from http://www.projectalbert.org. 
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(substantial non-linearities may be prevalent).  The experimental designs developed in 

this dissertation provide the ability to search a comparatively high-dimensional (up to 22 

variables5) subspace of a simulation model and reliably identify critical variables, 

important interactions, and the ranges of the variables where these effects occur.  

Furthermore, the number of runs required is small (e.g., a minimum of 129 runs for 22 

variables) when compared to most existing experimental designs. 

 The following quote conveys a frank and simple message.  Although, in theory, 

one may execute an astronomical number of runs, in reality and practicality it cannot be 

done.  Other sound alternatives must be developed.  Each of the designs proposed in this 

dissertation is one of these sound alternatives.  

“Forever” may sound overblown, but any length of time longer than that 
which we have available to us, because of nature or of orders from our 
superiors, is effectively forever.  This fact has been delightfully 
dramatized by Major General Jasper Welch in the phrase, 1030 is forever. 
(Hoeber [1981]) 
 

B. DEFINITIONS AND TERMINOLOGY 

A brief description of important definitions and terminology used in this 

dissertation is given in this section.  Assume that a simulation model contains k input 

variables and generates a vector of output responses denoted as y.  Let the ith variable be 

denoted as xi and let yj be an individual output response from the simulation.  To help us 

understand our simulation models, a metamodel to describe the relationship between the 

input variables (x1, x2,…, xk) and the output measure (yj) is often used.  A metamodel is a 

relatively simple6 function g that is estimated given an experimental design and the 

corresponding responses.  Mathematically this is modeled as  

    1 2( , ,..., )j ky g x x x ε= + .7                                           (1.1) 

A good metamodel is one in which g makes parsimonious use of the variables 

available and the error term (ε) is small.  One of the simplest metamodels is one in which 

g is a linear combination of the inputs.  That is, 
                                                 
5 Note: There is no theoretical limit on the number of variables that could be examined by the method 
developed in this dissertation, provided enough resources are available.  However, in this dissertation, only 
designs for two to 22 variables are constructed.  
6 Here, the metamodel is “simple” when compared to the original simulation model.  
7 Here, an additive-error metamodel is assumed, but other error structures are possible. 
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In order to have sufficient degrees of freedom for estimating the (k + 1) 

coefficients of (1.2), as well as the error term, the number of runs from the simulation, 

denoted by n, must satisfy 

                                                                   1n k> + .                                                     (1.3) 

When estimating the coefficients in (1.2), the precision of the estimates can be 

adversely affected by multicollinearity (or correlations) among the input variables (Myers 

[1986]).  The correlation between two vectors v=[v1,v2,…,vn]T and w=[w1,w2,…,wn]T, or 

two columns in a design matrix, is defined to be 
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If two columns have zero correlation, they are orthogonal.  If the columns in the design 

matrix between input variables xi and xj are orthogonal, then the regression estimates of 

βi and βj in (1.2) are uncorrelated.  Of course, the two vectors are orthogonal if and only 

if the numerator of (1.4) is zero.  However, the denominator in (1.4) limits the range to 

between –1 and 1, and allows for meaningful comparisons of the degree of 

nonorthogonality of pairs of vectors of different lengths (see, e.g., Iman and Conover 

[1980], Owen [1994], Tang [1998], Ye [1998]).   

 For many simulations, a linear metamodel may not sufficiently characterize the 

response surface.  Unfortunately, it takes many more observations to estimate 

metamodels with  curvilinear and interaction terms.  For example, suppose that g includes 

quadratic and bilinear interaction effects, as well as the linear terms.  That is, 

        2
0 ,

1 1 1

k k k

i i j j i j i j
i j i j i

g x x x xβ β β β
= = = >

= + + +∑ ∑ ∑∑i i .                        (1.5) 

In order to have enough degrees of freedom to estimate the coefficients in (1.5) and the 

error term, the number n of simulation runs must now satisfy  
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Thus, in this case, the sample size requirements for n grow on the order of k2.  More 

complicated  metamodels require n to be even larger.   

To help glean insights about relationships in simulations, an analyst desires 

experimental designs that allow one to fit a breadth of potential metamodels (perhaps 

quite complex) within a constrained number of runs, n.  An efficient experimental design 

is referred to as one which (i) detects as many significant variables, nonlinear effects, 

interactions, and their associated ranges as possible, (ii) declares significant as few     

non-significant variables and interactions as possible, and (iii) accomplishes this with a 

minimal number of runs.  This concept is used in the comparative sense. 

A simulation model is considered to be complex if one of two conditions is 

satisfied.  The first condition is a high-dimensional input space, defined as 20 or more 

variables in a model.  Thus, in a simulation model, even if only a few variables out of 20 

variables turn out to be important, and these important variables can represent the output 

in an additive fashion, the model will be considered complex.  The second condition 

holds if, regardless of the number of variables, a large number of two-variable and higher 

interactions exist or the mathematical metamodel is sufficiently non-linear (e.g., the 

response surface is a high-degree polynomial, contains discontinuities, or has        

change-points).  This encompassing statement permits models containing any number of 

variables to be considered complex, provided one of the two conditions is present.   This 

allows for the possibility that even if a model only has three or four variables, it can be 

considered complex if its metamodel is defined by a high-degree polynomial or other 

complicated non-linear relationship.  Examples of complex simulation models are models 

that simulate combat and include VIC, CASTFOREM, and JWARS.   

C. EXPERIMENTAL DESIGNS AND THE ANALYTICAL DILEMMA  

 This section addresses the trade-offs made by an analyst when using experimental 

designs to analyze a simulation.  Design and analysis are complementary activities.  The 

design must support the desired analysis, and the analysis should derive as much 
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information as possible from the allotted runs.  The two should not be considered 

mutually exclusive constructs, but must be considered from the onset in tandem.   

Many issues arise when designing a simulation experiment, such as: (i) what input 

variables will be varied?, (ii) what levels of the input variables should be investigated?, 

(iii) what is the plan for proceeding from one simulation run to another?, and (iv) how is 

analysis restricted by the proposed experimental design? (Wild and Pignatiello [1991]).  

The experimental designs in this dissertation provide substantial progress for the second 

and third issues.   

Watson [1961] states that with experimental designs, there exists “a sort of 

uncertainty principle whereby if the number of runs is decreased, the number of 

assumptions is increased; and conversely.”  Furthermore, there is a relationship between 

the quantity and quality of information, I, that can be gained as the number of 

observations is increased and the resources required, R, to obtain this information.  

Included within I is what we call discriminatory power.  This refers to both correctly 

identifying the important model terms and avoiding the inclusion of terms that do not 

significantly influence the response.  Included in R are the resources required, such as 

time and computing power.  Note that I and R together summarize the previously defined 

efficient experimental design.  A gain in one causes the other to increase, thus 

establishing a generic relationship between the two denoted as  

                                                      I Rα .                                                       (1.7) 

It is the analyst’s objective (and dilemma) to determine which levels and 

configurations of variables to use, while simultaneously considering the effect of (1.7).  

Managing this relationship should not rest solely upon the shoulders of the technical 

expert (experimental designer) or solely upon the project manager, who is perhaps 

unskilled in some aspects of experimental design, but requires their joint consideration.  

The designs in this dissertation will greatly aid in addressing this dilemma by providing 

designs which sample across a representation of the entire experimental region in a 

reasonable number of runs. 

The choice of an experimental design should depend not just on the 

discriminatory power and resource availability, but also on the analyst’s goal in running 
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the experiment.  Sacks et al. [1989] list the three primary objectives of computer 

experiments as (i) predicting the response at untried inputs, (ii) optimizing a function of 

the input variables, or (iii) tuning the computer code to physical data (i.e., calibration).  

The purposes of our research require that a forth objective be added to this list, obtaining 

insight. 

In simulations of multi-entity military conflict, due to a dearth of data, these 

models are such that users often cannot reliably predict, optimize, or calibrate.  Rather, 

analysts typically use these models to develop insights into complicated relationships.  

This is done, in part, by identifying important variables and interactions.  However, one 

may expect that many variables (and interactions) may be important over some range, so 

identifying those ranges is also of special interest.  Thus, instead of endeavoring to make 

a specific prediction or optimization equation, the focus on simulating complicated 

military models is often centered on developing important “golden nugget” insights.  

These insights, coupled with other analytical results or experience, build a           

decision-maker’s knowledge base to make a more informed decision.  As Srivastava 

[1987] aptly states, “It often seems that to some statisticians, the goal behind an 

experiment is to use an optimal design, rather than to probe into the important unknown 

features of the experimental situation.”  This dissertation stresses the need for identifying 

these unknown features. 

D. DISSERTATION ORGANIZATION 

This section provides a roadmap on how the dissertation is organized to address 

the research questions posed.  This dissertation presents experimental designs with the 

following capabilities. 

• The ability to explore broad regions of a complex simulation model 
containing a relatively high-dimensional input space characterized by a 
response surface that may be non-linear.  

 

• The ability to identify significant variables and first-order and second-order 
interactions and the ranges of the variables where these effects occur. 

 

• The ability to gracefully handle premature experiment termination.  That is, it 
is common in operational situations for the number of simulation runs to be 
unexpectedly cut short.  Experimental designs that anticipate this contingency 
become the more valuable ones. 
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The flow of the dissertation is as follows.  Chapter II discusses the desirable 

characteristics of an experimental design and builds the foundation for the subsequent 

development of the new designs.  Chapter III specifies new experimental designs when 

there is either only one output measure of interest8 or where each output measure has its 

own characterization.  This chapter contains both the theory underlying these designs and 

the details necessary to construct them.  Chapter IV contains an application of this 

methodology on a known non-linear response surface.  A comparison is made between its 

performance and that of other designs that have appeared in recent literature.  It is shown 

that the new design outperforms the existing designs to which it is compared.  Chapter V 

details the results of applying a 22-variable experimental design, and a recommended 

analysis methodology, to an agent-based simulation of a peace enforcement operation.  In 

this application, military judgment guides the construction and examination of alternative 

metamodels in order to obtain potential insights about peace enforcement operations.  

The last chapter, Chapter VI, concludes the dissertation with a summary of the 

contributions to the existing body of knowledge and suggestions for future research. 

One final note is in order.  Although the motivation for developing this 

methodology stems from defense analyses, the methodology can also be applied to 

simulations developed for other fields or other purposes.  

 

 

 

 

 

 

 

 

 

 

                                                 
8 Note that the measure could be a composite of several measures (e.g., a weighted sum). 
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II.  EXPERIMENTAL DESIGNS FOR COMPLEX SIMULATIONS 
 
 

This chapter contains the foundation for the subsequent development of the new 

designs (Sections A and B) and describes, in detail, the desirable characteristics of an 

experimental design (Section C).   

The simulations that DoD analysts use are often quite large and almost 

unimaginably complex.  Many models contain thousands of input variables, a vast 

number of which are potentially significant.  Moreover, the response surface can be 

highly nonlinear.  The complexity and uncertainty associated with these simulations 

makes utilizing strong prior knowledge (such as the distributional form of the error term) 

unreliable.  To efficiently explore these simulations, experimental designs possessing the 

following desirable characteristics are needed:  

• approximate orthogonality of the input variables, 

• space-filling9, that is, the collection of experimental cases should be a 

representative subset of the points in the hypercube of explanatory variables, 

• ability to examine many variables (20 or more) efficiently,  

• flexibility in analyzing and estimating as many effects, interactions, and 
thresholds as possible, 

• requiring minimal a priori assumptions on the response, 

• ease in generating the design, and 

• ability to gracefully handle premature experiment termination. 

A breadth of current design methods used in simulation was examined with respect to 

these desired characteristics, including group screening (e.g., Dorfman [1943], Patel 

[1962]), sequential bifurcation (e.g., Jacoby and Harrison [1962], Bettonvil [1995]), 

random balance (e.g., Satterthwaite [1959]) and Latin hypercubes (e.g., McKay et al. 

[1979], Ye [1998]), uniform designs (e.g., Hua and Wang [1981], Fang and Wang 

[1994]), robust designs (e.g., Taguchi [1988]), Bayes designs (e.g., Flournoy [1993], 

                                                 
9 The principles of orthogonality and space-filling are described, in detail, in this chapter. 
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Chaloner and Verdinalli [1994]), search linear models (e.g., Srivastava [1975], Chatterjee 

et al. [2000]), and frequency domain (e.g., Schruben [1986], Morrice [1995]).10   

The most promising of the current designs, in terms of satisfying the desirable 

characteristics, are the Latin hypercube designs and the uniform designs.  These two 

types are explained in this chapter.  The designs that are subsequently developed combine 

the strengths of these two types.     

A. THE EVOLUTION OF ORTHOGONAL LATIN HYPERCUBES 

This section traces the line of literature from random designs to Latin hypercube 

sampling to Latin hypercubes to orthogonal Latin hypercubes.  The importance of 

orthogonality in experimental design matrices is stressed and examples are provided. 

Satterthwaite [1959] proposed the use of a random design, “one for which a 

random sampling process [with replacement] is used to choose all or some of the 

elements of each variable in the design matrix.”  Significant correlations, as measured by 

(1.4), can exist between columns of the design matrix.  Youden et al. [1959] present 

various criticisms of these designs.  The principal criticisms are that the interpretation of 

the experimental results could not be sufficiently justified due to random confounding 

and that, for any variable setting, the estimators of the coefficients are biased.   

McKay et al. [1979] show that one can improve upon random designs by using 

ideas from “quota sampling.”  They call their method Latin hypercube sampling, and 

state that the resulting design is a “first cousin” of the random design.  In Latin hypercube 

sampling, the input variables are considered to be random variables with known 

distribution functions.  For each input variable, xk, “all portions of its distribution [are] 

represented by input values” by dividing its range into “n strata of equal marginal 

probability 1/n, and [sampling] once from [within] each strata.” 11 (McKay et al. [1979])  

For each xk, the n sampled input values are assigned at random to the n cases—with all n! 

possible permutations being equally likely.  This determines the column in the design 

matrix for xk.  This is done independently for each of the k input variables.  Therefore, for 

                                                 
10 A comprehensive, but not complete, list of literature sources for these areas is included in the 
bibliography. 
11 In practice, many analysts take a fixed value within each strata (e.g., the median) rather than a random 
value. 
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each variable, xk, all of the n input values appear once and only once in the design.  Also, 

for a given row in the design matrix, all of the nk potential combinations of the input 

variable values (after the sampling) have an equal chance of occurring.  

As an example, assume there are three input variables, each having a U[0,1] 

distribution, and that 10 simulation runs are to be made.  Independently, for all three 

variables, one design value is chosen at random from within each of the 10 equal 

probable intervals [0,.1), [.1,.2), [.2,.3), [.3,.4), [.4,.5), [.5,.6), [.6,.7), [.7,.8), [.8,.9), and 

[.9,1].  For every input variable, the order in which the 10 sampled values appear in the 

design matrix is randomly determined, with all 10! possible orderings being equally 

likely.  Table 2.1 shows one such realization of a design matrix obtained by this 

procedure.  Note: As in this example, these design matrices will likely have correlations 

between columns. 
 

Run Variable 1 Variable 2 Variable 3 
1 0.63 0.53 0.90 
2 0.42 0.48 0.04 
3 0.89 0.19 0.89 
4 0.08 0.77 0.27 
5 0.23 0.30 0.59 
6 0.98 0.01 0.32 
7 0.15 0.22 0.61 
8 0.33 0.68 0.12 
9 0.58 0.93 0.48 
10 0.71 0.87 0.74 

 
Table 2.1.  An example of Latin hypercube sampling.  The 10 run sample is taken 
from three independent U[0,1] input variables. 
 

A common variant of the design obtained by Latin hypercube sampling is called a 

Latin hypercube (Tang [1993]).    An n × k Latin hypercube consists of k permutations of 

the vector {1,2,…,n}T.  Therefore, the input values are predetermined and there is no 

sampling within strata.  Each of the k columns contains the levels 1,2,…,n, randomly 

permuted, with each possible permutation being equally likely to appear in the design 

matrix.  Each of these k columns is then randomly assigned, without replacement, to one 

of the k variables to create the Latin hypercube.  The row vectors are design points in the 
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k-dimensional experimental region.  All of the k one-dimensional projections of the Latin 

hypercube are evenly spaced; that is, the distance between any two adjacent levels is the 

same for all pairs of adjacent levels.  This is known as the equidistant property.  The 

Latin hypercubes that this dissertation addresses use a more general variant of the above.  

Specifically, the values of each of the variables may be any set of n evenly spaced values 

centered at the origin (Owen [1998]). 

Since each variable has its predetermined values randomly ordered in the design 

matrix, Latin hypercubes are easy to generate.  Moreover, as with Latin hypercube 

sampling, there are no restrictions on how the different variable columns are combined to 

form the design matrix.  Table 2.2 gives an example of a Latin hypercube design for five 

variables, each at 11 levels, with the levels ranging from –1 to +1.  Note that for each 

variable, the distance between adjacent levels is the same for each pair of adjacent levels, 

in this case a distance of 0.2.  As in this example, Latin hypercube designs can have 

significant correlations—as measured by (1.4)—between the columns of the design 

matrix. 

RUN VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4 VARIABLE 5 
1 0.2 -0.8 -0.4 -0.2 -0.8 
2 0 0.6 0.2 0 -0.6 
3 -0.8 1 -0.8 0.6 1 
4 -1 -1 0.4 -0.8 0.2 
5 0.4 -0.4 0 0.2 0.8 
6 0.6 0 0.8 -1 0.4 
7 -0.4 0.4 -0.2 -0.6 -1 
8 -0.6 -0.6 -1 0.8 -0.4 
9 0.8 -0.2  1 0.4 0.6 
10 1 0.8 -0.6 1 0 
11 -0.2 0.2 0.6 -0.4 -0.2 

 
Table 2.2.  A Latin hypercube having the equidistant property for each of its five 
variables.  Each variable has 11 levels, with the levels ranging from –1 to +1 in 
increments of 0.2.   
 

Ye [1998] constructs orthogonal Latin hypercubes in order to enhance the utility 

of Latin hypercube designs for regression analysis.  Ye defines an orthogonal Latin 
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hypercube (OLHC) as a Latin hypercube “for which every pair of columns has zero 

correlation.”  Furthermore, in Ye’s OLHC construction, the elementwise square of each 

column has zero correlation with all other columns, and the elementwise product of every 

two columns has zero correlation with all other columns.  These properties “ensure the 

independence of estimates of linear effects of each variable” and the “estimates of the 

quadratic effects and bilinear interaction effects are uncorrelated with the estimates of the 

linear effects.” (Ye [1998]) 

 As a simple example, assume two input variables each have the following five 

levels: –1.0, -0.5, 0.0, 0.5, and 1.0.  A 5 × 2 OLHC for these two variables and five levels 

is shown in Table 2.3.  The correlation between the two columns is 0.0.   

 

 

 

 

 

Table 2.3.  A 5 × 2 orthogonal Latin hypercube with two variables, each at five 
levels. 
 Ye’s [1998] method allows one to generate an OLHC when the number of runs is 

a power of 2 plus one (for a center point).  Specifically, for any integer m > 1, Ye’s 

(1998) technique builds OLHCs for k variables such that the number n of runs is related 

to k and m by 

                                                      12 += mn ,                                            (2.1) 

           22 −= mk .                                                    (2.2) 

Note that k must be even. 

 In the development of his orthogonal Latin hypercubes, Ye [1998] constructs 

three matrices.  One matrix, M, has its columns composed of permutations of the variable 

levels.  A second matrix, S, is similar to a two-level factorial design matrix on m–1 

variables containing m–2 interaction terms; all entries are ±1.  The third matrix, T, is 

created from the first two matrices.  Succinctly, the columns of M correspond to 

permutations of the ordinal values of the positive levels of the variables (we assume there 

Run Variable A Variable B 
1 -1 -0.5 
2 -0.5 1 
3 0 0 
4 0.5 -1 
5 1 0.5 
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is an equal number of negative levels for the variables).  The columns of S correspond to 

a subset of a two-level factorial design matrix consisting of –1’s and 1’s (with mutually 

orthogonal columns).  The matrix T is created by the Hadamard product12 of M and S.  A 

mirror image of T and a row of 0’s corresponding to the center point are then appended 

to the original T to create an OLHC.   

 1.   Construction of the Matrix M for the OLHC 

 The matrix M from Ye (1998) is now considered in detail.  The dimensions of M 

are q × k, with q = ((n–1)/2) being the number of positive levels of each variable.  The 

first step in constructing M is to create a vector e, which is a random ordering of the first 

q natural numbers (1, 2, …, q).  One column in M is e.  Since the remaining columns of 

M depend on e, the choice of e is critical.  A simple approach in choosing e is to use a 

simple 1, 2, …, q ordering.  Although one may use the actual level values, it is easier to 

use ordinal values for the positive levels when constructing these matrices.  For example, 

from Table 2.3, the value of 0.5 would correspond to 1 and the value of 1.0 would 

correspond to 2.  Thus, if q represents the number of positive levels and a hierarchical 

ordering is used, then e is specified as  

                                                          e = [1, 2, … , q T] .                                                (2.3) 

 Given an initial e, permutation matrices are used to generate the columns of M.  

Specifically, for L = 1, 2, …, m–1, create q × q permutation matrices, labeled AL, as 

follows.  With I as the 2 × 2 identify matrix and  

                                                            R = 







01
10

,                                                       (2.4) 

each AL is constructed by 

                                              AL = I ⊗⊗ ... I ⊗  R ⊗⊗ ... R,                                        (2.5) 

                                                  m-1-L     L  

where ⊗  denotes the Kronecker product.  There are m–1 of these permutation matrices 

created, each of size q × q. 

                                                 
12 A Hadamard product exists for two matrices that are conformable.  The corresponding elements of the 
two matrices are multiplied together to yield the Hadamard product. 
 



 15

 Additional permutation matrices, m–2 of them, are then created by multiplying 

any m–2 distinct pairs of the permutation matrices A1 through Am-1 by one another.13  The 

k, where k = 2m–2, columns of M are composed of e, Aie, for i = 1, 2, …, m–1, and 

AiAje, where there are m–2 distinct pairs of i and j, with i and j both ∈ {1, 2, …, m–1}, 

with i ≠ j.   

 For example, from (2.1), let m=4 and n=17.  The six columns of M are formed 

from e, A1e, A2e, A3e, A1A2e, and A1A3e.  The matrix M that is generated by using 

e=[1,2,3,4,5,6,7,8]T is shown in Table 2.4. 

 

 
 
 
 
 
 
 
 
 
 
Table 2.4.  An example matrix M, which is used in the construction of an OLHC  
(Ye [1998]), having six variables and eight positive levels with e=[1,2,3,4,5,6,7,8]T.  
Note that not all possible pairwise combinations of the AL are used. 
 
 2.   Construction of the Matrices S and T for the OLHC 

 The matrices S and T from Ye (1998) are now considered in detail.  The 

dimensions of S are q × k.  The dimensions of T are also q × k.  The final OLHC is an     

n × k design matrix, with n = 2q + 1.  

 S is equivalent to a subset of k columns of an m–1 variable two-level full factorial 

design matrix, including the columns used to estimate interactions.  The first column of S 

consists of q +1’s.  The next m–1 columns of S are identical to the columns used to 

estimate the main effects in an m–1 variable two-level full factorial design matrix.  The 

remaining m–2 columns of S are identical to m–2 of the columns used to estimate 

                                                 
13 Ye [1998] specifically used the m–2 pairs A1Am-1, …, and Am-2Am-1.  However, any m–2 distinct pairs of 
permutation matrices are sufficient to generate orthogonal Latin hypercubes.   

e A1e A2e A3e A1A2e A1A3e 
1 2 4 8 3 7 
2 1 3 7 4 8 
3 4 2 6 1 5 
4 3 1 5 2 6 
5 6 8 4 7 3 
6 5 7 3 8 4 
7 8 6 2 5 1 
8 7 5 1 6 2 
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pairwise interactions in an m–1 variable two-level full factorial design matrix.  They can 

be obtained by multiplying, element by element, the main effect columns together.  

 To illustrate this process, let us construct the matrix S for the case when  

n = 17 and k = 6 (i.e., m = 4).  The six variables each have eight positive levels (similarly, 

they have eight negative levels).  Thus, the construction requires eight rows (q = 8) and 

six columns (one column for each variable).  The first column consists of +1’s and the 

second, third, and fourth columns are orthogonal columns of +1’s and –1’s, and are 

identical to the main effects columns in a 23 full factorial design matrix (see, e.g., Box et 

al. [1978], Hicks [1993]).  Columns five and six may consist of the product of (a) 

columns two and three, (b) columns two and four, or (c) columns three and four.  In all 

cases, the columns are mutually orthogonal.  Columns two, three, and four must not 

contain any confounding patterns because significant correlation will otherwise result.  

Because M can only accommodate six variables, as shown previously in Table 2.4, S has 

the same number of columns.   
 

C1 C2 C3 C4 C2C3 C2C4 
+1 -1 -1 -1 +1 +1
+1 +1 -1 -1 -1 -1
+1 -1 +1 -1 -1 +1
+1 +1 +1 -1 +1 -1
+1 -1 -1 +1 +1 -1
+1 +1 -1 +1 -1 +1
+1 -1 +1 +1 -1 -1
+1 +1 +1 +1 +1 +1

 
Table 2.5.  An example of S for an OLHC (Ye [1998]) having six variables and eight 
positive levels, where Ci (i=1, 2, 3, 4) and CiCj (j=2, 3, 4 and i ≠ j) indicate columns. 
 

   T is the Hadamard product of M and S.  A mirror image of T and a row of 0’s 

corresponding to the center point are appended to the original T to create an OLHC.  The 

final OLHC, which has six variables and 17 runs, is shown in Table 2.6. 
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Run Variable A Variable B Variable C Variable D Variable E Variable F 
1 1 -2 -4 -8 3 7 
2 2 1 -3 -7 -4 -8 
3 3 -4 2 -6 -1 5 
4 4 3 1 -5 2 -6 
5 5 -6 -8 4 7 -3 
6 6 5 -7 3 -8 4 
7 7 -8 6 2 -5 -1 
8 8 7 5 1 6 2 
9 0 0 0 0 0 0 

10 -1 2 4 8 -3 -7 
11 -2 -1 3 7 4 8 
12 -3 4 -2 6 1 -5 
13 -4 -3 -1 5 -2 6 
14 -5 6 8 -4 -7 3 
15 -6 -5 7 -3 8 -4 
16 -7 8 -6 -2 5 1 
17 -8 -7 -5 -1 -6 -2 

 

Table 2.6.  An OLHC with six variables and 17 levels using Ye’s [1998] algorithm. 

B.   UNIFORM DESIGNS AND SPACE-FILLING 

Uniform designs are introduced in this section.  Fang et al. [2000] define a 

uniform design as a design “that allocates experimental points [which are] uniformly 

scattered on the domain.”  Uniform designs do not require orthogonality.  Fang et al. 

[2000] classify uniform designs as space-filling designs.  A good space-filling design is 

one in which the design points are scattered throughout the experimental region with 

minimal unsampled regions; that is, the voided regions are relatively small.  This means 

that the design points are not concentrated in clusters or solely at corner points of the 

region, as can happen with two-level factorial designs.   

Space-filling designs provide coverage of the entire experimental region, and this 

facilitates broad exploration of the model.  They are particularly valuable when the 

experimenter is unsure of what the response surface might look like.  Ye [1998] notes 

that good space-filling designs are “desirable for data analysis methods such as residual 

plots in regression diagnostics and nonparametric surface fitting.”   

To further clarify space-filling, this principle is illustrated with several figures.  

Figure 2.1 shows a traditional 23 factorial design, where each design point is at a corner 

of the cubical region.  In Figure 2.1, it is assumed that the design points are at the 
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endpoints of the variables, but this is not a requirement.  Under this assumption, the 

interior of the cube does not have any design points, and is thus not sampled—although a 

center point is commonly added.  Conversely, a uniform design (three variables with each 

variable having eight levels), as shown in Figure 2.2, has points distributed throughout 

the interior of the cube and is not limited to the corners or surfaces of the cube.   

The key point is that the uniform design has design points scattered throughout 

the entire experimental domain in a somewhat uniformly distributed way.  In this 

example, the uniform design has each variable at eight levels, but the factorial design has 

each variable at only two levels.    If it turns out that only a small number of variables 

affect the response, then a uniform design allows an analyst more flexibility in fitting 

complex models, such as high-degree polynomials, to the essential variables.  In the 

extreme case, in which only one variable turns out to be important, a Latin hypercube 

design contains n different (equally spaced) input values for the important variable.   

 

 

 

 

 

 

 

 

 

 
 
Figure 2.1.  The design points of a 23 factorial design illustrating that only the 
corner points of the region are sampled. 
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Figure 2.2.  A uniform design illustrating the dispersion of points (space-filling) 
throughout the entire region. 

 

Fang and Wang [1994] describe the goal of uniform designs as to find “design 

points which are uniformly scattered in the k-dimensional unit cube Ck,” where 

uniformity, or space-filling, is measured by discrepancy.  Using number-theoretic ideas, 

Fang and Wang [1994] define discrepancy as follows.  Let P = {xj, j=1,…,n} be a set of 

points on Ck and [ ] 1 2( , ) kv γ γ γ= ⋅⋅⋅0 γ  the volume of the rectangle [ ],0 γ .  For any kC∈γ , 

let ( , )N Pγ  be the number of points satisfying xj ≤ γ.  Then the discrepancy is 

                                                 [ ]( , )sup ( , )
kC

N PL v
n∞

∈
= −

γ

γ 0 γ .                                         (2.6) 

Equation (2.6) compares the proportion of points within rectangular subspaces to 

the volume of the rectangles.  Discrepancy is the supremum of the absolute difference 

over all nested rectangles anchored at the origin.  A large value (the theoretical maximum 

value is one) indicates that either a particular subregion has too many or too few design 

points in it.  A smaller discrepancy measure (the theoretical minimum value is zero) 

indicates better space-filling.     

An illustrative example of discrepancy calculations from Fang and Wang [1994] 

for two dimensions is given.  Assume that two variables are chosen for a simulation.  A 

uniform design strives to uniformly scatter the design points in the two-dimensional 

experimental region.  If, for a particular rectangle, the “absolute value for the ratio of the 
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number of points lying in the rectangle [ ],0 γ  and the total number of points of the set 

minus the volume of the rectangle [ ],0 γ  is small,” then the proportion of points within 

the rectangle is nearly proportional to the volume of the rectangle—indicating good 

uniformity.  Figure 2.3 illustrates this principle.  Only two of the infinite number of 

possible rectangles are shown.   In this example, a disproportionate number of the total 

points fall into Rectangle 2.  Thus, the discrepancy will be large—i.e., the design’s  

space-filling is poor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3.  Example of discrepancy for two dimensions.  An infinite number of 
nested rectangles exist.  Two of these rectangles are shown with Rectangle 2 having 
a larger discrepancy (or poorer space-filling) than Rectangle 1. 
 

The discrepancy measure of (2.6) provides the most accurate measure of the 

space-filling of the design points.  Fang et al. [2000] state that “discrepancy has been 

universally accepted in quasi-Monte-Carlo methods and number theoretic methods.” 

Unfortunately, as they note, “one disadvantage of [this] measure is that it is expensive to 

compute.”  Equation (2.6) has been used to assess the space-filling of designs having no 

more than two variables and 10 runs (Fang and Wang [1994]).  For designs having more 

0

1

1Variable A 

Variable B 

Rectangle 1 
Rectangle 2 
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variables or runs or when the L∞  discrepancy from (2.6) is too computationally 

burdensome to calculate (as is the case with our designs), the modified L2 discrepancy 

(ML2), shown in (2.7), can be used.  The ML2 is an approximation of the L∞ discrepancy, 

and is easier to calculate numerically when there are either more than two variables or 

more than 10 runs (Fang et al. [2000]), and considers “projection uniformity over all 

subdimensions.” (Fang et al. [1998])  Furthermore, (2.7) is considered to be an excellent 

alternative to (2.6) and is commonly used in assessing the space-filling of proposed 

experimental designs (see, e.g., Fang et al. [1998], Matousek [1998], Hickernell [1999], 

Okten [2001]).   Consequently, since the designs developed in this dissertation have more 

than two variables and 10 runs, (2.7) is used when assessing the space-filling of a design.  

                    
1

2
2 2

1 1 11 1

4 2 1(3 ) [2 max( , )]
3

k k k kn n n

di di ji
d d ji i

ML x x x
n n

−

= = == =

 = − − + − 
 

∑ ∑∑∏ ∏              (2.7) 

Given two designs, the design with a smaller ML2 discrepancy has better space-filling.   

C. DESIRABLE CHARACTERISTICS 

 The desirable characteristics of an experimental design are described in this 

section.  Furthermore, the measures that we use in assessing an experimental design’s 

ability to achieve these characteristics are discussed.  Orthogonality and space-filling are 

the primary characteristics of the designs developed in this dissertation.   

1. Orthogonality Measures 

 An orthogonal design is desirable since it ensures independence among the 

coefficient estimates in a regression model.  Orthogonality enhances our ability to 

analyze and estimate as many effects, interactions, and jump discontinuities as possible.   

Two measures are used to assess the degree of orthogonality.  One measure is the 

maximum pairwise correlation of the columns of a design matrix.  The maximum 

pairwise correlation, ρ , is found by calculating the absolute value of (1.4) for all pairs of 

column vectors in the design matrix, and then selecting the maximum of these values.  A 

value of 0 is best (signaling orthogonality), and a value of 1 is worst (indicating that at 

least one column in the design matrix is a linear combination of the remaining columns).   
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 The second measure of orthogonality is a condition number of XTX, where X is 

the design matrix.  The condition number is commonly used in numerical linear algebra 

applications (e.g., Golub and Van Loan [1983], Demmel [1997], Leon [1998]) to 

examine the sensitivities of a linear system.  Additionally, it can reveal the degree of 

orthogonality of the proposed design matrix.  The author is unaware of any literature that 

uses the condition number to measure the orthogonality of a design matrix.  An 

orthogonal design matrix has a condition number of 1.  A non-orthogonal design matrix 

has a condition number greater than 1.  A large condition number indicates that the 

candidate design matrix may be ill-conditioned (i.e., has substantial multicollinearity).  

The condition number (using the infinity norm) is defined by 

                                                  ∞
−

∞∞ = 1)( φφφcond  ,                                        (2.8) 

where φ  represents the correlation matrix of the proposed design matrix.  A companion 

condition number is generated from the singular value decomposition (SVD).  This SVD 

condition number (using the 2-norm of the design matrix) is defined by 

                                                        
n

T XXcond
ψ
ψ 1

2 )( = ,                                                (2.9) 

where 1ψ is the largest singular value, and nψ  is the smallest singular value of XTX.  

When a condition number is referenced in this dissertation, it corresponds to (2.9).  This 

measure represents the degree of orthogonality of the design matrix, with a value of 1 

indicating orthogonality and a value greater than 1 indicating the degree of                  

non-orthogonality.  Thus, a condition number as close to 1 as possible is desired.  

 There is not necessarily a one-to-one correspondence between ρ  and the 

condition number, but the condition number is related to the number of the pairs of 

columns that are correlated and the magnitudes of the correlations.  The author is 

unaware of any previous literature using both the maximum pairwise correlation and 

condition number to assess the degree of orthogonality of a design matrix.  One measure, 

ρ, gives the worst case correlation between design matrix columns, while the other 

measure, the condition number, provides an assessment of the overall orthogonality of the 

proposed design matrix.  A non-orthogonal design matrix has at least one non-zero 

correlation between two of its columns, and a condition number greater than 1.  A design 
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matrix will be classified as nearly orthogonal if it has a maximum pairwise correlation no 

greater than 0.03 and a condition number no greater than 1.13.14 

2. Space-Filling Measures 

A design matrix with good space-filling properties is desirable since design points 

are distributed throughout the entire experimental region.  This permits a greater 

opportunity to identify contours that define regions where interesting behavior occurs.  

Two measures are used to assess the space-filling of a design matrix.  The first measure is 

the previously described ML2 discrepancy. 

 The second measure used in assessing the space-filling of a design is the 

Euclidean maximin (Mm) distance (Ye [1998], Johnson et al. [1990], Morris and 

Mitchell [1992], [1995]).   For a given design, define a distance list d=(d1,d2,…,d[n(n-1)]/2), 

where the elements of d are the Euclidean inter-site distances of the n design points, 

ordered from smallest to the largest.  The Euclidean Mm distance is defined as d1, where 

a larger value is better.  A large value of d1 means that no two points are close to (within 

d1 of) each other.  Other distance metrics that practitioners use include Mahalanobis, 

Euclidean, and rectangular, with the most common being rectangular and Euclidean 

(Johnson et al. [1990], Morris and Mitchell [1992], [1995]).  This dissertation uses the 

Euclidean Mm distance since it emphasizes the shortest distance between points.  

Furthermore, when Mm distance is referenced here, it refers to the Euclidean Mm 

distance.  The author is unaware of any literature that uses both ML2 discrepancy and Mm 

distance to measure the space-filling of a design.  Both measures are used in this 

dissertation because in some cases a single measure by itself does not provide sufficiently 

adequate discrimination between candidate designs.  

3. Other Criteria 

 The ability to quickly and easily generate an experimental design is important.  

For example, one of the major disadvantages of uniform designs (Fang and Wang [1994]) 

is the difficulty in finding a design for many combinations of variables and runs, thus 

severely restricting the number of uniform designs readily available for use.  If the goal 

                                                 
14 Although these values are somewhat arbitrary, designs satisfying these criteria suffer minimal 
multicollinearity effects (see, e.g., Golub and Van Loan [1983], Pukelsheim [1993]).  Furthermore, good 
space-filling designs exist with this degree of non-orthogonality.  
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of an analysis is to explore the experimental region, then expending an inordinate amount 

of time deriving the experimental design makes this goal harder to realize. 

 Constructing a design should not require substantial a priori distributional 

assumptions on the response and its relationship to the input variables.  In most defense 

analyses, it is not unreasonable to ask the experts which variables they think a priori will 

be important.  It is almost always unreasonable to ask experts to provide a priori 

distributions (including correlation structure) on the variables’ effects on the outputs.  

Furthermore, even expert judgment concerning the appropriate variable levels can be 

erroneous.  This concern is especially relevant with military models, where “surprises” 

are more the rule than the exception. 

 The designs should be relatively insensitive to the premature termination of the 

planned set of experimental runs.  This is a common problem in defense analyses, where 

results can be required sooner than originally planned.  If an experiment is terminated 

early, the subset of runs may not be orthogonal.  The subsequent regression analysis can 

suffer from the effects of multicollinearity. 

 Finally, the designs should have the ability to examine high-dimensional input 

spaces (more than 20 variables) efficiently.  The ability to search across a breadth of 

factors greatly enhances the opportunity to find significant effects, interactions, and 

interesting regions of behavior in the output response.  

D. SUMMARY 

 This chapter focused on desirable design characteristics.  The two most critical 

characteristics are (near) orthogonality and space-filling.  Specifically, both the maximum 

pairwise correlation and the condition number measure the degree of orthogonality.  

Space-filling is assessed with both the ML2 discrepancy and Mm distance measures.  The 

OLHC designs provide orthogonal designs, while the uniform designs focus on        

space-filling.  In the next chapter, these types are melded together to create new designs 

that perform well on both of these characteristics.  Awareness of the other design 

characteristics mentioned in this section is also maintained.   
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III.  DEVELOPMENT OF NEW EXPERIMENTAL DESIGNS 
 
 
 This chapter details an approach to designing Latin hypercubes that are 

orthogonal or nearly orthogonal and have good space-filling properties.  Specifically, we 

present designs for two to 22 variables using an initial set of runs ranging from 17 to 129 

in number.    Although this dissertation limits itself to designs with, at most, 22 variables, 

the algorithm can apply directly to any number of variables; but of course, the 

computational resources required would grow rapidly.   

 The general plan is to extend the use of Ye’s [1998] algorithm in order to 

construct additional designs.  Some of these preserve the orthogonality property and 

some do not.  Typically the ones that preserve the orthogonality property have poor 

space-filling capabilities.  Algorithms that improve the space-filling capabilities may do 

so while compromising orthogonality.  The goal is to provide a sequence of steps that 

lead to an effective trade-off between the concepts of near orthogonality and            

space-filling.  This activity is computer intensive, but the steps provided lead to effective 

designs that achieve the goal. 

  In Section A, Ye’s [1998] algorithm is extended to allow the examination of a 

greater number of variables.  In Section B, some orthogonality is sacrificed in order to 

achieve improved space-filling.  Section C provides the best designs found to date for up 

to 22 variables.  Section D gives an approach for adding additional design runs that (at 

least) maintain the orthogonality measures, while simultaneously improving on the 

design’s space-filling properties.  The last section, Section E, summarizes the new 

approach, including the specific steps necessary to generate nearly orthogonal Latin 

hypercubes. 

A. CONSTRUCTING ORTHOGONAL LATIN HYPERCUBES 

 This section describes the development of experimental designs that satisfy the 

desirable characteristics.  These orthogonal designs build directly from Ye’s [1998] 

OLHC construction.  Specifically, his three matrices (M, S, and T) are augmented with 

additional columns, thus permitting the analyst to examine a greater number of variables 

in the same number of runs.  The roles played by these matrices are the same as before. 
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The matrix M contains permutations of the values of the variables and S attaches signs to 

these values.  The output matrix T is the Hadamard product of M and S.  

 1.   Incorporating Additional Variables into OLHC Designs 

 This section describes how to extend Ye’s [1998] OLHC designs so that 

additional variables can be examined in the same number of runs.  In his construction, Ye 

uses only m–2 of the 
1

2
m − 
 
 

 possible pairwise combinations of the permutation 

matrices, denoted AL, in the creation of M.  This is the starting point for the new designs.  

A similar matrix M is constructed, but all of the pairwise combinations of the matrices 

AL (Ye [1998]) are used.  The number of variables that can be examined by using all 

pairwise combinations of the AL’s in M is found using our following theorem. 

Theorem 3.1:  Within n runs, where n = 2m + 1, with m an integer greater 
than 1, the maximum number of variables that can be examined in a Latin 
hypercube, using all original and pairwise combinations of Ye’s [1998] 
matrices AL, is 

                                                 m + 
1

2
m − 
 
 

.                                                     (3.1) 

Proof:  This follows by construction.  The vector e constitutes one variable.  Each AL, up 

to a maximum of m–1, corresponds to a column in the design matrix.  Finally, each of the 

1
2

m − 
 
 

 pairwise combinations of the AL’s also corresponds to a column in the design 

matrix.  Recall from Chapter II that the vector e determines the subsequent matrices AL.  

Note that different vectors of e may result in the same overall design matrix, but (3.1) 

holds under each specification of e. ٱ 

 The matrix M is constructed using (2.3), (2.4), and (2.5).  The matrix S, which 

must match the dimensions of M, is similarly augmented with additional columns.  The 

additional columns are equivalent to the (previously unused) columns used in estimating 

pairwise interactions in an m–1 two-level full-factorial design.  The matrix T, which is 

the Hadamard product of M and S, is calculated as before.     

 If there are eight positive levels (and correspondingly eight negative levels and a 

center point), for a total of 17 levels, the maximum number of variables that we can 
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examine is 1 + 3 + 







2
3

 = 7.  Similarly, if there are 64 positive levels (and 

correspondingly 64 negative levels) for a total of 129 levels, including the center point, 

the maximum number of variables which may be examined is 1 + 6 + 







2
6

 = 22.   

 Under Ye’s OLHC construction, he only guarantees orthogonal designs as 

specified by (2.1) and (2.2).  The OLHC’s can be constructed for the number of variables 

specified in Theorem 3.1.  For example, although an OLHC can be created for eight 

variables with each variable at 33 levels as specified by Ye, given the same 33 levels, one 

can construct an OLHC with 11 variables.  The key in designing this OLHC is that the 

first column in M from Section II.A.1 must be 

                                      e (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)T= .                 (3.2) 

Theorem 3.2 generalizes this finding. 

Theorem 3.2:  If e = [1, 2, … , q ]T , where q represents the number of 
positive levels, is used to generate a Latin hypercube as specified in 
Theorem 3.1 (for up to m=10), the resulting Latin hypercube is 
orthogonal.  
 

Proof:  The proof is by computational verification.  That is, the author has used this 

method to construct an OLHC for all choices between two and 46 variables.   Note that in 

every case examined, this approach has found an OLHC.15  ٱ 

 A comparison between the number of variables that can be examined using Ye’s 

[1998] designs and the extended orthogonal designs is shown in Table 3.1.  

 

 

 

 

 
 

                                                 
15 It is conjectured that Theorem 3.2 applies for any value of m more than 10. 
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Total number of 
levels for each 

variable 
m 

Maximum number of 
variables by 

extending Ye’s 
OLHC 

Maximum number 
of variables for Ye's 

OLHC 

17 4 7 6 
33 5 11 8 
65 6 16 10 
129 7 22 12 

 
Table 3.1.  A comparison illustrating the increased number of variables that can be 
examined by extending Ye’s [1998] construction algorithm for OLHC’s.  

 
It is readily apparent from Table 3.1 that as the number of levels doubles (less one, for 

the center point), Ye’s OLHC designs are able to accommodate exactly two more 

variables.  In the new designs, the corresponding maximum number of variables increases 

by the previous m.  This difference grows dramatically as the number of variables to be 

explored increases.  For example, Ye’s approach requires 4,097 runs to build an OLHC 

for 22 variables.  The difference gets even more dramatic when there are more variables 

in the design.  Thus, the new designs (for up to 22 variables from Table 3.1) are capable 

of examining many more variables than Ye’s [1998] designs while maintaining 

orthogonality. 

 2.   An Example OLHC with Seven Variables and 17 Levels  

 An OLHC which has more columns than Ye’s [1998] OLHC is constructed using 

Theorems 3.1 and 3.2.  S-Plus [1991] is employed for this endeavor.  Assume one 

constructs an OLHC with seven variables and 17 levels (including the 0.0 center point) 

using Theorem 3.2, where 

                                             e =[ ]1, 2, 3, 4, 5, 6, 7, 8 T .                                   (3.3) 

 The matrix M is constructed using (2.3), (2.4), (2.5), and Theorem 3.1, and is 

shown in Table 3.2.  The difference between this design and that in Table 2.4—using 

Ye’s construction—is that all three of the pairwise combinations of the AL’s are used.  

That is, A1A2e, A1A3e, and A2A3e are all included in M.   
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e A1e A2e A3e A1A2e A1A3e A2A3e 
1 2 4 8 3 7 5 
2 1 3 7 4 8 6 
3 4 2 6 1 5 7 
4 3 1 5 2 6 8 
5 6 8 4 7 3 1 
6 5 7 3 8 4 2 
7 8 6 2 5 1 3 
8 7 5 1 6 2 4 

 
Table 3.2.  The matrix M for a seven-variable, 17-level OLHC. 

 
The matrix S is constructed using the two-level factorial design shown in Table 3.3.  

Recall that any version of this two-level factorial design may be used without 

jeopardizing the orthogonality of the final design matrix. 

 

 

 

 
 
 
 
 
 

Table 3.3. The matrix S for a seven-variable, 17-level OLHC. 
 

 The matrix T is then constructed using the Hadamard product of M and S.  The 

design matrix is completed by augmenting T with its mirror image and the center point, 

resulting in the 17 × 7 OLHC.     

 We will represent an OLHC by the notation of ( )n
kO , where n represents the 

number of runs or experiments and k represents the number of variables.  An 17
7( )O  

design is shown in Table 3.4.  Each column represents an individual variable and its 

associated values, while each row corresponds to the variable settings for a particular run 

or observation. 

 

C1 C2 C3 C4 C2C3 C2C4 C3C4

+1 -1 -1 -1 +1 +1 +1
+1 +1 -1 -1 -1 -1 +1
+1 -1 +1 -1 -1 +1 -1
+1 +1 +1 -1 +1 -1 -1
+1 -1 -1 +1 +1 -1 -1
+1 +1 -1 +1 -1 +1 -1
+1 -1 +1 +1 -1 -1 +1
+1 +1 +1 +1 +1 +1 +1
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Run Variable A Variable B Variable C Variable D Variable E Variable F Variable G 
1 1 -2 -4 -8 3 7 5 
2 2 1 -3 -7 -4 -8 6 
3 3 -4 2 -6 -1 5 -7 
4 4 3 1 -5 2 -6 -8 
5 5 -6 -8 4 7 -3 -1 
6 6 5 -7 3 -8 4 -2 
7 7 -8 6 2 -5 -1 3 
8 8 7 5 1 6 2 4 
9 0 0 0 0 0 0 0 

10 -1 2 4 8 -3 -7 -5 
11 -2 -1 3 7 4 8 -6 
12 -3 4 -2 6 1 -5 7 
13 -4 -3 -1 5 -2 6 8 
14 -5 6 8 -4 -7 3 1 
15 -6 -5 7 -3 8 -4 2 
16 -7 8 -6 -2 5 1 -3 
17 -8 -7 -5 -1 -6 -2 -4 

 
Table 3.4.  An OLHC for seven variables where each variable has 17 levels. 

 
 The variables in Table 3.4 all range from –8 to 8.  Of course they can be scaled as 

necessary.  For example, if for the analyses one wants to vary each of the variables in 

Table 3.4 from –1 to 1, one can use the design matrix in Table 3.5. 

Run Variable A Variable B Variable C Variable D Variable E Variable F Variable G
1 0.125 -0.25 -0.5 -1 0.375 0.875 0.625 
2 0.25 0.125 -0.375 -0.875 -0.5 -1 0.75 
3 0.375 -0.5 0.25 -0.75 -0.125 0.625 -0.875 
4 0.5 0.375 0.125 -0.625 0.25 -0.75 -1 
5 0.625 -0.75 -1 0.5 0.875 -0.375 -0.125 
6 0.75 0.625 -0.875 0.375 -1 0.5 -0.25 
7 0.875 -1 0.75 0.25 -0.625 -0.125 0.375 
8 1 0.875 0.625 0.125 0.75 0.25 0.5 
9 0 0 0 0 0 0 0 

10 -0.125 0.25 0.5 1 -0.375 -0.875 -0.625 
11 -0.25 -0.125 0.375 0.875 0.5 1 -0.75 
12 -0.375 0.5 -0.25 0.75 0.125 -0.625 0.875 
13 -0.5 -0.375 -0.125 0.625 -0.25 0.75 1 
14 -0.625 0.75 1 -0.5 -0.875 0.375 0.125 
15 -0.75 -0.625 0.875 -0.375 1 -0.5 0.25 
16 -0.875 1 -0.75 -0.25 0.625 0.125 -0.375 
17 -1 -0.875 -0.625 -0.125 -0.75 -0.25 -0.5 

 
Table 3.5.  An OLHC for seven variables where each variable has a range of –1 to 1. 
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 3.   Space-Filling of the OLHC Example 

 Orthogonality (or near orthogonality) is a critical design characteristic.  Space-

filling is another critical design characteristic, and Ye [1998] notes that “an OLHC 

design…does not necessarily have a good space-filling property.”  Indeed, although 

orthogonal, generally the space-filling properties of the designs generated using 

Theorems 3.1 and 3.2 is poor.  The goal is to improve upon the space-filling of these 
17
7( )O  designs.   

 To visually display the space-filling of a design, it is typical to project the design 

points into two dimensions (e.g., Johnson et al. [1990], Morris and Mitchell [1995], Ye 

[1998]).  Figure 3.1 presents the two-dimensional projections of variable pairs from Table 

3.5.  In two dimensions, the design points exhibit systematic patterns that concentrate on 

specific regions instead of across the entire region.  Note that the three two-dimensional 

projection of variables A and B, C and E, and D and F make an approximate “X” figure 

and do not adequately sample the region.  Specifically, there are substantial regions in the 

two-dimensional subspaces with no points in them.  Thus, any effects that may occur in 

those regions will be missed by the design.  Considering Figure 3.1, the only               

two-dimensional projections which visually present adequate space-filling are the three 

pairs of variables B and G, C and F, and D and E.   
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Figure 3.1.  Two-dimensional projections for the variable pairs from Table 3.5. 

 Although the design matrix generated from Theorems 3.1 and 3.2 is orthogonal, 

the space-filling of the design is poor.  Similarly, poor space-filling (i.e., systematic 

patterns in the two-dimensional projections and substantial regions in the two-

dimensional subspace with no design points) regions are found in the 33
11( )O , 65

16( )O , and 

129
22( )O  designs.  

 4.  Finding the Best Space-Filling OLHC with Seven Variables and 17 Levels 

 Following Theorem 3.2, the 17
7( )O  design in Figure 3.1 was generated using  

e=[ ]1, 2, 3, 4, 5, 6, 7, 8 T .  Recall that e uniquely specifies the subsequent 

development of M (and thus the final design matrix), and that not all candidate vectors e 

produce an OLHC.  The number of possible orderings of the first column (e) of M is q!. 

 In the 17
7( )O  example, there are 40,320 possible permutations of e.  The reader 

should note the combinatorial problem associated with constructing M as the number of 

levels increases.  Enumerating all permutations of e is feasible for the design matrices 
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with seven or fewer variables, but is computationally difficult for more than seven 

variables. 

 From the 40,320 possible different 17
7( )O  designs, there are 143 distinct designs 

that are orthogonal.  From these designs, the designer seeks a design with good        

space-filling properties.  Unfortunately, each of these 143 17
7( )O  designs has an Mm 

distance of 1.47902.  Thus, if the previous literature is followed, (e.g., Johnson et al. 

[1990], Morris and Mitchell [1992], Ye [1998]), there is no space-filling distinction 

between these 143 17
7( )O  designs.  This fact is one of the reasons that a second measure of 

space-filling is used for comparing designs.  

 Next consider the ML2 discrepancies for the 143 distinct 17
7( )O designs.  The ML2 

discrepancies range from .151854 to .173952.  The  17
7( )O  design generated from 

Theorems 3.1 and 3.2 has an ML2 discrepancy of .173223 (almost, but not quite, the 

worst ML2 discrepancy).  The choice of e corresponding to the minimum (i.e., preferred) 

ML2 discrepancy is e=[1,2,8,4,5,6,7,3]T.  The choice of e corresponding to the maximum 

ML2 discrepancy is e=[2,7,1,8,4,5,3,6]T.  The 17
7( )O  design having the minimum ML2 

discrepancy is shown in Table 3.6.  The two-dimensional projections of the variables of 

Table 3.6 are shown in Figure 3.2.  From a visual inspection, it is evident that the       

two-dimensional projections of the best 17
7( )O  design have better space-filling than the 

17
7( )O  design constructed using Theorems 3.1 and 3.2 and illustrated in Figure 3.1. 
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Run Variable A Variable B Variable C Variable D Variable E Variable F Variable G
1 0.125 -0.25 -0.5 -0.375 1 0.875 0.625 
2 0.25 0.125 -1 -0.875 -0.5 -0.375 0.75 
3 1 -0.5 0.25 -0.75 -0.125 0.625 -0.875 
4 0.5 1 0.125 -0.625 0.25 -0.75 -0.375 
5 0.625 -0.75 -0.375 0.5 0.875 -1 -0.125 
6 0.75 0.625 -0.875 1 -0.375 0.5 -0.25 
7 0.875 -0.375 0.75 0.25 -0.625 -0.125 1 
8 0.375 0.875 0.625 0.125 0.75 0.25 0.5 
9 0 0 0 0 0 0 0 

10 -0.125 0.25 0.5 0.375 -1 -0.875 -0.625 
11 -0.25 -0.125 1 0.875 0.5 0.375 -0.75 
12 -1 0.5 -0.25 0.75 0.125 -0.625 0.875 
13 -0.5 -1 -0.125 0.625 -0.25 0.75 0.375 
14 -0.625 0.75 0.375 -0.5 -0.875 1 0.125 
15 -0.75 -0.625 0.875 -1 0.375 -0.5 0.25 
16 -0.875 0.375 -0.75 -0.25 0.625 0.125 -1 
17 -0.375 -0.875 -0.625 -0.125 -0.75 -0.25 -0.5 

 

Table 3.6.  The 17
7( )O design with the minimum ML2 discrepancy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Two-dimensional projections of the best space-filling 17
7( )O design. 
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 The proposed 17
7( )O  design in Table 3.6 is orthogonal.  Next let us ask how does 

the proposed design’s space-filling measures (ML2 discrepancy and Mm distance) 

compare with the optimal uniform design?  A uniform design having seven variables and 

17 levels is one of the few published optimal uniform designs (Fang et al. [2000]).  It is 

expected that the uniform design will have a better Mm distance and ML2 discrepancy 

since this is the major goal in their construction.  A summary of the comparison between 

these designs is shown in Table 3.7. 

 Max Pairwise Correlation Condition Number ML2 Mm Distance 
OLHC  0 1 0.151854 1.47902 

Optimal Uniform 0.08088 1.35966 0.144309 1.61051 
 

Table 3.7.  Comparison of the orthogonality and space-filling properties of the 
OLHC and uniform 17-run, seven-variable designs.   

 
 Although the optimal uniform design enjoys an approximate five percent 

advantage in ML2 discrepancy and an approximate eight percent advantage in Mm 

distance, the 17
7( )O design has better orthogonality measures.  Most notably, the condition 

number is 36 percent higher for the optimal uniform design.  Furthermore, the 
17
7( )O design satisfies the desired characteristics and assumptions, but the uniform design 

fails to satisfy even the near orthogonality requirement. 

B. CONSTRUCTING NEARLY ORTHOGONAL LATIN HYPERCUBES 

This section describes the relaxation of strict orthogonality in order to achieve 

designs with improved space-filling properties.  While one can find orthogonal Latin 

hypercubes for more than seven variables, the space-filling properties of these designs are 

quite poor.  Therefore, for a specified combination of variables (more than seven) and 

runs, millions of candidate designs, which sacrifice some of their orthogonality, are 

generated by the computer and explored.  For the most promising of these, a method 

(from Florian [1992]) to improve on their measures of near orthogonality is applied.  

From among a subset of those designs that are nearly orthogonal (i.e., have a maximum 

pairwise correlation no greater than 0.03 and a condition number no greater than 1.13), 

the design with the best combination of ML2 discrepancy and Mm distance is chosen.  
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 1. Achieving Near Orthogonality for Latin Hypercubes 

 Although 33
11( )O , 65

16( )O , and 129
22( )O  designs exist, their space-filling is poor.  All 

permutations of the components of e for the 17
7( )O  design were generated in under 10 

hours using a 1.0 GHz Pentium© 4 processor computer.    Unfortunately, this enumerative 

approach is computationally difficult for the 33
11( )O , 65

16( )O , and 129
22( )O  designs.  There are 

16! permutations of e for the 33
11( )O design, 32! permutations of e for the 65

16( )O  design, 

and 64! permutations of e for the 129
22( )O  design.  To date, no other 33

11( )O , 65
16( )O , and 

129
22( )O  designs (except for the ones constructed using Theorems 3.1 and 3.2) have been 

found. 

 After generating over one million random permutations of the elements of e in an 

attempt to find an 33
11( )O design, over two million random permutations to find an 65

16( )O  

design, and over three million random permutations to find an 129
22( )O  design, none of the 

generated designs even satisfied the requirements for near orthogonality.  Table 3.8 

shows the best maximum pairwise correlation and condition number found from these 

permutations.  Note that the values in Table 3.8 do not occur for one single design matrix 

for the specified variables and levels. 
 

Variables Levels Maximum 
Pairwise 

Condition 
Number 

     Correlation   
11 33 0.033 1.11 
16 65 0.146 1.85 
22 129 0.159 2.38 

 
Table 3.8.  Best measures for designs, in terms of maximum pairwise correlation (a 
value of 0 is best) and condition number (a value of 1 is best), for selected variable 
and level combinations. 
 
 For more than seven variables (specifically 33 runs and 11 variables, 65 runs and 

16 variables, and 129 runs and 22 variables), the designs generated by adding additional 

columns are either orthogonal (using Theorems 3.1 and 3.2) with poor space-filling or 

non-orthogonal.  However, some of the non-orthogonal designs have good space-filling 
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properties.  Techniques for improving on the near orthogonality measures can be applied.  

Iman and Conover [1980] present a method that can reduce the correlation between input 

variables.  Florian [1992] uses this same method to reduce the pairwise correlations 

between variables in a design matrix.  Florian’s procedure is adopted in order to decrease 

the maximum pairwise correlation.  One minor weakness with this scheme is that it is 

possible that an original orthogonal variable pair can have small correlations induced by 

the computations.  Although the maximum pairwise correlation is decreased, the number 

of orthogonal variable pairs may decrease as well.  Since the correlations introduced to 

the original orthogonal variable pairs are typically small (e.g., less than .01), this trade-off 

is advantageous to the overall properties of the design matrix.  

 The net effect of Florian’s procedure is that within one or more of the columns of 

the design matrix, the levels are permuted. This can result in a decreased maximum 

pairwise correlation without altering the actual levels.16  There is a major distinction in 

how Florian’s procedure is used.  The procedures of both Iman and Conover and Florian 

examine only the correlations between pairs of variables.  The present work includes the 

condition number as well.  

 Florian’s [1992] method is now described.  Each column element of the design 

matrix is replaced with the element’s rank, (1,2,…,n), within the column.  This n × k 

matrix is denoted by W.  Let C (a k × k matrix) represent the rank correlation matrix of 

W.  If each pair of columns in W is uncorrelated, then C is equal to the unit matrix I (k × 

k matrix).  Only those realizations of W for which matrix C is positive definite are 

considered.  The basic idea is to transform W into a set of uncorrelated variates.  A 

Cholesky factorization scheme is used (since C is positive definite) to determine a lower 

triangular matrix, Q, which is k × k.  Then, let D=Q-1 and C=Q*QT such that D has the 

property  

                                                              D*C*DT = I.                                                     (3.4) 

The original W is then transformed into a new matrix, WB (n × k matrix), using 

                                                              WB = W*DT.                                                    (3.5) 

                                                 
16 Other methods (i.e., cosine-sine decomposition and Gram-Schmidt orthogonalization) can alter the 
levels.  
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Since the elements of the matrix WB are not necessarily integral, the elements in each 

column are replaced by their rank order (1,2,…,n). 

 As proven by Iman and Conover [1980], the difference between appropriate 

elements in the rank correlation matrix of WB and I is lower than in the case of matrix W 

and I.  Since the elements of WB are replaced by ranks, this process can be repeated.  We 

do so until there is no further decrease in the maximum pairwise correlation.  Finally, to 

reconstruct the Latin hypercube design matrix, the ordered ranks in the final WB are then 

mapped back into the original input variable values.  Appendix A contains an example of 

these calculations.   

 As previously noted, Iman and Conover [1980] and Florian [1992] used this 

scheme and focused only on a correlation measure.  The condition number serves to 

improve the process for the following reason.  As this procedure is performed on 

numerous matrices, it is quite common that although the maximum pairwise correlation 

value does not change, the condition number continues to decrease.  Thus, if the 

procedure uses only the maximum pairwise correlation value, then this iteration process 

may stop too soon, even though a better design matrix (in terms of both maximum 

pairwise correlation and condition number) may exist.  Additionally, this procedure can 

only provide limited improvement for the maximum pairwise correlation and condition 

number.  Initialization using a screening value (found by exploratory trial and error) for 

the maximum pairwise correlation and condition number speeds the process and 

dramatically enhances the non-orthogonality measures of the final design matrix.  

Florian’s method is applied to only those Latin hypercubes that achieve the screening 

non-orthogonality measures. 

 2. An Algorithm for Constructing Nearly Orthogonal Latin Hypercubes 

  This section contains a method for constructing nearly orthogonal Latin 

hypercubes for k > 7 that satisfy the desirable design characteristics.  Specifically, this 

method is appropriate for designs having eight to 11 variables and 33 levels, 12 to 16 

variables and 65 levels, or 17 to 22 variables and 129 levels.   

 The proposed experimental designs with near orthogonality will be denoted by 

( )n
O k

N , where NO represents near orthogonality, n represents the number of runs or 
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experiments, and k represents the number of variables.  Recall that these designs must 

have a maximum pairwise correlation no greater than 0.03 and condition number no 

greater than 1.13. 

 Designs are generated using the extension of Ye’s [1998] algorithm discussed in 

this chapter.  Since no orthogonal designs (except for those generated using Theorems 3.1 

and 3.2) have been found, the strict orthogonality requirement for initializing the process 

is removed.  Instead, near orthogonality is the goal.  Random permutations of e are used 

to generate proposed designs.  Since Florian’s [1992] procedure can provide limited 

improvement, only those designs satisfying a pre-set maximum threshold pairwise 

correlation, ρ , and condition number are retained.  Later in the chapter, guidance on the 

pre-set values to choose is given.  Florian’s [1992] method is applied to those designs 

achieving the pre-set values.  The values specified are such that after the designs are 

subjected to Florian’s [1992] procedure, the resulting designs are nearly orthogonal.  Of 

the nearly orthogonal designs, their space-filling properties are compared.  The candidate 

design with the most desirable combination of Mm distance and ML2 discrepancy is 

chosen. 

 The algorithm for finding a nearly orthogonal Latin Hypercube (NOLHC) 

experimental design having eight to 22 variables is summarized. 

• Step 1. Determine the number of variables (k>7) required for 
experimentation.  If the number of variables is other than 11, 16, or 22, round 
the required number of variables up to the nearest one of these numbers. 

 

• Step 2.   Establish a maximum threshold pairwise correlation value, ρ , and a 
maximum threshold condition number. 

 

• Step 3.   Using a randomly permuted e, construct a design matrix as 
previously described in this chapter. 

 

• Step 4.   Calculate the pairwise correlations and the condition number. 
 

• Step 5.   If any of the values in Step 4 exceed the thresholds in Step 2, discard 
the design and go to Step 3 with a randomly permuted e (with replacement).  
Otherwise, keep the design and proceed to Step 6.  Repeat Steps 3-5 until a 
desired pre-set number of candidate designs are found. 
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• Step 6.   Subject each of the candidate designs to Florian’s [1992] method of 
factorization to decrease the maximum pairwise correlation and condition 
number. 

 

• Step 7.   Calculate the Mm distance and ML2 discrepancy for each of the Step 
6 designs.  Rank the designs according to these measures.  Choose the design 
with the minimum rank sum over the two measures. 

 

• Step 8:   If a number of variables other than seven, 11, 16, or 22 is required, 
construct each of the possible combination of columns (having the appropriate 
number of desired variables) from the Step 7 design and calculate the Mm 
distance and ML2 discrepancy.  Choose the design with the minimal rank sum 
over the two measures. 

 The reader is reminded that except for the 17
7( )O  design, there is no guarantee that 

the designs generated from this algorithm are globally optimal.  Conversely, the designs 

do have near orthogonality and excellent space-filling properties.  The designs are easy to 

generate (recommended designs for up to 22 variables are provided later in this chapter).  

The statistical analysis of results is facilitated since the estimates of linear effects of each 

variable are nearly uncorrelated and the cases are well scattered throughout the 

experimental region.  Finally, prior to the experiment, there are no assumptions made 

concerning which variables may be correlated (e.g., Iman and Conover [1980]) or what 

distribution the response function will have from the variable’s settings (e.g., Currin et al. 

[1998], Clyde et al. [1996]).  In essence, the desirable design characteristics are satisfied 

save the issue of promoting insensitivity to premature experiment termination. This issue 

is discussed later in this chapter. 

C.  ORTHOGONAL AND NEARLY ORTHOGONAL LATIN HYPERCUBE 
DESIGNS FOR UP TO 22 VARIABLES 

 
This section presents the best designs that have been generated using the 

algorithm from the previous section.  This provides the reader with ready-to-use 

orthogonal or nearly orthogonal Latin hypercube designs for two to 22 variables.     

1.   Orthogonal Latin Hypercubes for Two to Seven Variables  

 This section provides the best space-filling 17
7( )O design and the best designs 

derived from this 17
7( )O  design having fewer than seven variables.  The 17

7( )O  design was 

extensively covered earlier in this chapter.  Table 3.6 and Figure 3.2 summarize these 
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findings.  Table 3.9 generalizes Table 3.6 in that the entries of Table 3.9 indicate the 

ordinal level of that particular variable.   

 If fewer than seven variables are required, then selected columns can be removed 

from the original seven variable design matrix (Table 3.9) to correspond to the desired 

number of variables, while still maintaining good space-filling properties (e.g., if only 

five variables are required, then two columns are removed, such that the remaining 17-

run, five-variable design matrix has good space-filling properties).  As stated in the 

algorithm, all possible combinations of columns are examined from Table 3.9 by 

calculating the Mm distance and ML2 discrepancy.  The design with the minimal rank 

sum over the two measures is chosen.17  Table 3.10 summarizes the results for the 17-run 

case when two to six variables are desired. 

Run Variable A Variable B Variable C Variable D Variable E Variable F Variable G 
1 10 7 5 6 17 16 14 
2 11 10 1 2 5 6 15 
3 17 5 11 3 8 14 2 
4 13 17 10 4 11 3 6 
5 14 3 6 13 16 1 8 
6 15 14 2 17 6 13 7 
7 16 6 15 11 4 8 17 
8 12 16 14 10 15 11 13 
9 9 9 9 9 9 9 9 

10 8 11 13 12 1 2 4 
11 7 8 17 16 13 12 3 
12 1 13 7 15 10 4 16 
13 5 1 8 14 7 15 12 
14 4 15 12 5 2 17 10 
15 3 4 16 1 12 5 11 
16 2 12 3 7 14 10 1 
17 6 2 4 8 3 7 5 

 

Table 3.9.  The 17
7( )O  design with ordinal levels for the variables. 

 
 
 
 
 
 
 

                                                 
17 Of course, the reader can use other criteria to select between competing designs. 
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Desired  Deleted Maximum Pairwise Condition Mm ML2 
Variables Columns Correlation Number Distance   

6 1 0 1 1.43069 0.078914 
5 1, 6 0 1 1.26861 0.038799 
4 1, 3, 6 0 1 1.03078 0.01725 
3 1, 2, 3, 6 0 1 0.57282 0.007273 
2 1, 3, 4, 6, 7 0 1 0.51539 0.002525 

 
Table 3.10.  Orthogonal designs for fewer than seven variables derived from the 

17
7( )O  design. 

 The assumption is that using the 17
7( )O  design to construct designs with fewer 

variables will result in acceptable designs that are nearly orthogonal and have acceptable 

space-filling properties.  The validity of this assumption is illustrated in the case of a 

design with two variables and 17 levels.  Specifically, comparisons between the 17
2)(O  

design, the published uniform design of Fang and Wang [1994], and the design with the 

best Mm distance measure (Morris and Mitchell [1992], [1995]) are made.  The 17
2)(O  

design fares extremely well against the two optimal designs with respect to their 

optimality criteria, as shown in Table 3.11.     

 

Maximum 

Correlation 

Condition 

Number Mm Dist ML2 

17
2)(O design 0 1 0.51539 0.002525 

Uniform design 0 1 0.27905 0.002201 

Best Mm distance design 0.0588 1.125 0.53033 0.002354 

 
Table 3.11.  Comparison of the proposed, uniform, and best Mm distance 
designs for the 17-run and two-variable case.   
 

 For orthogonality measures, a maximum pairwise correlation of 0 and condition 

number of 1 are the best measures.  The 17
2)(O  design and uniform designs from       

Table 3.11 are orthogonal, but the best Mm distance design is not orthogonal.  For the 

space-filling measures, a larger value for Mm distance is better (in this case, the measures 

can range from 0 to 0.53033) and a smaller value for ML2 discrepancy is better (in this 

case, the measures can range from 0.002201 to 0.7778).  Although the best Mm distance 

design has approximately a three percent better Mm distance and approximately a seven 



 43

percent better ML2 discrepancy than the 17
2)(O  design, the 17

2)(O  design is orthogonal, but 

the best Mm distance design fails to satisfy near orthogonality.  Furthermore, the 17
2)(O  

design has a 46 percent better Mm distance than the uniform design, while only a 13 

percent poorer ML2 discrepancy. 

 2.   Nearly Orthogonal Latin Hypercubes for Eight to 11 Variables  

 This section describes the construction of the best 33
11)( ON  design and the best 

associated designs with fewer variables.  An exhaustive search of the 16! designs was not 

attempted.  Instead, using the design construction discussed previously, approximately 

one million randomly selected vectors e were used to find 15 (a pre-set number) designs 

satisfying a maximum threshold ρ  value of .05 and maximum threshold condition 

number of 1.15 (these threshold values were chosen using exploratory trial and error).  

These 15 designs were then subjected to Florian’s [1992] procedure to reduce the 

maximum pairwise correlation and condition number. These designs achieved a 

maximum pairwise correlation no greater than 0.03 and a condition number no greater 

than 1.13, satisfying the near orthogonality criteria.  These 15 designs were than 

compared using Mm distance and the ML2 discrepancy and are shown in Table 3.12.  

Note that all of these designs are practically indistinguishable in terms of correlations and 

condition numbers. 

 Design 15 corresponds to the orthogonal design using Theorems 3.1 and 3.2.  

Although this design is orthogonal, it has the worst ML2 discrepancy.  Design 6 is chosen 

as the best design since it has the minimal rank sum (best Mm distance and second-best 

ML2 discrepancy).  Its maximum correlation is 0.0234 and condition number is 1.123.  

The appropriate levels for this design are shown in Appendix B.  Figure 3.3 displays the 

two-dimensional projections of this nearly orthogonal design.  Since the author is 

unaware of any published literature on uniform designs with this number of variables and 

levels, no comparison can be made, but the proposed design does exhibit excellent 

orthogonality and space-filling properties.   

 As a means of comparison, 1,000 Latin hypercubes with 11 variables, each with 

33 levels, are generated.  These 1,000 designs have an average maximum pairwise 

correlation of 0.4015, average condition number of 8.315, average Mm distance of 1.105, 
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and average ML2 discrepancy of 0.8117.  The nearly orthogonal design is considerably 

better in all measures than an average Latin hypercube. 

Design Mm ML2 Mm Distance ML2 Rank Rank Sum 
Number Distance   Rank     

1 1.6262 0.74 7 3 10 
2 1.317 0.77 14 7 21 
3 1.6724 0.77 3 10 13 
4 1.3793 0.78 13 11 24 
5 1.7139 0.75 2 4 6 
6 1.7578 0.73 1 2 3 
7 1.6618 0.75 5 5 10 
8 1.6117 0.73 9 1 10 
9 1.2885 0.77 15 8 23 

10 1.513 0.76 12 6 18 
11 1.6441 0.92 6 14 20 
12 1.6154 0.77 8 9 17 
13 1.5487 0.8 11 13 24 
14 1.5737 0.79 10 12 22 
15 1.6713 0.95 4 15 19 

 

Table 3.12.  Candidate 33
11)( ON  designs showing the corresponding space-filling 

measures and ranks.  Each of the designs has a maximum pairwise correlation less 
than 0.03 and condition number less than 1.13. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.3.  Two-dimensional projections of columns for the best 33
11)( ON design. 
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 Designs containing between eight and 10 variables are now considered.  Each of 

the possible combinations of columns from Appendix B is examined by calculating the 

Mm distance and ML2 discrepancy as columns are deleted.  Table 3.13 summarizes the 

results for the 33-run case for between eight to 10 variables.  Although Ye [1998] states 

that an orthogonal design exists for 33 runs and eight variables, a good space-filling 

design has not been found, and none was shown by Ye.  Table 3.13 provides a readily 

available alternative that has good orthogonality and space-filling properties. 

Desired  Deleted Maximum Pairwise Condition Mm ML2 
Variables Columns Correlation Number Distance   

10 1 0.0234 1.112 1.70478 0.412687 
9 8, 10 0.0234 1.1 1.51167 0.229329 
8 1, 2, 10 0.0234 1.089 1.42522 0.124826 

 
Table 3.13.  Nearly orthogonal designs for fewer than 11 variables derived from the 

33
11)( ON  design.  

 3.   Nearly Orthogonal Latin Hypercubes for 12 to 16 Variables  

 The construction of the best 65
16)( ON  design and the best associated designs with 

fewer variables is described.  An exhaustive search of the 32! designs was not attempted.  

Instead, using the design construction discussed previously, approximately two million 

randomly selected vectors of e were used to find 15 designs satisfying a maximum 

threshold ρ  value of 0.17 and maximum threshold condition number of 2.4 (these 

threshold values were chosen by exploratory trial and error).  These 15 (a pre-set number) 

designs were subjected to Florian’s [1992] procedure to reduce the maximum pairwise 

correlation and condition number.  These designs achieved a maximum pairwise 

correlation no greater than 0.022 and a condition number no greater than 1.11, satisfying 

the near orthogonality criteria.  These 15 designs were then compared using the Mm 

distance and the ML2 discrepancy and are shown in Table 3.14. 
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Design Mm ML2 Mm Distance ML2 Rank Rank Sum 
Number Distance   Rank     

1 1.7941 7.98 8 15 23 
2 1.6759 5.4 14 14 28 
3 1.6247 4.6 15 5 20 
4 1.7741 4.64 9 8 17 
5 1.8408 4.71 6 10 16 
6 1.8949 4.99 4 13 17 
7 1.7402 4.52 12 3 15 
8 1.7727 4.87 10 12 22 
9 1.8496 4.64 5 7 12 

10 2.0146 4.59 2 4 6 
11 1.7675 4.81 11 11 22 
12 2.0353 4.46 1 1 2 
13 1.7205 4.7 13 9 22 
14 1.8219 4.63 7 6 13 
15 1.9939 4.48 3 2 5 

 

Table 3.14.  Candidate 65
16)( ON  designs showing the corresponding space-filling 

measures and ranks.  Each of the designs has a maximum pairwise correlation less 
than 0.022 and condition number less than 1.11. 

 
 Design 1 corresponds to the orthogonal design using Theorems 3.1 and 3.2.  

Although this design is orthogonal, it has the worst ML2 discrepancy.  Design 12 is 

chosen as the best design since it has the best Mm distance and best ML2 discrepancy.  Its 

maximum correlation is 0.0219 and condition number is 1.103.  The appropriate levels 

for this design are shown in Appendix C.  Since the author is unaware of any published 

literature on uniform designs with this number of variables and levels, no comparison can 

be made, but the proposed design does exhibit excellent orthogonality and space-filling 

properties.   

 As a means of comparison, 1,000 Latin hypercubes with 16 variables, each with 

65 levels, are generated.  These 1,000 Latin hypercubes have an average maximum 

pairwise correlation of 0.3194, average condition number of 6.103, average Mm distance 

of 1.647, and average ML2 discrepancy of 5.372.  The nearly orthogonal design is 

substantially better in all measures.  The cases where fewer than 16, but more than 11 

variables are required is considered.  Each of the possible combination of variables from 

Appendix C is examined by calculating the Mm distance and the ML2 discrepancy as 

variable columns are deleted.  Table 3.15 summarizes the results for the 65-run case 
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when 12 to 15 variables are desired.  Although Ye [1998] states that an orthogonal design 

exists for 65 runs and 10 variables, a good space-filling design has not been found, and 

none was shown by Ye.  Table 3.15 provides a readily available alternative that has good 

orthogonality and space-filling properties. 

Desired  Deleted Maximum Pairwise Condition Mm ML2 
Variables Columns Correlation Number Distance   

15 2 0.02194 1.097 2.03149 2.69304 
14 7, 10 0.01844 1.0838 1.95456 1.59995 
13 9, 10, 13 0.02194 1.0889 1.90497 0.95337 
12 4, 7, 9, 10 0.01809 1.079 1.83259 0.56767 

 
Table 3.15.  Nearly orthogonal designs for fewer than 16 variables derived from the 

65
16)( ON  design. 

 
 4.   Nearly Orthogonal Latin Hypercubes for 17 To 22 Variables 

 This section describes the construction of the 129
22)( ON  design and associated 

designs with fewer variables.  An exhaustive search of the 64! designs was not attempted.  

Instead, using the design construction discussed previously, approximately three million 

randomly selected vectors of e were used to find 15 designs satisfying a maximum 

threshold ρ  value of 0.16 and maximum threshold condition number of 2.8 (these 

threshold values were found by trial and error).  These 15 (a pre-set number) designs 

were then subjected to Florian’s [1992] procedure to reduce the maximum pairwise 

correlation and condition number.  These designs achieved a maximum pairwise 

correlation no greater than 0.01 and a condition number no greater than 1.04, satisfying 

the near orthogonality criteria.  These 15 designs were then compared using Mm distance 

and ML2 discrepancy and are shown in Table 3.16. 
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Design Mm ML2 Mm Distance ML2 Rank Rank Sum 
Number Distance   Rank     

1 2.2386 38.4 2 4 6 
2 1.8132 45.2 10 12 22 
3 1.6386 38.6 14 5 19 
4 2.0433 39 6 6 12 
5 1.866 41.6 9 9 18 
6 2.075 35.8 5 1 6 
7 1.8899 47.9 8 14 22 
8 2.2655 37.8 1 2 3 
9 1.6129 43.7 15 10 25 

10 2.1184 39.6 4 7 11 
11 1.7885 96.6 12 15 27 
12 1.9265 45.4 7 13 20 
13 2.1907 38.1 3 3 6 
14 1.8 40 11 8 19 
15 1.6796 44 13 11 23 

 

Table 3.16.  Candidate 129
22)( ON  designs showing the corresponding space-filling 

measures and ranks.  Each of the designs has a maximum pairwise correlation less 
than 0.01 and condition number less than 1.04.18   

 Design 11 corresponds to the orthogonal design using Theorems 3.1 and 3.2.  

Although this design is orthogonal, it has the worst ML2 discrepancy.  Design 8 is chosen 

as the best design since it has the best Mm distance and the second best ML2 discrepancy.  

Its maximum correlation is 0.0074 and condition number is 1.039.  The appropriate levels 

for this design are shown in Appendix D.  Since the author is unaware of any published 

literature on uniform designs with this number of variables and levels, no comparison can 

be made, but the proposed design does exhibit excellent orthogonality and space-filling 

properties.   

 As a means of comparison, 1,000 Latin hypercubes with 22 variables, each with 

129 levels, are generated.  These 1,000 Latin hypercubes have an average maximum 

pairwise correlation of 0.2332, average condition number of 4.073, average Mm distance 

                                                 
18 Note that the ML2 discrepancy measures are much larger than those exhibited earlier.  Fang and Wang 
[1994] find similar high discrepancy measures when attempting to find designs with 20 or more variables 
and attribute it to the sparseness of design points in high-dimensional regions. 
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of 1.899, and average ML2 discrepancy of 59.773.  The nearly orthogonal design is better 

in all measures than the average Latin hypercube. 

 The cases where fewer than 22, but more than 16 variables are required is 

considered next.  Each of the possible combination of columns from Appendix D are 

examined by calculating the Mm distance and the ML2 discrepancy as the columns are 

deleted.  Table 3.17 summarizes the results for the 129-run case when 17 to 21 variables 

are desired.  Although Ye [1998] states that an orthogonal design exists for 129 runs and 

12 variables, a good space-filling design has not been found, and none was shown by Ye.  

Table 3.17 provides an alternative that has good orthogonality and space-filling 

properties. 

Desired  Deleted Maximum Pairwise Condition Mm ML2 
Variables Columns Correlation Number Distance   

21 1 0.0074 1.0376 2.22446 23.17738 
20 1, 5 0.0074 1.0372 2.20689 14.35779 
19 1, 5, 20 0.0074 1.035 2.13806 8.86844 
18 1, 5, 20, 21 0.0074 1.0345 2.09358 5.42232 
17 1, 5, 7, 16, 20 0.0074 1.0326 2.01065 3.38073 

 
Table 3.17.  Nearly orthogonal designs for fewer than 22 variables derived from the  

129
22)( ON  design. 

D.   GENERATING ADDITIONAL DESIGN POINTS  

 Section C contains a set of orthogonal and nearly orthogonal Latin hypercubes 

that allow one to explore from two to 22 variables in a given number of runs (17, 33, 65, 

or 129).  In this section, the following question is addressed:  If an analyst can take more 

runs, how should one do so?  This question is also related to the issue of premature 

experiment termination.  The assumption here is that the termination cannot occur after 

an arbitrary number of runs, but rather at epochs in the number of runs marking the 

completion of specified blocks of runs     

 1. Sequential Approach to Selecting Run Blocks 

 This section discusses why a sequential approach is used in selecting the blocks of 

runs.  Specifically, the algorithm selects blocks of additional runs (of sizes 16, 32, 64, and 

128), such that the near orthogonality is retained, while the space-filling properties are 

improved.  The algorithm is presented in the context of a sequential analysis, though it 
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applies equally well if all of the runs are made at once.  This is done, in part, because this 

is how the algorithm is used in Chapters IV and V.  Specifically, an experiment is 

conducted, and then the results are analyzed.  Another experiment is completed, and the 

results are analyzed to see if the hypotheses generated from the first experiment are 

supported by the second experiment, and so on.  This procedure is similar to a cross-

validation procedure.  When the analyst is satisfied with the results, no further 

experiments need be conducted.  

 For example, assume that a 17
7)(O  design is executed, the entire experimental 

region is examined, and interim results obtained.  An additional 16 runs might then be 

identified, executed, and cross-validated with the first 17 runs.  This sequence permits 

sound, interim results to be obtained if premature termination (compatible with these 

constraints) occurs.  That is, if the second set of 16 runs cannot be made, the initial runs 

are orthogonal.  This approach also allows for a systematic, sequential approach to 

analyzing the relationship between the variables and the output measure of interest of the 

model. 

 There is another advantage to this sequential approach—region reduction.  This 

permits the experimenter to adjust, if necessary, the levels of a particular variable after 

the first set of runs.  Since the variables are continuous, a variable found to have no effect 

on the measure of interest may be finely partitioned into a narrower range of values, 

provided the new values maintain the equidistant property.  Thus, it is not possible to use 

this approach to reduce the region of a variable that has an effect on the measure of 

interest at the variable’s lower and upper values, but not at its middle values.   

 As an example, assume an initial 17
7)(O design is executed where each of the 

variables are continuous from -1 to 1, with 17 distinct values (-1,-0.875,-0.75,…,0.875,1).  

Suppose that during the analysis, it is found that the measure of interest is stable for the 

largest 11 values (-0.25 to 1) of one of the variables.  The experimenter has a choice.  

He/she may decide to keep that variable at all of the original 17 levels (less the 9th level 

which corresponds to the center point) for the next set of 16 runs; or he/she may opt to 

not sample the ineffective region, and instead use a finer partition to explore the region 
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from -1 to -0.25 and rescaled19, being careful to maintain the equidistant property.  In this 

case, the 16 new set of levels would range from –1 to -0.25 in increments of 0.05.  Thus, 

in addition to information being gained concerning the relationship between the variables 

and measure of interest, the experimental region has been reduced in order to focus on 

those areas of importance that were suggested by the first set of runs.   

 2. Column Permuting and Appending Heuristic 

 The major issue is how to generate additional design points from the original 

design matrix such that orthogonality (in the case of seven or fewer variables) or near 

orthogonality (for more than seven variables) is maintained and space-filling improved. 

This section describes the implementation of a permuting and appending procedure on 

the columns.   

 The original design matrix has its columns permuted.20  This permuted design 

matrix is then appended vertically to the original design matrix.  The center point run is 

redundant and not repeated.  If n was the initial number of runs in the design matrix, then 

the number of runs is increased by n–1 (the original center point is omitted from the 

additional points) in the subsequent set.  The encouraging result, which is summarized in 

Theorem 3.3, is the likely reduction in the maximum pairwise correlation.  In practice, 

the condition number is also non-increasing.  Although the theorem indicates              

non-increasing values instead of decreasing values, in practice, the values are typically 

decreasing.   

Theorem 3.3.  By permuting the columns of the original NOLHC 
containing n runs and appending these columns to the original NOLHC, 
the number of runs is increased to (2n–1), and the maximum pairwise 
correlation is non-increasing. 
 

Proof:  Recall from (1.4) that the correlation between two columns in a design matrix, 

v=[v1,v2,…,vn]T and w=[w1,w2,…,wn]T, is defined to be 

                                                 
19 Although the level of -0.375 was found to be influential on the measure of interest and -0.25 was found 
not to be influential, the new partition should include the region from -0.375 to -0.25 to ensure better 
exploration. 
20 The permutation of the columns of a design matrix does not affect its space-filling. 
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Furthermore, without loss of generality, we consider the absolute value of (1.4) and (3.6) 

in determining the maximum pairwise correlation.  For a sample size of n, the values in 

the columns of our Latin hypercubes take the integer values from (-n+1)/2 to (n–1)/2.  

Thus, for any column v, v  = 0 and 2
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Now, assume that the columns of the design matrix are permuted and append the 

permuted matrix to the bottom of the initial design matrix to create the new, expanded 

design matrix.  The new columns consist of n + (n-1) entries (we do not include a 

replicate center point in the permuted matrix).  Suppose columns x and y are appended to 

v and w, respectively.  Then, the new correlation between the two columns is 

 rnew(v:x,w:y) =  

1

1 1

( 1) ( 1)
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n n

i i i i
i i

x y

n n n

ν ω
−

= =

+

− +

∑ ∑
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Note that the denominator of rnew(v:x,w:y) is twice that of r(v,w).  Without loss of 

generality, suppose that maximum pairwise correlation is greater than or equal to the 

negative of the minimum pairwise correlation.  Also, suppose that r(v,w) = ρ, where ρ  is 

the maximum pairwise correlation.  Then, r(x, y) ≤ r(v,w), and therefore, rnew(v:x,w:y) ≤ 

r(v,w). ٱ 

 Since the original experimental design is nearly orthogonal, the maximum 

pairwise correlation value and condition number are generally only marginally improved.  

Thus, when selecting columns to permute it seems wise to emphasize space-filling.  

Although other nearly orthogonal designs could be appended to the original design 
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matrix, the choice here is to permute and append the columns of the original design 

matrix based upon their space-filling properties.   

 In the 17
7)(O  design, an exhaustive enumeration of the column permutations (7!) is 

possible.  In finding the best permutation of columns to be appended, the rank sum of the 

Mm distance and the ML2 discrepancy are used in the same way that is done (see   

Section C of this chapter) when seeking columns to delete.   

 An exhaustive enumeration of the column permutations for the 33
11)( ON , 65

16)( ON , 

and 129
22)( ON designs is not feasible.  One possibility is to sample randomly from the 

possible permutations, rank order the resulting designs for their Mm distances and ML2 

discrepancies, and choose the permutation design with the smallest rank sum.  To do this 

more efficiently, a heuristic is used to narrow the possible permutations for the random 

sampling.21  This is achieved as follows.   

 The ML2 discrepancy is calculated for each combination of three variables      

(e.g., in the 33
11)( ON  design, there are 








3

11
 = 165 combinations).  The ML2 discrepancies 

are then rank ordered from highest (worst space-filling) to lowest (best space-filling).  

The number of times each variable appears in a combination having a high ML2 

discrepancy (e.g., in the 33
11)( ON  design, this is the upper half of the 165 measures, which 

corresponds to 82 measures, since the midpoint is omitted) is compared to the number of 

times each variable appears in a combination having a low ML2 discrepancy (e.g., in the 
33
11)( ON  design, this is the lower half of the 165 measures, which corresponds to 82 

measures, since the midpoint is omitted).  Under the assumption that a variable has an 

equal probability of appearing in either the upper half or lower half, an exact binomial 

test (Conover [1999]) at the 0.10 significance level is performed to identify those 

variables which are more likely to appear in the better combinations and those variables 

which are more likely to appear in the poorer combinations.  The good variables are then 

                                                 
21 Other heuristics are possible.   This one is used because it performs well in the cases examined. 
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restricted to being appended to those variables that are the poorest performing.22  The use 

of this heuristic appears to provide additional design points that improve both near 

orthogonality and space-filling. 

 Three variable combinations are chosen since three-way interactions of this type 

in regression analysis are somewhat possible to explain.  Higher order interactions are 

more difficult to interpret.  A significance level of 0.10 is chosen (over, say 0.05) to 

permit a greater number of variables to be identified as good and poor performers and to 

reduce the total number of required permutations.  Of course, others can choose their own 

levels.    Finally, in all of the cases detailed below, the heuristic has been able to identify 

a best (though not necessarily globally optimal) permutation, whereas random sampling 

has not found a better permutation in a like (or greater) number of attempts.     

 3. Application of the Column Permuting and Appending Heuristic to 
Selected Designs 

 This section provides the suggested column permuting and appending schemes for 

the 17
7)(O , 33

11)( ON , 65
16)( ON , and 129

22)( ON designs from Section C.  The heuristic may be 

repeated to generate additional blocks of runs.   

  a. The 17
7)(O  Design    

  For the 17
7)(O  design, a complete enumeration is possible.  The best 

possible permutation of the original columns (variables) from Table 3.13 is 2, 6, 4, 7, 1, 

5, and 3.  For example, the first column of Table 3.9 is appended with the second column 

of Table 3.9 (less the center point corresponding to level 9), the second column of    

Table 3.9 is appended with the sixth column of Table 3.9, and so on.  This permutation 

achieves the best rank sum for Mm distance and ML2 discrepancy.   

  When the columns are appended, the resulting design is an 33
7)(O  design.  

The design matrix has an Mm distance of approximately 1.2, as compared to the original 

1.479.  This follows since additional design points are being added to the region, so the 

decrease is expected.  Conversely, the ML2 discrepancy decreases from 0.15184 to 

                                                 
22 Computational experiments indicate that additionally restricting the columns to which the poor 
performing variables are appended is not beneficial.  Combining these additional design points with the 
original design points does not yield the best space-filling design. 
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0.09149, indicating that the design points achieve a greater degree of space-filling over 

the region.  

  b.   The 33
11)( ON  Design 

  For the 33
11)( ON  design in Appendix B, the seventh column is identified as 

a good performing variable since the p-value associated with its binomial tests is less than 

0.001.   There is no variable identified as a poor performer having a p-value less than 

0.10.  The poorest performing variables are the first and eighth columns since they each 

appear 11 more times in poor performing combinations than in good performing 

combinations (p-value = 0.135).  Thus, to alleviate some computational burden, the 

seventh column is restricted to appending to either the first or eighth columns. 

  With this restriction, there are 11! possible permutations of the columns.  

By restricting where the seventh column is appended, the required permutations 

decreases from almost 40 million to approximately 7.2 million (a decrease of over 81 

percent).  Two million permutations were done for the unrestricted case and one million 

permutations were done for the restricted case.  The best (not necessarily globally 

optimal) permutation was found from the restricted permutations and had the permuted 

column ordering of 11, 1, 6, 8, 2, 9, 10, 7, 3, 4, and 5.   

  The resulting 65
11)( ON  design has a Mm distance of 1.363 (compared to the 

original 1.758) and improved ML2 discrepancy of 0.36905 (compared to the original 

0.73182).  The design has a non-increasing maximum pairwise correlation (0.0234) and 

condition number (1.13).  Thus, the additional design points are added in such a way that 

the near orthogonality is not jeopardized, but space-filling is improved. 

  c. The 65
16)( ON  Design 

  For the 65
16)( ON  design in Appendix C, the twelfth column is identified as a 

good performing variable since its p-value is less than 0.032 from the exact binomial test.  

The seventh column is the poorest performer since it appears 19 more times in poor 

performing combinations than in good performing combinations and has a p-value less 

than 0.079.   Thus, the twelfth column is restricted to appending to the seventh column.   
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  With this restriction, there are 16! possible permutations of the columns.  

By restricting where the twelfth column is appended, the required number of 

permutations decreases approximately 94 percent.  Three million permutations were done 

for the unrestricted case and 1.5 million permutations were done for the restricted case.  

The best (not necessarily globally optimal) permutation was found from the restricted 

permutations and had the permuted column ordering of 2, 3, 8, 13, 16, 5, 12, 7, 1, 14, 9, 

15, 11, 10, 6, and 4.   

  The resulting 129
16)( ON  design has a Mm distance of 1.91 (compared to the 

original 2.035) and improved ML2 discrepancy of 2.282 (compared to the original 4.465).  

The design has a non-increasing maximum pairwise correlation (0.0291) and condition 

number (1.103).  Thus, the additional design points are added in such a way that the near 

orthogonality is not jeopardized, but space-filling is improved. 

  d. The 129
22)( ON  Design 

  For the 129
22)( ON  design in Appendix D, the third and fifteenth columns are 

identified as the best performing variables with p-values less than 0.023 from the exact 

binomial test.  The first, seventh, tenth, and nineteenth columns are the poorest 

performers as they all have p-values less than 0.085.  Thus, the third and fifteenth 

columns are restricted to appending to one of these four poor performing variables.  Four 

million permutations were done for the unrestricted case and two million permutations 

were done for the restricted case.  The best (not necessarily globally optimal) permutation 

was found from the restricted permutations and had the permuted column ordering of 3, 

16, 20, 11, 9, 19, 4, 14, 12, 15, 22, 8, 1, 5, 6, 21, 2, 17, 13, 10, 18, and 7.   

  The resulting 257
22)( ON  design has a Mm distance of 2.246 (compared to 

the original 2.265) and improved ML2 discrepancy of 19.032 (compared to the original 

37.777).  The design has a non-increasing maximum pairwise correlation (0.0074) and 

condition number (1.039).  Thus, the additional design points are added in such a way 

that the near orthogonality is not jeopardized, but space-filling is improved. 
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  e.   Subsequent Column Permuting and Appending 

  Although this heuristic may be repeated to generate additional run blocks, 

a minor modification is necessary.  Subsequent permutations must take into account that 

the columns have (2n–1) points instead of the original n points.  For example, in the 
129
22)( ON  design, after the first iteration, the first column of the expanded design is 

composed of variables 1 and 3 and has 257 points.  These hybrid columns are used to 

identify which of these columns are good and poor performers.   

  Thus, when an additional permutation is identified using the same 

heuristic previously described, the subsequent appending yields 256 design points (no 

replications of the center point).  Since only 128 design points are necessary for the third 

set of runs, the user can choose whether the first 128 or second 128 design points of the 

new design matrix are appropriate, depending on the Mm distance and ML2 discrepancy.   

E.   SUMMARY 

 The development of the new experimental designs is complete.  Each of the 

desirable design characteristics is satisfied.  These designs are either orthogonal or nearly 

orthogonal and have good space-filling properties.  The measures of maximum pairwise 

correlations and condition numbers are used to assess near orthogonality, and the 

measures of Mm distances and ML2 discrepancies are used to assess space-filling.  The 

combination of these measures allows for an excellent blend of orthogonality and space-

filling.  The end result is a design matrix that offers the means to conduct a systematic 

and comprehensive exploration of a representative sample of the entire experimental 

region. 

 The 33
11)( ON  and 129

22)( ON  designs are used in Chapters IV and V, respectively, to 

illustrate their applicability and strengths.  The previous construction algorithm for our 

designs is augmented with the shifting procedure to provide a complete procedure. 

• Step 1. Determine the number of variables (k>7) required for 
experimentation.  If the number of variables is other than 11, 16, or 22, round 
up the required number of variables up to the nearest one of these numbers. 

 

• Step 2.   Establish a maximum threshold pairwise correlation value, ρ , and a 
maximum threshold condition number. 
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• Step 3.   Using a randomly permuted e, construct a design matrix as 
previously described in this chapter. 

 

• Step 4.   Calculate the pairwise correlations and the condition number. 
 

• Step 5.   If any of the values in Step 4 exceed the thresholds in Step 2, discard 
the design and go to Step 3 with a randomly permuted e (with replacement).  
Otherwise, keep the design and proceed to Step 6.  Repeat Steps 3-5 until a 
desired pre-set number of candidate designs are found. 

 

• Step 6.   Subject each of the candidate designs to Florian’s [1992] method of 
factorization to decrease the maximum pairwise correlation and condition 
number. 

 

• Step 7.   Calculate the Mm distance and ML2 discrepancy for each of the Step 
6 designs.  Rank the designs according to these measures.  Choose the design 
with the minimum rank sum over the two measures. 

 

• Step 8:   If a number of variables other than seven, 11, 16, or 22 is required, 
construct each of the possible combination of columns (having the appropriate 
number of desired variables) from the Step 7 design and calculate the Mm 
distance and ML2 discrepancy.  Choose the design with the minimal rank sum 
over the two measures. 

• Step 9:    Conduct the experiment and associated data analysis.  

• Step 10: Calculate the ML2 discrepancy for each three-variable combination 
in the design matrix.  Order the ML2 discrepancies from highest to lowest. 

 

• Step 11: Identify the best and poorest performing variables by comparing 
how often the individual variables appear in the three-variable combinations 
in the better half of the combinations versus the poorer half of the 
combinations.  An exact binomial test with a significance level of α  (the 
author chose 0.10) is used to identify the acceptable and the unacceptable 
performing variables. 

 

• Step 12:  Restrict the best performing variables by appending these variables 
to one of the poorer performing variables.  Identify the best permutation of 
columns yielding the additional design points by conducting various column 
permutations and comparing the Mm distances and ML2 discrepancies. 
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IV.  APPLICATION OF A 33-RUN, 11-VARIABLE NEARLY ORTHOGONAL 
LATIN HYPERCUBE 

 
 

This chapter details the application of the 33
11)( ON  design of Appendix B to a 

known complicated response function that is specified.  The experimental domain is       

[-1, 1]11.  Each of the 11 variables ranges from –1 to +1.  Its performance is compared 

against both a 33
11( )O  design and a Latin hypercube.  The 33

11)( ON  design offers advantages 

over a two-level full-factorial design by being able to identify and estimate nonlinear 

terms.  Since the design matrix is nearly orthogonal (not a requirement for uniform 

designs), there is minimal multicollinearity and coefficient estimates are sharp.  Although 

regression analysis is done to analyze the results of the proposed experiment, this does 

not imply that the analysis need be restricted to regression analysis.23  

To illustrate a sequential approach to using the nearly orthogonal designs, the 

analysis is as follows.  An initial experiment is done using the 33
11)( ON  design of 

Appendix B.  A predictive equation is formulated for the permuted design.  A second 

experiment is conducted, and the predictive results are compared against the actual 

results.  In this example, the second experiment corroborates the first experiment’s 

results, and the experimentation sequence is terminated.  

A. KNOWN RESPONSE FUNCTION 

The known response function for the example is explicitly defined in this section.  

There are 11 variables or combinations of these variables that, as far as the analyst 

knows, may contribute to the response function.  If common group screening assumptions 

are used (e.g., Dorfman [1943] and Watson [1961]), one would expect no more than two 

variables to be significant.  Furthermore, a variable not declared as significant would not 

be expected to appear in a significant interaction.  

The response, denoted as Y, expressed in terms of the input variables labeled from 

A to K, is shown in (4.1).  With two quadratic terms, two two-variable interactions, and 

                                                 
23 As an example, Ipekci [2002] uses four replications of a 129

22)( ON  design and applies neural nets, 
classification trees, and Bayesian nets to analyze the data. 
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one three-variable interaction, this meets our definition of a high-dimensional complex 

model from Chapter I.  Note that a full-factorial design requiring 211 experiments would 

be incapable of estimating the coefficients of the quadratic terms, and a 311 design would 

require over 177,000 runs per replication.  To further complicate the proposed 

experiment, (4.1) also includes an error term (noise) of independent N(0, 1) values.   

                                          2 22 2 3 3Y A B AB CF DEF ε= + − + − +                              (4.1) 

The error term can have a large effect on the observed output, as compared to the true 

output.  As a means of comparison, the 33
11)(O  design generated from Theorems 3.1 and 

3.2 (the two-dimensional projections of this design is shown in Figure 4.1) is also 

subjected to (4.1).  Both the 33
11)(O  and 33

11)( ON  designs have an experimental domain of  

[-1, 1]11. 

A
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Figure 4.1.  Two-dimensional projections of the 33
11)(O  design constructed using 

Theorems 3.1 and 3.2.  Although this design is orthogonal, its space-filling is poor. 
 

The space-filling seen in Figure 4.1 suggests that there might be difficulty in 

accurately identifying the terms in (4.1) when using the 33
11)(O  design.  The patterns 

associated with variables A and B, variables C and F, variables D and G, and variables E 

and H suggest that possible interactions or quadratic terms might be difficult to assess.  
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Upon further investigation, we find that if there is more than one quadratic term in the 

true response function (note (4.1) has two quadratic terms), then significant pairwise 

correlations can exist between the quadratic terms, resulting in highly variable regression 

coefficient estimates for the quadratic terms when using the 33
11)(O  design. 

A further comparison of the 33
11)(O  and 33

11)( ON  designs, using (4.1), gives 

additional evidence of the nearly orthogonal design’s capability.  The 33
11)(O  and 33

11)( ON  

designs each have 33 separate design points or input variable settings.  A new 

independent  N(0,1) error term is added to each of the 33 responses (for each of the 33
11)(O  

and 33
11)( ON  designs).  The corresponding regression analysis is done in S-Plus by using 

forward and backward stepwise regression with the Akaike information criterion          

[S-Plus, 1991].  This automatic process is repeated 1,000 times with the same stepwise 

regression implementation (i.e., nothing other than the noise is changed).   

The nearly orthogonal design is closer than the orthogonal design to the true A2 

coefficient a total of 950 times out of the 1,000 different experiments.  The nearly 

orthogonal design is closer than the orthogonal design to the true B2 coefficient a total of 

952 times out of the 1,000 different experiments.  The nearly orthogonal design is closer 

than the orthogonal design to the true AB coefficient a total of 808 times out of the 1,000 

different experiments. The nearly orthogonal design is closer than the orthogonal design 

to the true CF coefficient a total of 797 times out of the 1,000 different experiments.  The 

nearly orthogonal design is closer than the orthogonal design to the true DEF coefficient 

a total of 620 times out of the 1,000 different experiments.  All of these are statistically 

significant using the exact binomial test.   

In 401 of the 1,000 cases, the nearly orthogonal design has closer estimates to all 

five coefficients than the orthogonal design.  In 811 of the 1,000 cases, the nearly 

orthogonal design has closer estimates to at least four of the five coefficients than the 

orthogonal design.  In 971 of the 1,000 cases, the nearly orthogonal design has closer 

estimates to at least three of the five coefficients than the orthogonal design.  Finally, the 

mean and standard deviation of each of the 1,000 cases reveals that, while both designs 
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give unbiased estimates, the nearly orthogonal coefficient estimates are much less 

variable.  These mean and standard deviation results are summarized in Table 4.1.   

Term Actual  Nearly  Standard Orthogonal Standard
  Coefficient Orthogonal Design Deviation Design Deviation 

A2  2 2.007 0.627 2.204 9.685 
B2  2 2.003 0.634 1.812 9.694 
AB  -1 -1.001 0.416 -0.982 1.663 
CF 3 2.991 0.486 2.878 1.239 

DEF  -3 -2.997 0.808 -2.899 1.167 
 
Table 4.1.  Comparison of regression coefficients for nearly orthogonal (columns 3 
and 4) and orthogonal designs (columns 5 and 6) using 1,000 replications of the 

33
11)(O  and 33

11)( ON  designs with (4.1), including error terms.  The nearly orthogonal 
design is closer than the orthogonal design for each of the five coefficients.   The 
standard deviations for these coefficients are also considerably smaller for the 
nearly orthogonal design.  

The 33
11)( ON  design is compared to a Latin hypercube (again using the 

experimental domain of [-1,1]11).  One thousand different Latin hypercubes are used with 

error terms as specified previously.  The Latin hypercubes are competitive with the nearly 

orthogonal design, but the nearly orthogonal design has uniformly closer coefficient 

estimates with smaller standard deviations (over the 1,000 replications).  The nearly 

orthogonal design appears to have the best chance of accurately estimating the true 

regression coefficients and predicting future outcomes.  We also expect that as more 

terms appear in the regression equation, the nearly orthogonal designs will perform even 

better against Latin hypercubes  (Latin hypercubes will be more affected by 

multicollinearity). 
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Term Actual  Nearly  Standard Orthogonal Standard
  Coefficient Orthogonal Design Deviation Design Deviation 

A2  2 2.007 0.627 2.019 0.688 
B2  2 2.003 0.634 2.011 0.691 
AB  -1 -1.001 0.416 -0.981 0.585 
CF 3 2.991 0.486 2.933 0.567 

DEF  -3 -2.997 0.808 -2.951 1.001 
 
Table 4.2.  Comparison of regression coefficients for nearly orthogonal (columns 3 
and 4) and Latin hypercubes (columns 5 and 6) using 1,000 replications of the 

33
11)( ON  and Latin hypercube designs with (4.1), including error terms.  The nearly 

orthogonal design is closer than the Latin hypercubes for each of the five 
coefficients.   The standard deviations for these coefficients are also smaller for the 
nearly orthogonal design. 
 
 B. REGRESSION ANALYSIS FOR THE FIRST EXPERIMENT 

In this section, the analysis performed after the first experiment is explained, and  

the recommended sequential approach for using the designs is illustrated.  Since an 

analyst would not actually conduct 1,000 experiments, as was done previously for 

comparative purposes, a single random experiment of 33 runs is performed.  As before, a 

separate independent N(0, 1) error is added to each of the 33 runs.  After the first 

experiment is conducted, a regression analysis is done with forward and backward 

stepwise selection using the Akaike information criterion and sum of squares to identify 

significant terms.  The fitted model achieves an R2 of 0.80, and has a residual standard 

error of 0.966 with 27 degrees of freedom.  The regression equation is shown in (4.2).  

             2 2ˆ 1.905 2.091 .936 2.711 3.04Y A B AB CF DEF= + − + −                  (4.2) 

Table 4.3 shows the percentage of the additive error term when divided by the 

response function (4.1) without the additive error term for each of the 33 runs.  These 

percentages range from –1163 percent to 565 percent, indicating that the error term can 

be substantial.  The NA in the table corresponds to the center point, which has a true 

response value of 0.0.  The quantile-normal plot of the residuals, shown in Figure 4.2, 

reveals that the residuals are normally distributed.  The plot of the residuals versus the 
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predicted values in Figure 4.3 shows a slight curvilinear relation, but is reasonable based 

on (4.1) and the large error terms.24   

 

Run Percentage Run Percentage 
1 4.7 18 -6.3 
2 25.1 19 -0.4 
3 130.0 20 12.2 
4 38.0 21 -55.1 
5 25.2 22 -21.4 
6 16.4 23 -23.2 
7 19.5 24 -85.0 
8 -27.6 25 78.1 
9 564.7 26 -1163.2 
10 34.4 27 -2.8 
11 -256.4 28 -99.0 
12 5.3 29 -139.2 
13 19.9 30 7.6 
14 -60.1 31 86.8 
15 -61.8 32 35.6 
16 -146.1 33 -15.1 
17 NA     

 
Table 4.3.  The percentage of the error term divided by the mean response for the 
first experiment involving 33 runs shows the large effect of the error term. 
 

                                                 
24 Although forecasting or inference is not done using the results of the regression analysis, Chapters IV 
and V provide an exploration of the residuals in order to give the interested reader a more complete 
analysis. 
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Figure 4.2.  Quantile-normal plot of residuals (for the first experiment with 33 
runs). 
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Figure 4.3.  Residuals versus predicted value plot (for the first experiment with 33 
runs). 

From the analysis, (4.2) appears to be a reasonable regression equation for the 

experimental results.  If the experimentation were terminated at this point, the correct 
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terms of the model would be identified.  Although the coefficients would not be entirely 

accurate, their estimates are reasonably correct. 

C. REGRESSION ANALYSIS FOR THE SECOND EXPERIMENT 

This section describes how the results from the first experiment can be used to 

assist in the analysis of the second experiment.  The design matrix of Appendix B has its 

columns permuted, as described in the previous chapter, to generate an additional 32 

design points.  Using this design matrix, the response for these runs is predicted using 

(4.2).  The experiment, consisting of the new 32 design points, is conducted (which 

includes the additive noise).  Table 4.4 shows the percentage of the error term divided by 

the mean of the response function.  Again, the error term significantly influences the 

response. 

Run Percentage Run Percentage 
1 -12.1 17 -12.1 
2 0.8 18 -185.1 
3 -39.8 19 -33.0 
4 -151.0 20 -433.2 
5 -233.1 21 33.6 
6 -28.1 22 1.4 
7 80.4 23 47.7 
8 95.6 24 19.8 
9 61.4 25 -25.1 
10 -52.1 26 -135.4 
11 -26.7 27 30.3 
12 186.2 28 13.1 
13 -59.3 29 31.7 
14 -9.8 30 3.0 
15 95.3 31 88.3 
16 -66.7 32 -0.5 

 
Table 4.4.  The percentage of the error term divided by the mean response for the 
second experiment involving 32 runs. 

 
 The next two figures compare the predicted values of the experiment with the 

actual values.  Figure 4.4 plots the predicted values of the permuted design matrix using 

(4.2) against the true values obtained from (4.1).  Figure 4.5 plots the predicted values of 
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the permuted design matrix using (4.2) against actual values obtained from the 

experiment (which includes noise). 

 Figures 4.4 and 4.5 indicate that the proposed regression of (4.2) does capture the 

relationships between variables.  Furthermore, even with extensive random noise, the 

predicted values are relatively accurate.  The regression equation from the second 

experiment is 

                           .126.3060.3160.1282.2069.2ˆ 22 DEFCFABBAY −+−+=              (4.3) 
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Figure 4.4.  Second experiment predicted values versus true values. 
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Figure 4.5.  Second experiment predicted values versus actual experiment values. 
The fitted model achieves an R2 of 0.81, and has a residual standard error of 0.923 

with 26 degrees of freedom.  An analysis of the residuals (from Figures 4.6 and 4.7) 

indicates that the assumption of normally distributed errors is reasonable.  The model fit 

does suggest that the correct terms have been identified, although ascertaining the exact 

coefficient values is difficult due to the extensive noise. 
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Figure 4.6.  Quantile-normal plot of residuals (for the second experiment with 32 
runs). 
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Figure 4.7.  Residuals versus predicted value plot (for the second experiment with 32 
runs). 

To further refine the coefficient estimates, both sets of experiments may be 

combined to give 65 runs; that is, the 32-run experiment is appended to the 33-run 
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experiment.  This increases the associated degrees of freedom and should provide greater 

model fidelity.  The resulting regression equation from combining the two experiments is 

                         2 2ˆ 1.983 2.173 1.000 2.884 3.085Y A B AB CF DEF= + − + − .              (4.4) 

The fitted model achieves an R2 of 0.80, and has a residual standard error of 0.904 with 

59 degrees of freedom.  The analysis of residuals, shown in Figures 4.8 and 4.9, indicate 

that the residuals are reasonably normally distributed.    Although the coefficient 

estimates are not exact due to the extensive noise, they are substantially correct.  More 

importantly, the two quadratic terms, two two-way interactions, and one three-way 

interaction are accurately identified.  It is important to note that this was an illustrative 

example (as opposed to the 1,000 samples which were used for comparisons) to show 

how one can apply a sequential approach with these nearly orthogonal designs. 
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Figure 4.8.  Quantile-normal plot of residuals (for the combined experiment with 65 
runs). 
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Figure 4.9.  Residuals versus predicted value plot (for the combined experiment with 
65 runs). 
 
D. SUMMARY 

The application of the 33
11)( ON  design (and its permuted and appended version) 

illustrates its capacity to capture the non-linear effects and interactions of a sufficiently 

complex model.  The inclusion of a noise variable did not significantly degrade this 

ability.  In this example, the 33
11)( ON  design provides more accurate regression 

coefficients than the 33
11)(O  and Latin hypercube designs, the designs we are striving to 

improve.  Ye’s [1998] 33-run OLHC is capable of examining only eight variables, but 

our proposed experimental design examines 11 variables.  Ye’s [1998] algorithm requires 

129 runs to examine 11 variables.  Finally, the advantage of the sequential 

experimentation approach as a means of cross-validation and providing interim results is 

shown. 
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V.  APPLICATION OF A 129-RUN, 22-VARIABLE NEARLY 
ORTHOGONAL LATIN HYPERCUBE 

 
  

This chapter describes the application of the 129
22)( ON  design from Appendix D to 

an agent-based simulation of a military peace enforcement operation. A key feature is the 

ability of the proposed designs to efficiently handle many variables, in this case 22.  The 

insights that are gleaned from the author’s military experience and the data analysis are 

summarized. 

Agent-based simulations, such as ISAAC and MANA,25 are examples of complex 

models that may shed light on the nature of combat (e.g., Illachinski [1997], Brown 

[2000], Graves et al. [2000], Unrath [2000]).  In these models, agents are guided by rule 

sets, and emergent behavior is identified.  Agent-based models are an important facet of 

Project Albert, which is an effort by the U.S. Marine Corps Combat Development 

Command to provide quantitative answers to important combat questions.  These models 

are called distillations—“simulations that attempt to model warfare scenarios by 

implementing a small set of rules and parameters that allows focus on specific questions.” 

(Horne and Leonardi [2001])   

Although agent-based simulations are used here, this does not mean that the 

designs are only appropriate for such models.  The rationale for choosing an agent-based 

simulation is that most users of warfare models typically change only one or two 

variables at a time when running computational experiments.  To the best of our 

knowledge, this is the first systematic and comprehensive exploration of such a      

higher-dimensional region in an agent-based simulation.   

The scenario involves a peace enforcement operation.  Peace enforcement is 

defined later in this chapter; here it is important to note that operations of this nature are 

becoming common for the U.S. military.  Furthermore, senior decision-makers have set a 

high priority on attaining critical information and insights about peace enforcement 

                                                 
25 ISAAC is an acronym for irreducible semi-autonomous adaptive combat.  Information about ISAAC can 
be found at http://www.cna.org/isaac/isaac_page.htm. MANA is an acronym for map aware non-uniform 
automata.  MANA is a Maori word signifying aura or respect and authority, which is how the New Zealand 
Army operates  (Lauren and Stephen [2001]).  Additional information about MANA can be found at 
http://www.projectalbert.org.  
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operations in order to reduce the risk to our forces and set the conditions for mission 

success. 

A. MAP AWARE NON-UNIFORM AUTOMATA (MANA) OVERVIEW 

 This section contains a description of the agent-based simulation used in the 

experimentation.  MANA was developed by the New Zealand Defence Technology 

Agency to analyze the effect of chaos and complexity theory in armed conflict.  The 

intent is to identify nonlinearities between variables and the co-evolution and emergence 

of behavior in agents.  The two central ideas of MANA are that the behavior of entities 

within a combat model is critical and highly detailed models are not effective        

(Lauren and Stephen [2001]).  MANA is considered a distillation since it has the 

characteristics of transparency, speed, ease of answering specific questions, and requires 

little training to use (Horne and Leonardi [2001]).  This dissertation does not enter into 

the debate of the usefulness of these model types.  Instead, the focus is on employing the 

new experimental designs in a high-dimensional complex model. 

 One of the major advantages of MANA is that it runs very quickly—the scenario 

used took approximately seven seconds per iteration on a 1.0 GHz Pentium© 4 processor 

computer.  This permits extensive experimentation to occur, but executing many 

thousands of runs may still not be an option.  Another major advantage is that due to the 

agent-based and cellular automaton model of MANA, the entities are not controlled by 

central, predetermined, decision-making algorithms, but make their own decisions as they 

adapt to the environment.  Thus, MANA is a good tool for exploration. 

 There are numerous variables that can be considered in any of the proposed 

scenarios of MANA.  Figures 5.1-5.3 (best viewed in color) show samples and 

explanations of possible variables for squad-sized elements and how they may be defined 

as agents.  The characteristics of how the agents react to other friendly and enemy agents 

in different environments and their weapon and sensor ranges can be modified.  It is 

important to note not only the large number of variables that can be investigated for a 

particular scenario, but also the large selection of levels each variable can have.  A 

complete overview and explanation of variables can be found in the MANA user’s guide 

(Lauren and Stephen [2001]).   
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Figure 5.1.  The MANA screen for general squad properties.  Attributes such as the 
number of agents in the squad and the squad’s location can be modified. 
 

 
Figure 5.2.  The MANA screen for defining the squad’s personality.  Attributes such 
as firepower, stealth, and how the agents react to other friendly and enemy agents in 
different states (i.e., in contact, shot at, injured) can be modified. 
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Figure 5.3.  The MANA screen for defining the squad’s ranges.  Attributes such as 
sensor and weapon ranges and distances from other agents can be modified. 

 
An interesting aspect of this model is shown in Figure 5.2.  The model permits 

entities to have different personalities for different circumstances.  For example, how an 

entity reacts when shot at can be defined differently than how an entity reacts when 

injured.  Furthermore, a squad composed of different entities may have the same 

definition for each entity, or each entity may be uniquely defined.  Thus, a squad of nine 

entities where each entity has 10 different properties in nine possible states can quickly 

make comprehensive exploration difficult, even if each simulation lasts approximately 

seven seconds.  

MANA was an appealing candidate for use with the experimental designs since it 

did meet the distillation criteria.  Since an expansive attempt at exploring a                

high-dimensional region in a model of this type has not previously been done, there is the 

added benefit of assessing MANA’s suitability for addressing complex military issues. 

B. SCENARIO OVERVIEW 

 This section describes the scenario used for experimentation in MANA.  Peace 

enforcement is a critical component of current and future military operations.  The U.S. 
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Army Field Manual 100-23 describes peace enforcement as “the application of military 

force or the threat of its use, normally pursuant to international authorization, to compel 

compliance with generally accepted resolutions or sanctions. The purpose of peace 

enforcement is to maintain or restore peace and support diplomatic efforts to reach a 

long-term political settlement.” 

 The devised scenario is a challenging one since the Blue force is subjected to a 

series of encounters with the Red force and an originally non-hostile force (Yellow) turns 

hostile as the scenario progresses.  Blue’s mission is to clear area of operation (AO) 

Cobra (see Figure 5.4) within the next two hours in order to facilitate United Nations 

(UN) food distribution and military convoy operations.  Blue uses a light infantry platoon 

composed of three nine-man rifle squads and a platoon headquarters (HQ) of seven 

soldiers containing two machine gun teams.  Their movement scheme is one squad up 

and two squads back with the platoon HQ following the lead squad (2nd squad).  The 1st 

squad’s task is to follow and support 2nd squad with the purpose of clearing AO Cobra.  

Their follow-on task is to clear AO Python for subsequent UN food distribution and 

military convoy operations.  The 2nd squad’s task is to conduct a movement to contact 

with the purpose of clearing AO Cobra.  Their follow-on task is to clear AO Cobra for 

subsequent UN food distribution and military convoy operations.  The 3rd squad’s task is 

to follow and support 2nd squad with the purpose of clearing AO Cobra.  Their follow-on 

task is to clear AO Boa (a small urban area with four building structures) for subsequent 

UN food distribution and military convoy operations.  After 2nd squad clears AO Cobra, 

the platoon HQ moves to AO Boa to provide supporting fires for 3rd squad.   

Red has a five-member element located in the vicinity of AO Cobra and two   

two-member elements patrolling along the movement routes of Blue squads 1 and 2.  

Additionally, Red has a two-member element in the vicinity of AO Boa.  An originally 

non-hostile Yellow three-member element is initially in Blue's starting location.  After 

discovering no potable water in vicinity of AO Rattler, Yellow becomes hostile against 

Blue, seeks small arms from the vicinity of AO Boa, and moves to the vicinity of AO 

Python.  The overall scenario is deemed doctrinally correct and plausible by the U.S. 

Army Infantry Simulation Center at Fort Benning, Georgia (McGuire [2001]).  Figure 5.4 
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(best viewed in color) provides an initial graphical depiction of the proposed scheme of 

maneuver.  

 
Figure 5.4.  Initial graphical depiction of proposed scheme of maneuver for the 
MANA peace enforcement scenario. 

 
 There are 22 variables identified for experimentation.  Choosing these 22 from 

among the many available variables and their levels was done using the author’s military 

experience and judgment and from hundreds of small, interactive experiments of 

changing one or two variables and determining if a significant event occurred.  For 

example, it was found that if Blue is given too high of a weapon and sensor range, upon 

initiation of the scenario, Blue immediately kills all of the threat agents.  Thus, it was 

decided that although these variables are critical components of military conflict, in order 

to focus on entity personalities, these variables would not be candidates for 

experimentation.  Although the primary emphasis is on testing the experimental designs, 

secondary criteria did include searching for important variables, interactions, and insights 

for peacekeeping operations and determining the appropriateness of MANA in modeling 
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these operations.  The variables identified for experimentation and a brief description 

follows.  These variables are shown in Figures 5.1-5.3. 

A. Blue Platoon HQ move precision: amount of randomness in blue movement 
 
B. Blue Squad 1 move precision: amount of randomness in blue movement 
 
C. Blue Squad 2 move precision: amount of randomness in blue movement 
 
D. Blue Squad 3 move precision: amount of randomness in blue movement 
 
E. Blue Platoon HQ in contact personality element w1: controls propensity to 

move towards agents of same allegiance 
 
F. Blue Squad 1 in contact personality element w1: controls propensity to move 

towards agents of same allegiance 
 
G. Blue Squad 2 in contact personality element w1: controls propensity to move 

towards agents of same allegiance 
 
H. Blue Squad 3 in contact personality element w1: controls propensity to move 

towards agents of same allegiance 
 
I. Blue Platoon HQ in contact personality element w2: controls propensity to 

move towards agents of enemy allegiance 
 
J. Blue Squad 1 in contact personality element w2: controls propensity to move 

towards agents of enemy allegiance 
 
K. Blue Squad 2 in contact personality element w2: controls propensity to move 

towards agents of enemy allegiance 
 
L. Blue Squad 3 in contact personality element w2: controls propensity to move 

towards agents of enemy allegiance 
 
M. Blue Platoon HQ injured personality element w1: controls propensity to move 

towards agents of same allegiance 
 
N. Blue Squad 1 injured personality element w1: controls propensity to move 

towards agents of same allegiance 
 
O. Blue Squad 2 injured personality element w1: controls propensity to move 

towards agents of same allegiance 
 
P. Blue Squad 3 injured personality element w1: controls propensity to move 

towards agents of same allegiance 
 
Q. Blue Platoon HQ injured personality element w2: controls propensity to move 

towards agents of enemy allegiance 
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R. Blue Squad 1 injured personality element w2: controls propensity to move 
towards agents of enemy allegiance 

 
S. Blue Squad 2 injured personality element w2: controls propensity to move 

towards agents of enemy allegiance 

T. Blue Squad 3 injured personality element w2: controls propensity to move 
towards agents of enemy allegiance 

 
U. Blue movement range for all squads: controls movement speed of agents 
 
V. Red personality element w8: controls propensity to move towards enemies 

(Blue) in situational awareness map which are of threat level 1 
 
There is a requirement for 129 different levels for each input variable.  This is 

done as follows.  Variables A-D have settings of 1-513 in increments of 4, for a total of 

129 levels.  Variables E-T and V have settings of -64 to 64 in increments of 1.  Variable 

U has settings of 72 to 200 in increments of 1.  The firepower and sensor ranges of all 

allegiances are equal in order to amplify personalities. 

The simulation has a duration of 1,000 time steps.  For each run, 100 iterations are 

conducted with different random seeds.  MANA is limited in its output measures.  The 

key measure extracted is the exchange ratio (ER), defined as the quotient of the number 

of Red killed divided by the number of Blue killed.  The other measure to investigate is 

whether Blue occupies each of the three AO’s by time step 1,000.  Due to the high 

variability of the ER, 100 replications are done for each of the 129 input combinations.  

In many cases, the standard deviation is almost one-half of the mean value—even after 

100 runs.  This is an appealing feature to members of Project Albert since it illustrates the 

variable and, perhaps, complex nonlinear nature of military conflict.  Furthermore, it 

underscores the argument that attempting to predict, optimize, or calibrate results of this 

nature via regression analysis might be futile.  A better alternative is to provide   

decision-makers with the insights obtained on the important variables, interactions, 

nonlinearities, and where they occur.  These insights are gained from a systematic and 

comprehensive exploration of the high-dimensional region. 

C. DATA ANALYSIS FOR THE FIRST EXPERIMENT 

This section summarizes the data analysis associated with the experiment using 

the 129
22)( ON  design from Appendix D and examining the resulting ER's.  For each of the 
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129 input variable combinations, the response (ER) is the mean of the 100 runs for the 

regression analysis and is denoted as the mean ER (thus, there are a total of 12,900 runs).  

If the regression equation is fit to all of the raw data, the coefficients will be the same.  

However, the associated p-values and the R2 will be different.  An initial regression 

equation is constructed using the linear effects of all variables to identify the dominant 

main effects of variables C, E, F, G, P, U, and V.  The regression equation is found 

interactively through trial and error using forward and backward stepwise selection (to 

include quadratic terms and three-variable interactions) using the dominant main effect 

variables with various subsets of the non-dominant main effect variables.  The Akaike 

information criterion and sum of squares are the primary measures used to build the 

model.   

An initial regression analysis is done and results in three quadratic terms, four 

linear effects, and seven two-variable interactions.  In building the model, caution is 

maintained against deriving an over fitted model, yet balanced with the goal of the model 

achieving sufficient explanation.  The resulting model, shown in (5.1), has an R2 of .66 

and a residual error of .1584 with 114 degrees of freedom.  The exchange ratio is   

                   ER = 1.201 + (2.385e-007)E 2 + (2.654e-007)P 2 + (2.341e-008)U 2               (5.1) 
- (0.000221)C + (0.00435)F+ (0.00770)G  -  (0.00325)V + (2.400e-006)BN 

- (6.666e-006)CF – (4.201e-006)CG – (0.0000255)EL – (0.0000171)FV 
                            - (0.0000351)GU + (0.0000223)QR . 

Figure 5.5 shows that the predictive ability of the model is susceptible to significant error.  

An advantage of the model, as shown by Figures 5.6 and 5.7, is that the estimated errors 

appear patternless and uncorrelated with the fitted values, and the normal distribution is 

tenable for describing their distribution.    
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Figure 5.5.  First experiment predicted values versus true values for the MANA 
peace enforcement scenario indicating significant noise in the model. 
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Figure 5.6.  Quantile-normal plot of residuals (first experiment) for the MANA 
peace enforcement scenario indicating relative normality. 
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Figure 5.7.  Residuals versus predicted value plot (first experiment) for the MANA 
peace enforcement scenario indicating relative normality. 

Recall that for each of the 129 input variable combinations, the response (ER) is 

the mean of the 100 runs and is denoted as the mean ER.  The mean ER’s appear to have 

a gamma shape (see Figure 5.8).  Parameters using maximum likelihood estimators are 

identified. These include a scale parameter of 0.0671 and shape parameter of 18.315.  

From the Kolmogorov-Smirnov goodness-of-fit test (based on known values for the 

parameters), it appears that the gamma distribution is a plausible model for the mean 

ER’s (p-value=0.586).26  

 

 

 

 

 

 

 

 

                                                 
26 Recall that the mean ER’s are the mean of the 100 replications of the 129 input combinations. 
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Figure 5.8.  Histogram of mean ER’s (first experiment).  The mean ER’s appear to 
have a gamma distribution.                   

Although (5.1) does reasonably well in attempting to explain the relationship 

between the ER and the variables, it may be of limited value for decision-makers due to 

its poor predictive ability and interpretability.  Furthermore, a simulation scenario of this 

type cannot be replicated exactly in the real world.  Finally, due to the chaotic nature of 

warfare, providing a point forecast for an ER, or even an ER with some predictive 

interval, could be misleading.  Instead, the focus is on gaining significant military 

insights (“golden nuggets”) and identifying regions of good and poor performance. 

Although the regression equation can be presented to the decision-maker, the 

following bullet comments are more representative of the type of information that the 

author believes should be presented to military decision-makers.  Future experimentation 

can confirm these insights, cast doubt on them, or create new ones.  These comments are 

culled by studying what the regression terms actually mean in terms of the simulation and 

extensively visualizing the scenario playbacks.  Each insight is found by using data 

analysis, coupled with the author’s military education and experience of over 20 years.  

Each term in (5.1) is investigated to determine the impact upon the ER’s. 

1. Elements should consider moving towards other friendly elements when in 
contact with threat elements. 

 
2. An element with injured soldiers should consider reducing the distance 

between individual soldiers in urban-type terrain. 
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3. Expedited execution might be critical in peace enforcement operations. 
 

4. The lead squad or unit should have some predictability in their movement in 
order to provide follow-on units a better picture of where they are on the 
battlefield. 

 
5. A threat element that is not overtly aggressive might produce more friendly 

casualties.  This problem can be compounded if friendly elements reduce the 
distance between soldiers against a threat of this type. 

 
6. When a friendly element sustains casualties and is reducing the distance 

between soldiers, their movement in doing so should not be predictable. 
 

7. When in contact and no casualties have been sustained, elements should 
consider being less random in their movement. 

 
8. When in contact, elements might consider refraining from reducing the 

distance between soldiers while simultaneously advancing towards the threat. 
 

9. When the lead element is in contact with the threat, if the element attempts to 
mass with other elements, the lead element might consider doing so in a 
measured and deliberate fashion as opposed to an expedited manner. 

 
10. When elements with injured or killed soldiers are in contact with threat 

elements, continuing the operation instead of ceasing it might be more 
advantageous. 

 
 It is also beneficial to examine the tails of the mean ER distribution to see what 

insights exist.  The best mean ER runs (approximately 10 percent or 13 runs) and worst 

mean ER runs (approximately 10 percent or 13 runs) were segregated.  Since only a 

subset of the runs are taken, there are now significant correlations between the input 

variables (i.e., the removal of cases has eliminated the near orthogonality property held 

by the entire design matrix).   

The correlations are computed for each variable and the best and worst mean 

ER’s.  The absolute values of the correlations are then rank ordered for each set of 

segregated runs and these sums added.  The significant variables based on an exact 

binomial test (p-values<0.10) are variables B (Blue Squad 1 move precision), K (Blue 

Squad 2 in contact personality element w2), N (Blue Squad 1 injured personality element 

w1), Q (Blue Platoon HQ injured personality element w2), and S (Blue Squad 2 injured 

personality element w2).  This indicates they have a significant effect on whether the 
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mean ER was high or low when compared to all of the runs.  An analysis of their 

boxplots, shown in Figures 5.9-5.13, is useful in generating insights. 
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Figure 5.9.  Boxplots of levels of variable B (Blue Squad 1 move precision) for best 
and worst mean ER’s (first experiment). 
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Figure 5.10.  Boxplots of levels of variable K (Blue Squad 2 in contact personality 
element w2) for best and worst mean ER’s (first experiment). 
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Figure 5.11.  Boxplots of levels of variable N (Blue Squad 1 injured personality 
element w1) for best and worst mean ER’s (first experiment). 
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Figure 5.12.  Boxplots of levels of variable Q (Blue Platoon HQ injured personality 
element w2) for best and worst mean ER’s (first experiment). 
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Figure 5.13.  Boxplots of levels of variable S (Blue Squad 2 injured personality 
element w2) for best and worst mean ER’s (first experiment). 

 
An analysis of Figures 5.9-5.13 and visualizing the simulation runs from MANA, 

in conjunction with military judgment, provides some additional possible insights. 

11. An element encountering an undetermined element (not identified as friendly    
or threat) should consider moving in an orderly and systematic manner. 

 
12. When in contact with the threat, with no casualties sustained, the lead element 

should consider maintaining contact.  If casualties are sustained, there should 
be consideration given to continuing the engagement with a different lead 
element. 

 
13. When an element has casualties and is engaged with a once non-hostile threat 

that has become hostile, reducing the distance between soldiers might be 
beneficial. 

 
14. When the headquarters element has injured or killed soldiers, the element 

should be cautious in seeking engagement with the threat, although it still 
provides command and control to its subordinate elements. 

 
 Fewer casualties are preferred.  However, the mission of securing the areas must 

be completed.  Therefore, an additional proposed measure is considered.  The measure is 

a categorical variable of whether or not each of the AO’s is occupied by Blue entities by 

time step 1,000.  This measure requires an analysis of the playback since the output file 

cannot provide this information; this is a limitation of MANA.  For each of the 129 input 

variable combinations, a subset of 10 runs from the 100 replications is manually selected.  

If each of the 10 runs in the subset achieves the goal of occupying the AO, the 
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corresponding input variable combination is segregated from those input variable 

combinations not achieving the goal.   

One of the most interesting findings is discovered from this analysis.  The most 

important variable that affects whether the mission is completed on time or not is variable 

U (Blue movement range) when its levels range from 101 to 114.  At these levels, the 

Blue entities do not advance substantially from their initial starting positions.  Yet, at 

levels below 101 and above 114, the Blue entities do move as specified by the parameter 

(i.e., at level 90, the Blue entities move slower than at level 120).  By using the 129
22)( ON  

design, this model problem, not yet resolved, is identified.   

 If the experimentation is terminated at this stage, the military decision-maker may 

have sufficient insight and analysis to make a decision.  Since time permits, the next step 

is to identify the follow-on set of experiments, predict its results, and determine if the 

initial analysis is substantiated by this subsequent experimentation.  Although the next 

design also covers the entire experimental region, based on the first experiment, the 

ranges of certain variables could be reduced to focus on regions of particular interest. 

D. DATA ANALYSIS FOR SUBSEQUENT EXPERIMENTS 

 This section describes the analysis associated with permuting and appending the 

columns of the 129
22)( ON  design, as specified in Chapter III, and then conducting the 

computer experimentation.  Using (5.1) and the permuted 128
22)( ON  design, ER’s were 

predicted for this new design.  Again, each of the 128 runs (the center point is not 

repeated) was replicated 100 times and the mean of the number of Red killed divided by 

the Blue killed (the ER) is the measure.   

The mean ER’s have a gamma distribution similar to that of the first experiment’s 

mean ER’s.  The shape parameter is 17.799 (compared to 18.315) and scale parameter of 

0.0670 (compared to 0.0671).  The Kolmogorov-Smirnov goodness-of-fit test (using the 

estimated parameters) has a p-value of 0.678.   

After the experiment is conducted, the predicted mean ER’s are compared with 

the actual mean ER’s.  Figure 5.14 illustrates this relationship with both a least squares 

and a weighted least squares fitted line.  There is not much difference between the two 

fitted lines.  A correlation of approximately 0.628 exists between the predicted values and 
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actual values.  Although this cross-validation does not achieve as high of agreement as 

one would desire, considering the complexity of the model, the correlation is certainly 

reasonable and indicates our initial proposed model seems reasonable. 

A separate regression equation is done for the second experiment (to identify 

additional insights).  Although initial insights from the first experiment may not be 

confirmed by the second experiment, the insights should not be dismissed.  Even though 

129 runs are done on the first experiment and are not significantly clustered, these design 

points are still quite sparse in 22 dimensions.   The second experiment of 128 points may 

confirm the initial experiment’s findings or generate additional insights since additional 

areas of the experimental region are explored.  The resulting regression equation, built by 

the author as before, contains one quadratic term, six main effects, and four two-way 

interactions.   
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Figure 5.14.  Predicted values versus actual values (second experiment) with least 
squares fitted line (solid) and weighted least squares line (dotted) for the mean ER’s. 

  
 The resulting model, shown in (5.2), has an R2 of 0.67 and a residual error of 

0.1553 with 115 degrees of freedom.  These measures are similar to the measures of 

(5.2), but the model terms are different.  Significant two-variable interactions, where each 
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element of that interaction is not necessarily significant as a main effect, are found in 

(5.2).   

                          ER = 1.678 + (4.035e-007)U 3 - (.000319)B + (.000782)E                  (5.2) 
+ (.00213)F + (.00430)G + (.000976)P + (2.082e-005)FG  

                      -(2.184e-005)GU + (1.977e-005)KR + 6.757e-006)RU 
 
The analysis of the residuals does not indicate a departure from the normality 

assumption and is omitted.  Although the first experiment results in a more complex 

equation and (5.1) and (5.2) do not have all of the same terms, there is similarity between 

the experiments when military analysis and judgment are applied.   

• The addition of the E and FG terms reinforces insight 1. 
 

• The addition of the P term reinforces insight 2. 
 

• The addition of the B term reinforces insight 11. 
 

• The addition of the KR term expands upon insights 9 and 10 by incorporating 
the insight that supporting elements of the lead element must continue to 
provide support even if the supporting element has sustained casualties. 

 

• The addition of the RU term expands insight 13 by incorporating the insight  
that if the element, with or without casualties, decides to engage a hostile 
threat that was once non-hostile, they should do so expeditiously. 

 
This detailed analysis indicates that the two experiments generate complementary 

insights that can be useful to decision-makers.  Furthermore, there is considerable noise 

in the simulation (as would be expected in a true peace enforcement operation), so solely 

using these regression equations to predict, optimize, or calibrate may be misleading.  

Instead, applying data analysis and military knowledge leads to potentially useful results 

from the simulation. 

 As was done in the first experiment, the next step is to identify the top and bottom 

10 percent of the mean ER’s.  After rank ordering the correlations and applying the exact 

binomial test (p-values<0.10) to the rank sums, the significant variables are E (Blue 

Platoon HQ in contact personality element w1), I (Blue Platoon HQ in contact personality 

element w2), K (Blue Squad 2 in contact personality element w2), Q (Blue Platoon HQ 

injured personality element w2), and S (Blue Squad 2 injured personality element w2).  

Variables K, Q, and S share similar boxplots as those in Figures 5.10, 5.12, and 5.13 and 
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support insights 12 and 14.  Figures 5.15 and 5.16 show the boxplots of levels of 

variables E and I for the best and worst mean ER’s. 
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Figure 5.15.  Boxplots of levels of variable E (Blue Platoon HQ in contact 
personality element w1) for best and worst ER’s (second experiment). 
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Figure 5.16.  Boxplots of levels of variable I (Blue Platoon HQ in contact personality 
element w2) for best and worst ER’s (second experiment). 

 
An examination of the correlations for variables E and I from the first experiment’s best 

and worst mean ER’s does not show as strong of a correlation as in the second 
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experiment.  Analyzing Figures 5.15 and 5.16 generates one additional insight and 

confirms a previous insight. 

• When the headquarters element is in contact with the threat, it should consider 
moving towards other friendly elements. 

 

• The I variable reinforces insight 14. 
 

Finally, there are similar problems with Blue movement when variable U had levels of 

101 to 114.  This problem in MANA has been forwarded to the model developers. 

 The first and second experiments are now combined and a regression analysis is 

executed on the 257 input variable combinations.  The resulting model, shown in (5.3), 

has an R2 of 0.67 and a residual standard error of 0.1505 with 243 degrees of freedom.  

The fitted exchange ratio is   

                        ER = 1.890 + (1.928ee-007)U 2 + (.000457)B + (.000736)E +              (5.3) 
+ (.00237)F + (.00568)G +  (.000826)P – (.00898)U – (.00327)V 

– (4.866E-006)BU - (3.021e-005)GU – (2.688e-005)FV + (1.378e-005)IJ 
+ (2.225e-006)BN. 

 
An analysis of the quantile-normal plot of the residuals in Figure 5.17 indicates a    

heavy- tailed right-hand side.  This most likely occurs due to the skewed mean ER 

measures.   
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Figure 5.17.  Quantile-normal plot of residuals (combined experiment) indicating a 
heavy tailed right-hand side. 



 94

 A third experiment is conducted by permuting the columns of the combined 

experiment.  Though the third experiment was not entirely necessary, it is done to 

illustrate how additional design points are generated.  Recall that these permuted columns 

are hybrid columns of the two original columns; that is, each permuted column consists 

of 257 values, with 128 values each showing up twice.  Table 5.1 shows the composition 

of each of the columns, where the number represents the variable from Appendix D.  For 

example, column 1 is composed of columns 1 (first experiment) and 3 (second 

experiment).  This hybrid column is then appended with columns 18 and 17.   

 

            Experiment   

Column First Second Third Fourth 
1 1 3 18 17 
2 2 16 1 3 
3 3 20 21 18 
4 4 11 22 7 
5 5 9 16 21 
6 6 19 8 14 
7 7 4 2 16 
8 8 14 17 2 
9 9 12 14 5 
10 10 15 12 8 
11 11 22 5 9 
12 12 8 4 11 
13 13 1 11 22 
14 14 5 6 19 
15 15 6 20 10 
16 16 21 15 6 
17 17 2 10 15 
18 18 17 13 1 
19 19 13 3 20 
20 20 10 19 13 
21 21 18 7 4 
22 22 7 9 12 

 
Table 5.1.  Column composition for variables in the four MANA experiments. 

 
The hybrid columns that have significantly better space-filling are hybrid columns 

1, 3, 5, and 9.  The poorest hybrid columns are hybrid columns 2, 11, 19, and 22.  The 
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complete design matrix has an Mm distance of 1.9078, ML2 discrepancy of 10.1202, 

maximum pairwise correlation of 0.008, and condition number of 1.037.  Since only one 

of the columns from the third and fourth experiments (see Table 5.1) is required for the 

third iteration, a comparison using the third or fourth experiment appended to the first 

two experiments is done.  Using the third column from Table 5.1 yields an Mm distance 

of 1.9422 and ML2 discrepancy of 13.2759, whereas the fourth column yields an Mm 

distance of 1.9078 and ML2 discrepancy of 13.1352.   Neither dominates the other, and 

the third column is chosen for the third experiment. 

 The predicted mean ER’s using (5.3) and the observed mean ER’s from the third 

experiment have a correlation of 0.80 indicating a strong predictive capability.  Figure 

5.18 illustrates this relationship. 
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Figure 5.18.  Predicted ER versus actual ER for MANA’s third peace enforcement 
scenario experiment resulting in a 0.80 correlation. 

 
Applying regression and data analysis to the third experiment does not yield any 

new terms that were not already identified in (5.1), (5.2), or (5.3).  Furthermore, 

segregating the best and poorest ER’s also does not generate any further insights.  As 

noted previously, the main purpose for executing the third experiment was to demonstrate 

how to identify additional design points from the design matrix containing both the first 

and second experiment’s design points. 
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E. SUMMARY 

This section summarizes the application of the 129
22)( ON  design matrix and its 

permuted designs to a peace enforcement scenario using the agent-based simulation 

MANA in order to obtain insights suitable for a military decision-maker.  The 

methodology achieved the intended objectives of capturing significant insights from a 

complex model in an efficient manner.  A recap of the notable accomplishments follows.  

• The peace enforcement scenario used was assessed as doctrinally correct and 
plausible by the U.S. Army Infantry Simulation Center at Fort Benning, 
Georgia.   

 

• Twenty-two variables were incorporated into the analysis, where each variable 
was sampled uniformly across the applicable ranges.  In most agent-based 
simulation studies, five or fewer variables are used.  The 129

22)( ON  design had 
design points sufficiently dispersed throughout the entire experimental region. 

 

• The nearly orthogonal designs facilitated regression analysis, and models were 
built using the output and the author’s military experience.   

 

• Applying military expertise and judgment to these results generated 
significant insights for military decision-makers and illustrated the 
methodology’s strength.  This type of analysis is more applicable to military 
operations than optimizing, predicting, or calibrating. 

 

• The permuting and appending of columns of the design matrix successfully 
generated additional design points that improved space-filling and 
strengthened the analysis.   

 

• The design showed an excellent capability for identifying model problems or 
flaws. 

 
 Although the design was used in an agent-based simulation to analyze a military 

problem, the applicability of these designs to any problem or simulation is evident.  The 

peace enforcement example in this chapter serves as just one illustration. 
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VI.  SUMMARY OF CONCLUSIONS AND FUTURE RESEARCH 
 
 

This chapter summarizes the contents of the previous chapters and presents a 

coherent overview of the contributions to the body of knowledge and potential areas of 

further research.  Chapter I provides the motivation for why experimental designs are 

necessary and important in military simulations.  It discusses the trade-off between 

required resources for conducting experiments and the quantity and quality of 

information obtainable.  The main goal in any experiment is to collect as much quality 

information as possible while expending minimal resources.  The need in military 

analyses for generating insights or “golden nuggets,” instead of strictly predicting, 

optimizing, or calibrating is articulated.   

 Chapter II outlines the characteristics desired in an experimental design.  The 

development of orthogonal Latin hypercubes and the importance of space-filling is given.  

A comprehensive discussion of the measures used to assess concepts of near 

orthogonality and space-filling is presented.  The proposed designs blend these two 

important properties and offer advantages over other competing designs. 

 Chapter III is the crux of the dissertation.  In it, Ye’s [1998] OLHC algorithm is 

extended to include far more variables (e.g., an 83 percent increase when 129 runs are 

taken).  If some orthogonality is sacrificed, a substantial gain in space-filling can be 

achieved.  An argument follows for examining both the maximum pairwise correlation 

and the condition number in order to assess the quality of a proposed design matrix.  The 

concept of space-filling is emphasized.  Drawing on uniform design theory that 

previously ignored the issue of orthogonality, we implement the ML2 discrepancy in 

conjunction with the Mm distance.  All of this was done in order to enhance the ability to 

discriminate between candidate designs.  The proposed designs are listed in the 

appendices.  The merits of the proposed designs are illustrated by comparison to existing 

designs.  Modifications of the proposed designs to incorporate fewer variables are shown.  

An extensive justification on how additional design points are generated to improve both 

near orthogonality and space-filling concludes the chapter. 
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 Chapters IV and V illustrate the use of the proposed designs.  Chapter IV uses a 
33
11( )ON  design on a known response surface.  The advantages of this design over some 

competing designs is depicted.  Chapter V uses a 129
22( )ON  design for a peace enforcement 

scenario in an agent-based simulation (MANA).  Numerous insights, as well as an 

extensive data analysis, including regression equations, are generated. 

 The dissertation extends the field of experimental design by melding near 

orthogonality and space-filling.  Furthermore, the appendices contain ready-to-use 

designs.  The designs are being considered for use by two major Army analytical 

agencies, CAA and TRAC.  Furthermore, two Naval Postgraduate School Operations 

Research students are using these designs in their master’s theses.  The major 

contributions to the existing body of knowledge include: 

• Extending the orthogonal Latin hypercube design construction to significantly 
increase the number of variables examined, while retaining orthogonality or 
near orthogonality. 

 

• Combining the theory of Latin hypercubes and uniform designs to create 
design matrices with excellent orthogonality and space-filling properties. 

 

• Constructing an algorithm and using associated measures to assess and then 
improve the orthogonality and space-filling of design matrices, and increase 
the likelihood of choosing a best possible design matrix for experimentation. 

 

• Developing an approach that generates additional design points and gracefully 
handles certain classes of premature experiment termination. 

 

• Illustrating the methodology’s applicability and potential by implementing a 
design with 22 variables in an agent-based simulation. 

 The major disadvantage of the methodology is that, except for the 17
7)(O design, 

there is no guarantee that the proposed designs are globally optimal.  Although better 

nearly orthogonal and space-filling designs may exist, the listed designs in the appendices 

are excellent.  Their usefulness was demonstrated in Chapters IV and V. 

 Possible future research in this area is both extensive and exciting.  There are two 

major areas that are particularly worthy of exploration.  The first area concerns design 

matrices that contain both continuous quantitative and qualitative variables.  Currently, 

when a variable contains fewer levels than runs, the levels are used more than once.  This 
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method works reasonably well when the number of levels is relatively close to the 

number of runs.  A thorough examination when certain variables have only two or three 

levels is necessary.  This line of inquiry arose from a discussion with the U.S. Army 

Center for Army Analysis and their value-added analysis for determining which weapon 

systems will be acquired.  In the past, they used Plackett-Burman designs (Loerch et al. 

[1996]).  Recently, they have been using highly fractionated two-level resolution IV 

designs.27  We presented the 17
7)(O  design for their consideration.  Unfortunately, they 

required two variables having only two levels and one variable having three levels.  A 

preliminary methodology was able to achieve a design matrix having a condition number 

of 1.34 with good space-filling properties.  Another major analytical agency         

(TRAC-White Sands Missile Range) has also expressed similar interest in our designs in 

their simulation studies of the U.S. Army’s Future Combat System.  Further research into 

the effect of having qualitative variables and how to improve the design’s near 

orthogonality and space-filling properties is needed.   

 The second area concerns sequencing, combining, and crossing the proposed 

designs with full-factorial, fractional factorial, or group screening designs.  One possible 

approach is to use a nearly orthogonal design for the perceived important variables and a 

full-factorial, fractional factorial, or group screening design for the perceived non-

important variables (or vice versa) to conduct analysis.  An investigation of this 

methodology’s ability to find chaotic regions and determine if the a priori knowledge of 

important and non-important variables is correct or incorrect would be beneficial.  A 

further study of how to combine different experimental designs and under what 

circumstances would be useful.  For example, a group screening design, followed by a 

fractional factorial design, followed by a nearly orthogonal design might be an excellent 

course of action for a complex model with fewer than 10 variables.  Conversely, if there 

are more than 10 variables, perhaps a nearly orthogonal design followed by a fractional 

factorial design might be the best approach.  This area of research could yield important 

                                                 
27 From Box et al. [1978], “a design of resolution R is one in which no p-variable effect is confounded with 
any other effect containing fewer than R - p variables.” 
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insights into how experiments should be conducted to gain the most information while 

expending the minimal resources. 

 The nearly orthogonal and space-filling experimental designs constructed in this 

dissertation have demonstrated their usefulness in high-dimensional complex models.  

The blending of Latin hypercubes and uniform designs, while jointly considering 

multiple orthogonality and space-filling measures, is an important contribution to the 

field of experimental design.  The actual use of these designs in the MANA scenario 

shows their value.  Presently, two other students are using these designs and the peace 

enforcement scenario in their research, and two U.S. Army analytical agencies are using 

or considering the use of these designs in major studies involving billions of dollars.  It is 

the author’s hope that these designs continue to merit serious consideration in future 

military and business analyses. 
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APPENDIX A.  EXAMPLE OF FLORIAN’S [1992] METHOD 
 
 

We will use the example from Florian [1992].  Assume a design matrix exists 

with five variables where each variable has 10 levels.  

  

 

 

 

Let the Spearman rank matrix W = T  = 

                                 

 

 

 

                                                                              

 

 

Rank correlation matrix of W = C =    

 

 

 

 

In order for C  = Q*QT, then Q =  

 

 

 

 

 

Then, D = Q-1 =      

 

 

1 3 4 1 5
8 6 10 2 4
5 5 9 3 7
9 4 1 10 3
6 10 7 8 1
10 2 2 6 6
2 1 5 9 10
4 7 6 4 8
7 8 8 7 9
3 9 3 5 2

1 0.0303 -0.0424 0.309 -0.2 
0.0303 1 0.37 -0.0303 -0.467 
-0.0424 0.37 1 -0.406 0.224 
0.309 -0.0303 -0.406 1 0.00606
-0.2 -0.467 0.224 0.00606 1 

1 0 0 0 0 
0.0303 0.9995 0 0 0 
-0.0424 0.3715 0.9275 0 0 
0.309 -0.0397 -0.4077 0.8583 0 
-0.2 -0.4612 0.4171 0.2559 0.7127 

1 0 0 0 0 
-0.0303 1.0005 0 0 0 
0.05786 -0.4007 1.07817 0 0 
-0.3339 -0.1441 0.51214 1.16509 0 
0.34705 0.9337 -0.8149 -0.4183 1.40311
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Then, DT =  

 

 

 

 

 

 

WB = W*DT =  

 

 
 
 
 

 
Rearranging the columns of WB to correspond to the ordering of W yields: 

1 3 4 1 4 
8 6 10 2 2 
5 5 9 6 5 
9 4 2 7 3 
6 10 5 9 1 
10 2 3 3 8 
2 1 7 10 7 
4 7 6 5 9 
7 8 8 8 10 
3 9 1 4 6 

 

The corresponding correlation matrix of the above matrix is: 

1 0.0303 0.01818 -0.006061 -0.07879
0.0303 1 0.006061 0.1394 -0.1394 
0.01818 0.006061 1 0.1394 0.0303 

-0.006061 0.1394 0.1394 1 0.103 
-0.07879 -0.1394 0.0303 0.103 1 

1 -0.0303 0.05786 -0.3339 0.34705
0 1.0005 -0.4007 -0.1441 0.9337 
0 0 1.07817 0.51214 -0.8149 
0 0 0 1.16509 -0.4183 
0 0 0 0 1.40311

1 2.971 3.169 2.448 6.482 
8 5.76 8.842 3.916 5.001 
5 4.851 7.99 5.715 7.632 
9 3.729 -0.0024 8.581 6.064 
6 9.823 3.89 9.463 3.763 
10 1.698 1.934 4.387 9.613 
2 0.9398 5.106 12.23 7.818 
4 6.882 3.898 5.39 12.58 
7 7.791 5.827 8.763 13.07 
3 8.913 -0.195 5.065 7.704 
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Thus, the correlations are reduced.  The above procedures may be repeated until there is 

no further improvement (decrease) in the maximum pairwise correlation and condition 

number. 

 Figure A.1 contains S-Plus program code that would enable the reader to 

implement Florian’s [1992] procedure. 

 

function(mat, facnum, subnum) 
{ 
 # 
 # This function takes a nearly orthogonal Latin hypercube and improves  
 # its condition number and maximum pairwise correlation by decreasing  
 # both measures.   
 # 
 #  mat - the incoming matrix 
 # facnum - the number of variables or columns 
 # subnum - the number of levels or runs 
 # 
 # The returning argument (bettermatrix) is the improved design matrix.   
 # 
 newmatrix <- matrix(data = NA, nrow = facnum, ncol = facnum) 
 for(i in 1:facnum) { 
  for(j in 1:facnum) { 
   newmatrix[i, j] <- cor(rank(mat[, i]), rank(mat[, j])) 
  } 
 } 
 bettermatrix <- mat %*% t(ginverse(t(chol(newmatrix)))) 
 for(i in 1:facnum) { 
  bettermatrix[, i] <- rank(bettermatrix[, i]) 
 } 
 return(bettermatrix) 
 
 
 
 

A.1.  S-Plus program code to implement Florian’s [1992] procedure that may 
decrease the maximum pairwise correlation and condition number of the original 
design matrix. 
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APPENDIX B.  A 33
11( )ON  DESIGN WITH ORDINAL LEVELS FOR THE 

VARIABLES 
 
 

33 4 15 16 7 29 23 21 33 20 23 
30 33 5 11 13 16 15 7 30 28 25 
29 15 30 2 6 2 32 20 11 13 24 
19 29 33 3 14 31 4 6 15 8 27 
31 2 16 19 8 23 5 24 3 23 14 
32 31 11 29 10 15 18 8 2 25 6 
23 16 32 30 9 1 1 22 29 10 13 
18 23 31 33 12 30 31 9 18 7 8 
22 9 8 7 18 24 20 11 20 3 1 
25 22 10 13 23 8 7 18 28 2 4 
24 8 25 6 32 12 21 3 13 22 5 
26 24 22 14 31 25 6 32 8 19 16 
20 6 7 26 19 20 10 5 12 1 32 
28 20 13 24 29 6 26 19 9 5 31 
21 7 28 25 30 13 12 1 24 30 22 
27 21 20 22 33 27 25 30 27 18 19 
17 17 17 17 17 17 17 17 17 17 17 
1 30 19 18 27 5 11 13 1 14 11 
4 1 29 23 21 18 19 27 4 6 9 
5 19 4 32 28 32 2 14 23 21 10 

15 5 1 31 20 3 30 28 19 26 7 
3 32 18 15 26 11 29 10 31 11 20 
2 3 23 5 24 19 16 26 32 9 28 

11 18 2 4 25 33 33 12 5 24 21 
16 11 3 1 22 4 3 25 16 27 26 
12 25 26 27 16 10 14 23 14 31 33 
9 12 24 21 11 26 27 16 6 32 30 

10 26 9 28 2 22 13 31 21 12 29 
8 10 12 20 3 9 28 2 26 15 18 

14 28 27 8 15 14 24 29 22 33 2 
6 14 21 10 5 28 8 15 25 29 3 

13 27 6 9 4 21 22 33 10 4 12 
7 13 14 12 1 7 9 4 7 16 15 
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APPENDIX C.  A 65
16( )ON  DESIGN WITH ORDINAL LEVELS FOR THE 

VARIABLES 
 
 

47 4 24 13 22 9 53 50 41 45 52 32 63 47 36 61 
62 47 8 16 28 23 23 17 23 11 36 49 47 60 50 32 
58 24 62 31 15 20 18 56 34 58 11 30 27 38 52 57 
42 58 47 6 30 5 56 28 14 22 18 18 9 64 59 41 
60 31 13 42 2 7 46 11 39 52 17 40 40 32 5 55 
35 60 16 58 32 11 12 43 5 4 10 56 58 8 27 51 
50 13 35 62 3 17 7 22 48 36 58 28 11 29 23 59 
53 50 60 47 21 25 36 60 3 13 46 2 17 21 2 42 
45 3 2 22 53 27 34 40 16 65 26 7 52 20 55 26 
63 45 32 28 50 1 2 19 55 31 60 25 44 1 44 3 
34 2 63 15 35 14 16 29 4 54 21 45 2 16 47 13 
64 34 45 30 60 12 60 5 38 15 25 53 21 25 35 17 
36 15 22 64 42 26 41 32 12 48 13 19 62 62 10 4 
51 36 28 34 58 18 26 63 44 26 4 1 34 35 17 20 
38 22 51 63 62 29 38 15 20 56 31 61 10 54 1 29 
44 38 36 45 47 10 55 62 64 29 65 37 30 53 24 8 
56 29 26 27 9 44 44 65 42 25 51 63 38 39 21 19 
37 56 18 1 23 38 24 30 6 46 54 52 24 48 8 1 
48 26 37 14 20 51 3 58 57 34 3 27 35 52 32 6 
40 48 56 12 5 36 31 12 17 47 29 12 53 57 4 28 
54 14 27 40 7 64 65 25 53 27 2 46 20 7 28 12 
52 54 1 48 11 34 29 46 10 64 32 58 12 23 60 21 
65 27 52 37 17 63 14 9 36 17 47 9 37 22 37 18 
39 65 54 56 25 45 61 35 15 60 38 15 65 5 46 14 
41 17 7 9 39 53 58 48 1 24 61 11 7 11 18 43 
49 41 11 23 65 50 4 13 37 61 42 24 25 30 3 56 
55 7 49 20 52 35 27 59 8 9 22 62 50 17 15 39 
59 55 41 5 54 60 45 21 47 38 9 43 48 24 25 64 
61 20 9 59 40 42 47 14 21 7 27 6 15 56 57 36 
46 61 23 55 48 58 17 64 40 43 23 35 5 51 40 44 
43 9 46 49 37 62 9 27 7 16 50 50 60 63 53 35 
57 43 61 41 56 47 51 42 35 63 59 44 43 40 54 50 
33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 
19 62 42 53 44 57 13 16 25 21 14 34 3 19 30 5 
4 19 58 50 38 43 43 49 43 55 30 17 19 6 16 34 



 108

8 42 4 35 51 46 48 10 32 8 55 36 39 28 14 9 
24 8 19 60 36 61 10 38 52 44 48 48 57 2 7 25 
6 35 53 24 64 59 20 55 27 14 49 26 26 34 61 11 
31 6 50 8 34 55 54 23 61 62 56 10 8 58 39 15 
16 53 31 4 63 49 59 44 18 30 8 38 55 37 43 7 
13 16 6 19 45 41 30 6 63 53 20 64 49 45 64 24 
21 63 64 44 13 39 32 26 50 1 40 59 14 46 11 40 
3 21 34 38 16 65 64 47 11 35 6 41 22 65 22 63 
32 64 3 51 31 52 50 37 62 12 45 21 64 50 19 53 
2 32 21 36 6 54 6 61 28 51 41 13 45 41 31 49 
30 51 44 2 24 40 25 34 54 18 53 47 4 4 56 62 
15 30 38 32 8 48 40 3 22 40 62 65 32 31 49 46 
28 44 15 3 4 37 28 51 46 10 35 5 56 12 65 37 
22 28 30 21 19 56 11 4 2 37 1 29 36 13 42 58 
10 37 40 39 57 22 22 1 24 41 15 3 28 27 45 47 
29 10 48 65 43 28 42 36 60 20 12 14 42 18 58 65 
18 40 29 52 46 15 63 8 9 32 63 39 31 14 34 60 
26 18 10 54 61 30 35 54 49 19 37 54 13 9 62 38 
12 52 39 26 59 2 1 41 13 39 64 20 46 59 38 54 
14 12 65 18 55 32 37 20 56 2 34 8 54 43 6 45 
1 39 14 29 49 3 52 57 30 49 19 57 29 44 29 48 
27 1 12 10 41 21 5 31 51 6 28 51 1 61 20 52 
25 49 59 57 27 13 8 18 65 42 5 55 59 55 48 23 
17 25 55 43 1 16 62 53 29 5 24 42 41 36 63 10 
11 59 17 46 14 31 39 7 58 57 44 4 16 49 51 27 
7 11 25 61 12 6 21 45 19 28 57 23 18 42 41 2 
5 46 57 7 26 24 19 52 45 59 39 60 51 10 9 30 
20 5 43 11 18 8 49 2 26 23 43 31 61 15 26 22 
23 57 20 17 29 4 57 39 59 50 16 16 6 3 13 31 
9 23 5 25 10 19 15 24 31 3 7 22 23 26 12 16 
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APPENDIX D.  A 129
22( )ON  DESIGN WITH ORDINAL LEVELS FOR THE 

VARIABLES 
 

 
115 32 58 51 34 59 44 89 73 98 72 120 100 98 78 70 129 120 80 124 116 109
98 115 40 56 29 60 13 59 55 27 62 50 119 77 80 75 122 94 104 94 79 117
90 58 98 1 62 36 54 21 97 84 79 74 61 21 63 20 111 128 82 85 108 72
72 90 115 39 33 48 57 98 10 53 35 60 54 49 44 47 127 87 125 100 76 79
91 1 51 72 7 31 14 69 47 120 129 82 15 128 110 87 35 58 57 84 94 113
129 91 56 90 11 2 52 43 76 6 33 16 24 129 81 113 63 41 45 95 98 119
74 51 129 98 4 38 21 30 32 121 124 94 91 14 1 45 15 61 41 88 121 118
79 74 91 115 3 9 45 119 112 3 40 28 64 12 22 13 37 44 56 75 125 61
127 4 7 34 79 27 26 126 94 56 94 110 96 36 77 126 34 122 103 4 43 101
126 127 11 29 74 35 16 14 27 71 26 19 63 18 90 90 16 118 59 48 29 94
119 7 126 62 129 37 41 10 100 29 80 107 22 70 36 28 30 97 121 1 39 93
123 119 127 33 91 50 19 129 66 117 37 41 32 87 33 26 57 109 70 9 26 76
97 62 34 123 72 24 53 93 7 47 85 115 2 28 117 107 94 42 15 62 60 99
68 97 29 119 90 46 12 31 118 70 27 51 3 42 109 63 121 47 28 32 64 87
101 34 68 126 98 30 61 28 5 19 127 104 109 97 31 15 68 39 10 60 19 81
96 101 97 127 115 5 23 67 126 94 32 55 124 80 43 49 76 34 12 37 74 127
125 30 24 27 59 96 6 90 89 64 28 77 81 78 27 116 128 6 101 10 107 10
100 125 46 35 60 101 55 26 20 62 96 6 77 93 57 100 80 11 88 39 123 62
84 24 100 37 36 68 28 5 88 69 31 119 41 63 92 54 124 9 87 41 50 8 
106 84 125 50 48 97 17 103 45 21 70 32 8 61 85 7 79 3 78 31 67 47
80 37 27 106 31 123 64 86 40 129 14 83 23 126 3 86 59 106 11 50 128 15
93 80 35 84 2 119 49 17 111 35 125 73 7 75 2 80 17 71 49 8 113 23
95 27 93 100 38 126 43 45 8 122 7 113 104 6 116 33 52 103 69 51 105 22
103 95 80 125 9 127 25 81 105 37 128 52 82 17 120 58 38 85 32 28 83 4 
121 38 31 59 103 79 42 128 61 34 57 106 71 56 35 118 14 7 107 119 18 44
92 121 2 60 95 74 20 38 50 105 81 38 85 44 4 121 26 49 117 128 49 20
128 31 92 36 93 129 8 16 78 40 39 108 60 91 66 18 23 50 75 112 30 64
99 128 121 48 80 91 22 97 37 76 126 8 38 105 79 41 5 66 92 107 57 28
82 36 59 99 106 72 47 70 1 49 41 61 5 10 5 114 87 99 17 109 11 57
94 82 60 128 84 90 63 55 96 118 74 46 40 20 48 108 91 129 6 71 41 46
70 59 94 92 100 98 10 51 6 2 17 112 121 104 70 62 84 73 8 101 68 24
71 70 82 121 125 115 18 95 86 99 101 4 95 90 88 39 89 95 34 76 6 52
112 10 47 42 6 44 71 64 117 73 117 67 116 96 74 52 110 84 14 115 1 6 
120 112 63 20 55 13 70 52 49 5 43 68 117 123 62 42 85 107 25 78 48 33
67 47 120 8 28 54 94 20 121 106 69 54 31 45 19 71 82 76 19 127 33 41
83 67 112 22 17 57 82 123 15 17 52 103 36 16 25 77 77 92 44 81 15 55
108 8 42 83 64 14 99 108 62 86 76 2 29 100 96 10 31 60 68 106 55 40
122 108 20 67 49 52 128 39 77 79 11 101 19 95 113 31 29 48 84 111 42 2 
110 42 122 120 43 21 92 8 29 110 88 12 78 51 55 125 60 20 76 118 34 59
88 110 108 112 25 45 121 111 128 48 21 100 87 68 18 92 27 18 79 97 46 30
105 43 64 6 88 26 103 88 72 14 110 31 112 9 121 73 28 105 2 47 120 9 
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87 105 49 55 110 16 95 68 3 92 24 93 114 27 93 37 11 67 21 34 110 14
81 64 87 28 122 41 93 36 116 15 107 45 47 101 24 111 69 125 36 58 127 18
66 81 105 17 108 19 80 96 31 119 38 86 12 107 32 106 64 77 1 25 102 32
113 28 6 66 83 53 106 73 38 72 118 43 28 5 115 6 108 17 77 61 69 26
102 113 55 81 67 12 84 3 67 87 55 109 46 22 72 25 117 37 90 63 99 50
75 6 102 87 120 61 100 18 23 22 108 3 80 59 11 94 123 26 97 5 59 34
124 75 113 105 112 23 125 101 91 126 59 95 79 83 76 101 109 19 99 40 86 39
107 61 53 26 44 124 96 124 113 123 53 33 126 57 30 27 90 14 7 14 8 125
69 107 12 16 13 75 101 53 21 52 122 105 74 76 7 64 106 29 4 38 35 95
118 53 69 41 54 102 68 24 114 67 15 39 27 3 83 95 75 55 20 73 24 82
77 118 107 19 57 113 97 72 46 50 100 71 10 41 124 98 112 56 22 64 40 111
111 41 26 77 14 66 123 107 11 89 48 13 44 84 23 2 72 108 100 16 45 74
89 111 16 118 52 81 119 13 70 33 67 125 58 119 39 1 42 98 64 13 13 85
114 26 89 69 21 87 126 9 28 91 25 9 129 48 84 109 25 79 106 20 53 105
104 114 111 107 45 105 127 80 74 28 86 129 68 13 59 122 49 102 114 43 52 92
85 21 14 44 104 88 79 84 108 18 16 49 75 8 28 46 33 13 18 113 126 123
109 85 52 13 114 110 74 25 35 104 84 72 73 38 8 3 47 16 35 104 118 103
78 14 109 54 89 122 129 47 71 23 18 42 25 106 114 74 10 68 37 86 93 129
116 78 85 57 111 108 91 118 51 88 121 123 33 99 89 79 56 40 58 74 114 114
73 54 44 116 77 83 72 115 48 16 66 40 37 19 12 11 118 100 91 103 103 63
76 73 13 78 118 67 90 48 106 85 83 64 17 58 26 34 86 126 127 108 72 88
117 44 76 109 69 120 98 54 43 30 19 14 88 115 69 82 126 115 67 77 109 77
86 117 73 85 107 112 115 74 104 75 120 96 110 66 101 69 98 78 83 123 92 70
65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
15 98 72 79 96 71 86 41 57 32 58 10 30 32 52 60 1 10 50 6 14 21
32 15 90 74 101 70 117 71 75 103 68 80 11 53 50 55 8 36 26 36 51 13
40 72 32 129 68 94 76 109 33 46 51 56 69 109 67 110 19 2 48 45 22 58
58 40 15 91 97 82 73 32 120 77 95 70 76 81 86 83 3 43 5 30 54 51
39 129 79 58 123 99 116 61 83 10 1 48 115 2 20 43 95 72 73 46 36 17
1 39 74 40 119 128 78 87 54 124 97 114 106 1 49 17 67 89 85 35 32 11

56 79 1 32 126 92 109 100 98 9 6 36 39 116 129 85 115 69 89 42 9 12
51 56 39 15 127 121 85 11 18 127 90 102 66 118 108 117 93 86 74 55 5 69
3 126 123 96 51 103 104 4 36 74 36 20 34 94 53 4 96 8 27 126 87 29
4 3 119 101 56 95 114 116 103 59 104 111 67 112 40 40 114 12 71 82 101 36

11 123 4 68 1 93 89 120 30 101 50 23 108 60 94 102 100 33 9 129 91 37
7 11 3 97 39 80 111 1 64 13 93 89 98 43 97 104 73 21 60 121 104 54

33 68 96 7 58 106 77 37 123 83 45 15 128 102 13 23 36 88 115 68 70 31
62 33 101 11 40 84 118 99 12 60 103 79 127 88 21 67 9 83 102 98 66 43
29 96 62 4 32 100 69 102 125 111 3 26 21 33 99 115 62 91 120 70 111 49
34 29 33 3 15 125 107 63 4 36 98 75 6 50 87 81 54 96 118 93 56 3 
5 100 106 103 71 34 124 40 41 66 102 53 49 52 103 14 2 124 29 120 23 120

30 5 84 95 70 29 75 104 110 68 34 124 53 37 73 30 50 119 42 91 7 68
46 106 30 93 94 62 102 125 42 61 99 11 89 67 38 76 6 121 43 89 80 122
24 46 5 80 82 33 113 27 85 109 60 98 122 69 45 123 51 127 52 99 63 83
50 93 103 24 99 7 66 44 90 1 116 47 107 4 127 44 71 24 119 80 2 115
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37 50 95 46 128 11 81 113 19 95 5 57 123 55 128 50 113 59 81 122 17 107
35 103 37 30 92 4 87 85 122 8 123 17 26 124 14 97 78 27 61 79 25 108
27 35 50 5 121 3 105 49 25 93 2 78 48 113 10 72 92 45 98 102 47 126
9 92 99 71 27 51 88 2 69 96 73 24 59 74 95 12 116 123 23 11 112 86

38 9 128 70 35 56 110 92 80 25 49 92 45 86 126 9 104 81 13 2 81 110
2 99 38 94 37 1 122 114 52 90 91 22 70 39 64 112 107 80 55 18 100 66

31 2 9 82 50 39 108 33 93 54 4 122 92 25 51 89 125 64 38 23 73 102
48 94 71 31 24 58 83 60 129 81 89 69 125 120 125 16 43 31 113 21 119 73
36 48 70 2 46 40 67 75 34 12 56 84 90 110 82 22 39 1 124 59 89 84
60 71 36 38 30 32 120 79 124 128 113 18 9 26 60 68 46 57 122 29 62 106
59 60 48 9 5 15 112 35 44 31 29 126 35 40 42 91 41 35 96 54 124 78
18 120 83 88 124 86 59 66 13 57 13 63 14 34 56 78 20 46 116 15 129 124
10 18 67 110 75 117 60 78 81 125 87 62 13 7 68 88 45 23 105 52 82 97
63 83 10 122 102 76 36 110 9 24 61 76 99 85 111 59 48 54 111 3 97 89
47 63 18 108 113 73 48 7 115 113 78 27 94 114 105 53 53 38 86 49 115 75
22 122 88 47 66 116 31 22 68 44 54 128 101 30 34 120 99 70 62 24 75 90
8 22 110 63 81 78 2 91 53 51 119 29 111 35 17 99 101 82 46 19 88 128

20 88 8 10 87 109 38 122 101 20 42 118 52 79 75 5 70 110 54 12 96 71
42 20 22 18 105 85 9 19 2 82 109 30 43 62 112 38 103 112 51 33 84 100
25 87 66 124 42 104 27 42 58 116 20 99 18 121 9 57 102 25 128 83 10 121
43 25 81 75 20 114 35 62 127 38 106 37 16 103 37 93 119 63 109 96 20 116
49 66 43 102 8 89 37 94 14 115 23 85 83 29 106 19 61 5 94 72 3 112
64 49 25 113 22 111 50 34 99 11 92 44 118 23 98 24 66 53 129 105 28 98
17 102 124 64 47 77 24 57 92 58 12 87 102 125 15 124 22 113 53 69 61 104
28 17 75 49 63 118 46 127 63 43 75 21 84 108 58 105 13 93 40 67 31 80
55 124 28 43 10 69 30 112 107 108 22 127 50 71 119 36 7 104 33 125 71 96
6 55 17 25 18 107 5 29 39 4 71 35 51 47 54 29 21 111 31 90 44 91

23 69 77 104 86 6 34 6 17 7 77 97 4 73 100 103 40 116 123 116 122 5 
61 23 118 114 117 55 29 77 109 78 8 25 56 54 123 66 24 101 126 92 95 35
12 77 61 89 76 28 62 106 16 63 115 91 103 127 47 35 55 75 110 57 106 48
53 12 23 111 73 17 33 58 84 80 30 59 120 89 6 32 18 74 108 66 90 19
19 89 104 53 116 64 7 23 119 41 82 117 86 46 107 128 58 22 30 114 85 56
41 19 114 12 78 49 11 117 60 97 63 5 72 11 91 129 88 32 66 117 117 45
16 104 41 61 109 43 4 121 102 39 105 121 1 82 46 21 105 51 24 110 77 25
26 16 19 23 85 25 3 50 56 102 44 1 62 117 71 8 81 28 16 87 78 38
45 109 116 86 26 42 51 46 22 112 114 81 55 122 102 84 97 117 112 17 4 7 
21 45 78 117 16 20 56 105 95 26 46 58 57 92 122 127 83 114 95 26 12 27
52 116 21 76 41 8 1 83 59 107 112 88 105 24 16 56 120 62 93 44 37 1 
14 52 45 73 19 22 39 12 79 42 9 7 97 31 41 51 74 90 72 56 16 16
57 76 86 14 53 47 58 15 82 114 64 90 93 111 118 119 12 30 39 27 27 67
54 57 117 52 12 63 40 82 24 45 47 66 113 72 104 96 44 4 3 22 58 42
13 86 54 21 61 10 32 76 87 100 111 116 42 15 61 48 4 15 63 53 21 53
44 13 57 45 23 18 15 56 26 55 10 34 20 64 29 61 32 52 47 7 38 60
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