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Two types of sampling plans are examined as alternatives to simple random sampling in
Monte Carlo studies. These plans are shown to be improvements over simple random sampling
with respect to variance for a class of estimators which includes the sample mean and the
empirical distribution function.

arise from within the physical process itself when
system parameters are not constant, but vary in some
manner about nominal values. We model our uncer-
tainty about the values of the inputs by treating them
as random variables. The information desired from
the code can be obtained from a study of the proba-
bility distribution of the output Y(t). Consequently,
we model the "numerical" experiment by Y(t) as an
unknown transformation h(X) of the inputs X, which
have a known probability distribution F(x) for x £ 5 .
Obviously several values of X, say Xu • • -,XS, must
be selected as successive inputs sets in order to obtain
the desired information concerning Y{t). When iV
must be small because of the running time of the
code, the input variables should be selected with great
care.

The next section describes three methods of select-
ing (sampling) input variables. Sections 3, 4 and 5 are
devoted to comparing the three methods with respect
to their performance in an actual computer code.

The computer code used in this paper was devel-
oped in the Hydrodynamics Group of the Theoretical
Division at the Los Alamos Scientific Laboratory, to
study reactor safety [8]. The computer code is named
SOLA-PLOOP and is a one-dimensional version of
another code SOLA [7]. The code was used by us to
model the blowdown depressurization of a straight
pipe filled with water at fixed initial temperature and
pressure. Input variables include: Xu phase change
rate; X2, drag coefficient for drift velocity; X3, number
of bubbles per unit volume; and Xt, pipe roughness.
The input variables are assumed to be uniformly
distributed over given ranges. The output variable is
pressure as a function of time, where the initial time t0

is the time the pipe ruptures and depressurization
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1. INTRODUCTION

Numerical methods have been used for years to
provide approximate solutions to fluid flow problems
that defy analytical solutions because of their com-
plexity. A mathematical model is constructed to re-
semble the fluid flow problem, and a computer pro-
gram (called a "code"), incorporating methods of
obtaining a numerical solution, is written. Then for
any selection of input variables X = (Xu • • •, XK) an
output variable Y = h(X) is produced by the com-
puter code. If the code is accurate the output Y
resembles what the actual output would be if an
experiment were performed under the conditions X.
It is often impractical or impossible to perform such
an experiment. Moreover, the computer codes are
sometimes sufficiently complex so that a single set of
input variables may require several hours of time on
the fastest computers presently in existence in order
to produce one output. We should mention that a
single output Y is usually a graph Y{t) of output as a
function of time, calculated at discrete time points /,
h < t < h.

When modeling real world phenomena with a com-
puter code one is often faced with the problem of
what values to use for the inputs. This difficulty can

Received January 1977; revised May 1978

239



M. D. McKAY, W. J. CONOVER AND R. J. BECKMAN240

compared to random sampling with respect to the
c4as§A£ estimators of the form

T{Yl,---,YN) = {\/N)ftg(Yl),

where #(•) = arbitrary function.

If g(Y) = Y then T represents the sample mean which
is used to estimate E(Y). If g(Y) = Yr we obtain the
Ith sample moment. By letting g(Y) = 1 for Y <; y, 0
otherwise, we obtain the usual empirical distribution
function at the point y. Our interest is centered
around these particular statistics.

Let r denote the expected value of T when the Yt's
constitute a random sample from the distribution of
Y - h(X). We show in the Appendix that both strati-
fied sampling and Latin hypercube sampling yield
unbiased estimators of r.

If TR is the estimate of T from a random sample of
size N, and Ts is the estimate from a stratified sample
of size N, then Var(Ts) ^ Var(7B) when the stratified
plan uses equal probability strata with one sample
per stratum (all pt = \/N and ntJ = 1). No direct
means of comparing the variance of the correspond-
ing estimator from Latin hypercube sampling, TL, to
Var(rs) has been found. However, the following the-
orem, proved in the Appendix, relates the variances
of TL and TR.

Theorem. If Y = h(Xu •••, XK) is mono ton ic in
each of its arguments, and g{Y) is a monotonic func-
tion of Y, then Var(TL) < Var(TR).

2.2 The SOLA-PLOOP Example
The three sampling plans were compared using the

SOLA-PLOOP computer code with iV = 16. First a
random sample consisting of 16 values of X = (Xu

X2, X3, Xi) was selected, entered as inputs, and 16
graphs of Y(t) were observed as outputs. These out-
put values were used in the estimators.

For the stratified sampling method the range of
each input variable was divided at the median into
two parts of equal probability. The combinations of
ranges thus formed produced 2* = 16 strata St. One
observation was obtained at random from each St as
input, and the resulting outputs were used to obtain
the estimates.

To obtain the Latin hypercube sample the range of
each input variable Xt was stratified into 16 intervals
of equal probability, and one observation was drawn
at random from each interval. These 16 values for the
4 input variables were matched at random to form 16
inputs, and thus 16 outputs from the code.

The entire process of sampling and estimating for
the three selection methods was repeated 50 times in
order to get some idea of the accuracies and preci-
sions involved. The total computer time spent in run-
ning the SOLA-PLOOP code in this study was 7
hours on a CDC-6600. Some of the standard devia-

initiates, and the final time /, is 20 milliseconds later.
Trie pressureis f ewrtetf at^.t mtHisee«fl4 4jjR&iate>
vals. The code was used repeatedly so that the accu-
racy and precision of the three sampling methods
could be compared.

2. A DESCRIPTION OF THE THREE METHODS USED
FOR SELECTING THE VALUES OF INPUT VARIABLES

From the many different methods of selecting the
values of input variables, we have chosen three that
have considerable intuitive appeal. These are called
random sampling, stratified sampling, and Latin hy-
percube sampling.

Random Sampling. Let the input values Xi, • • •, XN

be a random sample from F(x). This method of sam-
pling is perhaps the most obvious, and an entire body
of statistical literature may be used in making infer-
ences regarding the distribution of Y(t).

Stratified Sampling. Using stratified sampling, all
areas of the sample space of X are represented by
input values. Let the sample space 5 of X be parti-
tioned into / disjoint strata St. Let pt = P(X £ St)
represent the size of St. Obtain a random sample ATI;,J
= 1, • • •, nt from St. Then of course the nt sum to N.
If / = 1, we have random sampling over the entire
sample space.

Latin Hypercube Sampling. The same reasoning
that led to stratified sampling, ensuring that all por-
tions of S were sampled, could lead further. If we
wish to ensure also that each of the input variables Xk

has all portions of its distribution represented by
input values, we can divide the range of each Xh into
N strata of equal marginal probability \/N, and
sample once from each stratum. Let this sample be
Xk],j = 1, • • •, N. These form the Xk component, k =
1, • • •, K, inX(, / = 1, • • •, N. The components of the
various XH'S are matched at random. This method of
selecting input values is an extension of quota sam-
pling [13], and can be viewed as a AT-dimensional
extension of Latin square sampling [11].

One advantage of the Latin hypercube sample ap-
pears when the output Y(t) is dominated by only a
few of the components of X. This method ensures
that each of those components is represented in a
fully stratified manner, no matter which components
might turn out to be important.

We mention here that the N intervals on the range
of each component of X combine to form NK cells
which cover the sample space of X. These cells, which
are labeled by coordinates corresponding to the inter-
vals, are used when finding the properties of the
sampling plan.

2.1 Estimators

In the Appendix (Section 8), stratified sampling
and Latin hypercube sampling are examined and
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tion plots appear to be inconsistent with the theoreti-
cal results. These occasional discrepancies are be-
lieved to arise from the non-independence of the
estimators over time and the small sample sizes.

3. ESTIMATING THE MEAN

The goodness of an unbiased estimator of the mean
can be measured by the size of its variance. For each
sampling method, the estimator of E(Y(t)) is of the
form
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where FIGURE I. Estimating the mean: the sample mean of YR(t), Ys(t),
and YL(t),y ((0=/r(X (), i=l,---,N.

In the case of the stratified sample, the X( comes
from stratum St, pt = l/N and nt = \. For the Latin
hypercube sample, the X, is obtained in the manner
described earlier. Each of the three estimators YR, Ys,
and YL is an unbiased estimator of E(Y(t)). The
variances of the estimators are given in (3.2):

S\t) = (UN) Z (Y,(t) - Y(t)f, (4.1)
i - i

and its expectation is

£($•(/)) = Var(y(0) - Var(?(O), (4.2)

where Y(t) is one of YR(t), Ys(t), or YL(t).
In the case of the random sample, it is well known

that N S^n/iN — 1) is an unbiased estimator of the
variance of Y(t). The bias in the case of the stratified
sample is unknown. However, because Wax(Y^t)) <
Var(F*(0),

(1 - l/N) Var(K(/)) £ E{S.\t)) ^ Var(r(0). (4.3)
The bias in the Latin hypercube plan is also un-
known, but for the SOLA-PLOOP example it was
small. Variances for these estimators were not found.

Again using the SOLA-PLOOP example, means
and standard deviations (based on 50 observations)
were computed. The mean plots are given in Figure 3.
They indicate that all three estimators are in relative
agreement concerning the quantities they are estimat-
ing. In terms of standard deviations of the estimators,
Figure 4 shows that, although stratified sampling
yields about the same precision as does random sam-

Var(Kfi(0) = (1/AO Var(r(/))
Nz

t-1

Var(rs(0) = Var(y*(/)) - (UN2) £ Qit - nf

Var(yL(0) = Var(rfl(0) + ((N- \)/N)

• 1/(N«(N - 1 )*)) Z 0** - MH ~ /0 (3-2)
R

where ft = E(Y(t)),

H, = E(Y(t) | X £ Si) in the stratified sample, or

tit = E(Y(t) | X G cell /) in the Latin hypercube
sample,

and R means the restricted space of all pairs ^t, fij
having no cell coordinates in common.

For the SOLA-PLOOP computer code the means
and standard deviations, based on 50 observations,
were computed for the estimators just described.
Comparative plots of the means are given in Figure 1.
All of the plots of the means are comparable, demon-
strating the unbiasedness of the estimators.

Comparative plots of the standard deviations of
the estimators_are given in Figure 2. The standard
deviation of Ys(t) is_smaller than that of YR(t) as
expected. However, YL(t) clearly demonstrates supe-
riority as an estimator in this example, with a stan-
dard deviation roughly one-forth that of the random
sampling estimator.

4. ESTIMATING THE VARIANCE

For each sampling method, the form of the estima-
tor of the variance is
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FIGURE 2. Estimating the mean: the standard deviation of Ya(t\
}'„(/), and YL(t).
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Ss'{t), and SL'(t).
FIGURE 5. Estimating the CDF: the sample mean of GR[y, t),
Gs(y, t), and Gdy, t) at / = 1.4.

Var(GsO>, 0 ) = Var(Gfi(y, 0 )

-{VN*)Z(Dt(y,t)-D(y,t)y

pling, Latin hypercube furnishes a clearly better es-
timator.

5. ESTIMATING THE DISTRIBUTION FUNCTION

The distribution function, D(y, t), of Y(t) = h(X)
may be estimated by the empirical distribution func-
tion. The empirical distribution function can be writ-
ten as

Var{GL(y, 0 ) = Var((7fiG>, 0 )

+((#- \)/N- l/NK(N- I)") 2 (AC.0

G(y, t) = (1/tf) £ u{y - YAf)), (5.1) - D{y, 0) • {Dj(y, t) - D(y, t)). (5.2)

As with the cases of the mean and variance estima-
tors, the distribution function estimators were com-
pared for the three sampling plans. Figures 5 and 6
give the means and standard deviations of the estima-
tors at / = 1.4 ms. This time point was chosen to
correspond to the time of maximum variance in the
distribution of Y(t). Again the estimates obtained
from a Latin hypercube sample appear to be more
precise in general than the other two types of esti-
mates.

i - i

where u(z) = 1 for z > 0 and is zero otherwise. Since
equation (5.1) is of the form of the estimators in
Section 2.1, the expected value of G{y, t) under the
three sampling plans is the same, and under random
sampling, the expected value of G{y, i) is D(y, t).

The variances of the three estimators are given in
(5.2). Dt again refers to either stratum i or cell i, as
appropriate, and R represents the same restricted
space as it did in (3.2).

Var(GR0', 0) = (1/W) D{y, t){\ - D(y, t))
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FIGURE 4. Estimating the variance: the standard deviation of
SH'U). SAD, and SL'(l).

FIGURE 6. Estimating the CDF: the standard deviation of GR{y,
I), Gs(j: 0. and GL(y, t) at t - 1.4.
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6. DISCUSSION AND CONCLUSIONS

We have presented three sampling plans and asso-
ciated estimators of the mean, the variance, and the
population distribution function of the output of a
computer code when the inputs are treated as random
variables. The first method is simple random sam-
pling. The second method involves stratified sam-
pling and improves upon the first method. The third
method is called here Latin hypercube sampling. It is
an extension of quota sampling [13], and it is a first
cousin to the "random balance" design discussed by
Satterthwaite [12], Budne [2], Youden, et al [15],
Anscombe [1], and to the highly fractionalized facto-
rial designs discussed by Enrenfeld and Zacks [5, 6],
Dempster [3, 4], and Zacks [16, 17], and to lattice
sampling as discussed by Jessen [9]. This third
method improves upon simple random sampling
when certain monotonicity conditions hold, and it
appears to be a good method to use for selecting
values of input variables.
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8. APPENDIX

In the sections that follow we present some general
results about stratified sampling and Latin hypercube
sampling in order to make comparisons with simple
random sampling. We move from the general case of
stratified sampling to stratified sampling with propor-
tional allocation, and then to proportional alloca-
tions with one observation per stratum. We examine
Latin hypercube sampling for the equal marginal
probability strata case only.

8.1 Type I Estimators

Let X denote a K variate random variable with
probability density function ipdf) /(x) for x £ 5 . Let
Y denote a univariate transformation of X given by
Y = A(X). In the context of this paper we assume

X ~ /(x), x G S KNOWN pdf
Y = h(X) UNKNOWN but observable

transformation of X.

The class of estimators to be considered are those of
the form

T(uu---,uN) = (l/N)ZgM, (8.1)
( - 1

whereg(-) is an arbitrary, known function. In partic-
ular we use g(u) = if to estimate moments, and g(u)
= 1 for u >. 0, = 0 elsewhere, to estimate the distribu-
tion function.

The sampling schemes described in the following
sections will be compared to random sampling with
respect to T. The symbol TR denotes T\YU ••-, YN)
when the arguments Yu • • •, YN constitute a random
sample of Y. The mean and variance of TR are de-
noted by T and B2/N. The statistic T given by (8.1)
will be evaluated at arguments arising from stratified
sampling to form Ts, and at arguments arising from
Latin hypercube sampling to form TL. The associated
means and variances will be compared to those for
random sampling.

8.2 Stratified Sampling

Let the range space, S, of X be partitioned into /
disjoint subsets St of size pt = P(X e St), with

Z Pi = i.

Let Xij, j = 1, •••,«(, be a random sample from
s t r a t u m St. T h a t is, le tX t l ~ iidf(x)/pt,j = 1, • • • , n t ,
for x e Si, but with zero density elsewhere. The corre-
sponding values of Fare denoted by YtJ = h{XtJ), and
the strata means and variances ofg(Y) are denoted by

Hi = E(g{Yt])) = f g(y)(l/pt)f(x)dx

<r,2 = Var(g(yy)) = f (g(y)-n(Kl/pt)f(x)dx.

It is easy to see that if we use the general form

iTs= E ipjnt) Z giYu),
j - i

that Ts is an unbaised estimator of T with variance
given by

iVar(7s) = £ (pt'MW. (8.2)

The following results can be found in Tocher [14].
Stratified Sampling with Proportional Allocation. If

the probability sizes, pt, of the strata and the sample
sizes, «(, are chosen so that nt = ptN, proportional
allocation is achieved. In this case (8.2) becomes

iVar(rs) = Var(TR) - (1/iV) 2>0"<-r)2. (8.3)

Thus, we see that stratified sampling with propor-
tional allocation offers an improvement over random
sampling, and that the variance reduction is a func-
tion of the differences between the strata means nt
and the overall mean r.
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Proportional Allocation with One Sample per Stra-
tum. Any strati#e# ptefr^kk«B^lo^s»subsainftJiJng»
«j > 1, can be improved by further stratification.
When all nt = 1, (8.3) becomes

Var(rs) = Var(7s) - (\/fP) Z (M(-r)s. (8.4)

8.3 Latin Hypercube Sampling

In stratified sampling the range space S of X can be
arbitrarily partitioned to form strata. In Latin hyper-
cube sampling the partitions are constructed in a
specific manner using partitions of the ranges of each
component of X. We will only consider the case
where the components of X are independent.

Let the ranges of each of the AT components of X be
partitioned into N intervals of probablitity size l/N.
The Cartesian product of these intervals partitions S
into NK cells each of probability size N~K. Each cell
can be labeled by a set of K cell coordinates m< =(mn,
Wn, • • •, miK) where mtj is the interval number of
component X} represented in cell /. A Latin hyper-
cube sample of size N is obtained from a random
selection N of the cells mu • • •, mN, with the condi-
tion that for each/ the set {wy}(_iN is a permutation
of the integers 1, • ••, N. One random observation
is made in each cell. The density function of X given

1. /V«=l) = (1/tf*-1) = E(Wl) = E(wt*)
Var(no) =U/N1-%1 - l(NK-l).

2. If wt and Wj correspond to cells having no cell
coordinates in common, then

E(wtwj) = E(w,wj\wj = 0)P(wj = 0)

+ E(wtwj\wj= l)P(wj= 1)

= l/(N(N-l))K-i

3. If w, and wj correspond to cells having at least
one common cell coordinate, then

E(w,wj) = 0.

Now

Var(w£(y,)) = E(w?) Var g(Yt)

+ £ W 0 ) Var(Wl) (8.7)

so that
N" NX

Z Var(w<g(y,)) = N-K+* £ E^Y,)-^

+ (iV-x+1-iV-«+2) £ tf (8.8)
( - i

where n, = E{g(Y)\X e cell /}. Since

is maae in eacn ceil, i ne density iuncuon oi A given r
X e cell / is NKf(x) if x e cell /, zero otherwise. The E(s(Y,)-fit)

2 = NK ]cell t (g(y)-T)2f(x)dx + (JJ.,-T)2

(8.9)

we have

Z Var(w#(7,)) = N Var(7) - N~K+l ^ (M(~r)2

i t

+ (N-K+i-N-™+*) 2 m2. (8.10)

Furthermore
N« NK

S Z i Coy{Wlg(Y,), Wjg{Yj)) = ] T £ niNE{wtWj}

(8.11)

which combines with (8.10) to give

Var(r,) = (l/iV)Var(r) - N~K-1 Z (tn - rf

+ (N-K-1 - N~2K) 2 M<2

+ (N- l)-K+1NK"ZZ^J

marginal (unconditional) distribution of Yt(t) is eas-
ily seen to be the same as that for a randomly drawn
X as follows:

PiYt^y)^ £ />(r,<.HX6cell?)P(X«cell9)
all cells Q

= Z[cengN
Kf(x)dx(l/NK)

' hWSy

= / /(xyx.
JWi)Sy

From this we have TL as an unbiased estimator of r.
To arrive at a form for the variance of TL we

introduce indicator variables w(, with

l\ if cell / is in the sample
" ' " I D if not.

IA]

-N-*+2ZZMJ

The estimator can now be written as
NK

(8.5)

where Yt = h(Xi) and X( e cell /. The variance of TL is
given by

NK

Var(rL) = (1/JV2) Z Vv(Wlg(Yt))
-N-2«Z £WJ (8.12)

N« N"

+ (UN2) Z Z CoviwdY&WjgiY,)).
i-ij-i

The following results about the w, are immediate:

where R means the restricted space of NK(N - \)K

pairs (JJ.I,HJ) corresponding to cells having no cell
coordinates in common. After some algebra, and

(8.6)
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with^M/ = NKr, the final form for Var(7t) becomes

Var(rz.) = Var(rfl) + (N - l)/N[N-H(N - 1)~*

• Z^t-r){jij-r)]. (8.13)

Note that Var(7L) < Var(r«) if and only if

N-*{N - l)~K Z bt-r)(nj-T) £ 0, (8.14)
R

which is equivalent to saying that the covariance
between cells having no cell coordinates in common
is negative. A sufficient condition for (8.14) to hold is
given by the following theorem.

THEOREM. If Y = h(Xx, •••,XK)ismonotonicin
each of its arguments, and if g(Y) is a monotonic
function of Y, then Var(T'i) < Var(7».

PROOF. The proof employs a theorem by Leh-
mann [10]. Two functions r(xu ' ", xK) and s(ylt • • •,
yK) are said to be concordant in each argument if r
and s either increase or decrease together as a func-
tion ofXi = yt, with allxjj'^ iandyj,j ^ /heldfixed,
for each /. Also, a pair of random variables (X, Y) are
said to be negatively quadrant dependent ifP(X < x, Y
< y) < P(X < x)P(Y <, y) for all x, y. Lehmann's
theorem states that if (/) (Xu Yx), (X2, Y2), ••-, (XK,
YK) are independent, (//) (Xt, Yt) is negatively quad-
rant dependent for all /, and (Hi) X = r(Xx, • • •, XK)
and Y = s(Ylt • • •, YK) are concordant in each argu-
ment, then (X, Y) is negatively quadrant dependent.

We earlier described a stage-wise process for select-
ing cells for a Latin hypercube sample, where a cell
was labeled by cell coordinates mu • • •, mK. Two cells
(A. ' ",1K) and (mu • • •, mK) with no coordinates in
common may be selected as follows. Randomly select
two integers (/?„, R2l) without replacement from the
first N integers 1, • • •, N. Let /x = Rn and tnx = R21.
Repeat the procedure to obtain (R12, R22), (R13, i?23),
• • •, (RlK, R1K) and let lk = Rlk and mk = R2k. Thus
two cells are randomly selected and lk •£ mk for k - 1,
• • • , K .

Note that the pairs (Rik,R2K), k = 1, • • •, K, are
mutually independent. Also note that because P(Rik

< x, R2k <y)= [xy - min(jc, y)]/(n(n - 1)) < P(Rllt

< x)P(R2k <> y), where [•] represents the "great-
estinteger" function, each pair {Rik, R2k) is negatively
quadrant dependent.

Let ju, be the expected value of #(7) within the cell
designated by (llt •••, lK), and let n2 be similarily
defined for (mu • • •, mK). Then ix^ = fi(Rn, Rn, • • •,
RIK) and n2 ~ M(-^2I» -̂ 22. • • •, RZK) are concordant in
each argument under the assumptions of the theo-
rem. Lehmann's theorem then yields that jix and JJ.2
are negatively quadrant dependent. Therefore,

Piji, £ .v, n*<y)<> Pin, < x)P(jit £ }')•

Using Hoeffding's equation

Cov(X,Y) = /"+" r~[P(X Zx,Y<,y)
" - C D * - 0 0

- P(X<>x)P(Y<,y)\dxdy,

(seeLehmann [10] for a proof), wehaveCov(^i,p2)<
0. Since Var(7*t) = Var(TR) + (N- l)/NCOVQUJH),
the theorem is proved.

Since g{t) as used in both Sections 3 and 5 is an
increasing function of/, we can say that if Y = h(X) is
a monotonic function of each of its arguments, Latin
hypercube sampling is better than random sampling
for estimating the mean and the population distribu-
tion function.
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