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We consider a class of input sampling plans, called permuted column sampling plans, that are popular
in sensitivity analysis of computer models. Permuted column plans, including replicated Latin hypercube
sampling, support estimation of first-order sensitivity coefficients, but these estimates are biased when
the usual practice of random column permutation is used to construct the sampling arrays. Deterministic
column permutations may be used to eliminate this estimation bias. We prove that any permuted column
sampling plan that eliminates estimation bias, using the smallest possible number of runs in each array and
containing the largest possible number of arrays, can be characterized by an orthogonal array of strength 2.
We derive approximate standard errors of the first-order sensitivity indices for this sampling plan. We give
two examples demonstrating the sampling plan, behavior of the estimates, and standard errors, along with
comparative results based on other approaches.
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1. INTRODUCTION

Sensitivity analysis is the name often given to computational
exercises in which the aim is to discover which inputs of a com-
puter model are most influential in determining its outputs. In
this article a computer model is taken to be a deterministic func-
tion,

y(x1, x2, x3, . . . , xk) = y(x), x ∈ �,

where x is the k-element vector of inputs restricted to a domain
� and y is the (for our purposes) scalar-valued output. For sim-
ple models, sensitivity analysis sometimes can be accomplished
analytically, by direct examination of the computer model. But
many computer models of interest to scientists and engineers
are very complex; in these cases, sensitivity analysis is gener-
ally an empirical exercise in which a number of runs (or evalu-
ations) of the model are made at selected input vectors, and the
resulting output values are used to estimate sensitivity indices
of interest.

One popular sensitivity index is the first-order (or main-
effect) sensitivity coefficient, defined for each input as a mea-
sure of that input’s importance. The definition of the first-order
sensitivity coefficient (along with some other popular indices
used in sensitivity analysis) depends on the specification of a
probability distribution for the input vector x. We denote this
distribution by its probability density function f (x) and limit
attention here to situations in which the inputs are statistically
independent, that is, f (x) = ∏

i fi(xi). In some cases, f has a
physical interpretation, representing lack of control or uncer-
tainty in the precise input values corresponding to a physical
scenario of interest. In other cases, it may be a representation of
expert judgement, and in still others, it may be selected fairly
arbitrarily to cover input values deemed to be of interest. With
respect to this distribution, the first-order sensitivity coefficient
associated with input xi is defined as

θi = Vi
[
E−i{y(x)}],

where Vi denotes the variance with respect to xi and E−i denotes
the expectation with respect to all inputs except xi. A normal-
ized, unitless version of this index is η2

i = θi/V[y(x)], which
always must be between 0 and 1. [Our notation for the normal-
ized index is taken from the historical development of the cor-
relation ratio (Pearson 1903); an example of a more accessible
reference is Stuart and Ord 1991, pp. 1001–1002.] By a well-
known variance decomposition formula, the first-order sensitiv-
ity coefficient also can be written as

θi = V[y(x)] − Ei
[
V−i{y(x)}].

θi is only one of a family of sensitivity coefficients that are re-
lated to the “functional ANOVA” decomposition of y(x) (e.g.,
Hoeffding 1948), developed for this context by Archer, Saltelli,
and Sobol’ (1997).

2. ESTIMATION OF FIRST–ORDER
SENSITIVITY COEFFICIENTS

The foregoing expression of θi is a convenient basis for esti-
mating the coefficient using output values computed from sam-
pled input vectors. For simplicity, consider a situation involving
k = 3 inputs, and suppose that two random values are drawn in-
dependently from the marginal distributions of each input, re-
sulting in input vectors

x1 = (x′
1, x′

2, x′
3) and x2 = (x′′

1, x′′
2, x′′

3).

Half of the squared difference of responses corresponding to
these two runs is an unbiased estimate of V[y(x)]. Now suppose
that a third input vector is constructed by drawing additional
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new values for x2 and x3 but “reusing” the first value drawn
for x1,

x3 = (x′
1, x′′′

2 , x′′′
3 ).

Half of the squared difference of responses corresponding to
x1 and x3 is an unbiased estimate of E1[V−1{y(x)}]. These es-
timates can be improved by constructing sampling plans that
contain, for each of several randomly selected values of x1, sev-
eral runs for which the values of all other inputs are drawn in-
dependently from run to run. If sensitivity coefficients are re-
quired for all inputs, then sets of runs with this property must
be included for each individual xi. Sampling plans must also
include groups of runs within which all input values are differ-
ent (and randomly selected), providing an estimate of V[y(x)]
based on a pooled sample variance. Then θi can be estimated as
̂V[y(x)] − ̂Ei[V−i{y(x)}].

2.1 Substituted Column Sampling

A straightforward approach to generating the kind of in-
put sampling plan suggested in the previous paragraph was
introduced by Sobol’ (1993). The structure of this sampling
plan can be specified by defining a collection of k + 1 arrays,
A0,A1,A2, . . . ,Ak, each of n rows and k columns. These can
be thought of as coded design matrices, in that each array row
is related to the values of the k inputs used in one run of the
computer model.

For this kind of input sampling, we define two vectors,

u = (1,2,3, . . . ,n)′ and

v = (n + 1,n + 2,n + 3, . . . ,2n)′,

for the selected value of n. Then we define the arrays as

A0 = (u,u,u, . . . ,u), A1 = (u,v,v, . . . ,v),

A2 = (v,u,v, . . . ,v), . . . ,

Ak = (v,v,v, . . . ,u).

Thus A0 and Ai have identical elements in their ith columns
but different elements in all other columns. These coded arrays
are finally converted to matrices of input vectors by drawing
2n values from each input distribution [fi(xi), i = 1,2,3, . . . , k].
Values are drawn independently for each input; so, for example,
“1” in column 1 always stands for the same drawn value for x1,
but “1” in any other column stands for a value drawn from the
distribution of the corresponding input.

V[y(x)] can be estimated as the pooled sample variance of
outputs associated with each array, because the n input vectors
specified by the rows of each array constitute a sample of f (x).
Ei[V−i{y(x)}] can be estimated as the pooled sample variance
of n groups of two outputs associated with

the 1st rows of A0 and Ai,

the 2nd rows of A0 and Ai,

. . .

the nth rows of A0 and Ai

because the input vectors in each group share a common value
of xi but different independent values of all other inputs.

The substituted column sampling plan is easy to implement,
and has been widely used in applications. With the addition
of n runs, it can be generalized to support estimation of total
sensitivity coefficients, E−i[Vi{y(x)}], as described by Saltelli
(2002). It is somewhat inefficient, however, because the esti-
mate of Ei[V−i{y(x)}] is based only on the runs specified in
arrays A0 and Ai, that is, only 2n runs from the total of (k +1)n
runs required. The sampling plans described in the next section
are more efficient in this sense.

2.2 Permuted Column Sampling

One very efficient input sampling plan that supports estima-
tion of all θi, i = 1, . . . , k, which we call a permuted column
sample, was described by McKay (1995). We note explicitly
that these plans are not easily or obviously extendible to support
estimation of total sensitivity indices, and so are of primary in-
terest where first-order indices are of central interest. To specify
such a plan, we continue to rely on the notation

u = (1,2,3, . . . ,n)′.
The coded form of this sampling plan is denoted by a set of a
arrays, each of dimension n × k, and each comprising columns
that are permutations of u, that is,

Aj = {aj
1,aj

2,aj
3, . . . ,aj

k}
= {pj

1(u),pj
2(u),pj

3(u), . . . ,pj
k(u)}, j = 1,2,3, . . . ,a.

One way to do this in practice is to simply randomly and inde-
pendently select the a×k permutation operators, pj

i, from the n!
selections available. Again, final input matrices are constructed
by substituting n randomly selected values of xi for the symbols
“1” through “n” in the ith column of each array. As distinct from
the substituted column sampling plan of Sobol’, the same n val-
ues of xi are used in each of the a arrays but are “matched” with
different values of the other inputs in each array through the
permutation operators. V[y(x)] can be estimated as the pooled
sample variance of outputs generated by the runs within each
array; that is, if S2(Aj) is the sample variance of the n outputs
resulting from the runs in Aj, then we define

̂V[y(x)] = 1

a

a∑

j=1

S2(Aj).

Ei[V−i{y(x)}] can be estimated as the average of sample vari-
ances computed by grouping runs across arrays by common
values of xi; that is, for each input, there are n groups of runs
(one run from each array) that share a common value of xi but
for which the remaining inputs have been “scrambled” by the
permutation of columns in each array. If S2(xi,r) is the sample
variance of the a outputs sharing the rth drawn value of xi, then
we define

Ei
[

̂V−i{y(x)}] = 1

n

n∑

r=1

S2(xi,r).

Combining these, the estimate of θi is

θ̂i = 1

a

a∑

j=1

S2(Aj) − 1

n

n∑

r=1

S2(xi,r).

Thus all a × n runs are used in the estimation of both V[y(x)]
and Ei[V−i{y(x)}], for i = 1,2,3, . . . , k.
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2.2.1 Approximate Standard Errors for Permuted Column
Samples. The sampling-based approach to sensitivity analy-
sis is motivated in part by the desire to make as few a priori
assumptions as possible concerning the relationship between y
and x. Constructing accurate, explicit standard errors of θ̂i and
η̂2

i is difficult in this context unless additional distributional as-
sumptions are made. But standard errors based on the same data
used in computing the estimates are important to the practical
interpretation of a sensitivity analysis. In this section we con-
struct approximate standard errors of θ̂i and η̂2

i based on argu-
ments analogous to two-way random-effects ANOVA models,
even though this structure is at best a rough approximation.

For a specified input xi, we relabel output values with sub-
scripts, letting yjr represent the output generated from running
the model with the input vector specified in array j in which
xi is assigned the rth selected value. This notation suggests an
unreplicated two-way table of output values with a rows and
n columns. For derivation of approximate standard errors only,
we adopt the working assumption that

yjr = μ + αj + βr + γjr,

where

αj ∼ N(0, σ 2
α ), βr ∼ N(0, σ 2

β ), and

γjr ∼ N(0, σ 2
γ ),

and assume that each of these random quantities is independent
of all others. Then θ̂i can be rewritten as

θ̂i = 1

a(n − 1)

a∑

j=1

n∑

r=1

(yjr − ȳj.)
2 − 1

(a − 1)n

n∑

r=1

a∑

j=1

(yjr − ȳ.r)
2

= 1

a(n − 1)

{
a∑

j=1

n∑

r=1

(ȳ.r − ȳ..)
2

+
a∑

j=1

n∑

r=1

(yjr − ȳj. − ȳ.r + ȳ..)
2

}

− 1

(a − 1)n

{
n∑

r=1

a∑

j=1

(ȳj. − ȳ..)
2

+
n∑

r=1

a∑

j=1

(yjr − ȳj. − ȳ.r + ȳ..)
2

}

= 1

a
MSβ + 1

n
MSα +

[
a − 1

a
− n − 1

n

]

MSγ ,

where MSα = 1
a−1

∑a
j=1 n(ȳj. − ȳ..)

2, MSβ = 1
n−1

∑n
r=1 a(ȳ.r −

ȳ..)
2, and MSγ = 1

(a−1)(n−1)

∑a
j=1

∑n
r=1(y.. − ȳj. − ȳ.r + ȳ..)

2.
Regarding each mean square times the ratio of degrees-of-
freedom to expected mean square as a chi-squared random vari-
able, this leads to

V(θ̂i) ≈ 2

[
1

a2(n − 1)
E(MSβ)2 + 1

n2(a − 1)
E(MSα)2

+ (a − n)2

a2n2(a − 1)(n − 1)
E(MSγ )2

]

.

Finally, the normality assumption implies that an unbiased es-
timate of E(MSα)2 is a−1

a+1 MS2
α , and similarly for E(MSβ)2 and

E(MSγ )2, so that under the random-effects ANOVA model, an
unbiased estimate of V(θ̂i) is

2

[
1

a2(n + 1)
MS2

β + 1

n2(a + 1)
MS2

α

+ (a − n)2

a2n2[(a − 1)(n − 1) + 2]MS2
γ

]

.

We take the square root of this quantity for the standard error
of θ̂i.

Using the same notation, η̂2
i can be reexpressed as

η̂2
i = 1 −

1
n MSα + n−1

n MSγ

1
a MSβ + a−1

a MSγ

.

Again assuming independence among mean squares and re-
lationships between expectations and variances based on chi-
squared distributions, the delta method leads to an approximate
variance

V(η̂2
i ) ≈ 2

a2

n2

(
E(MSα) + (n − 1)E(MSγ )

E(MSβ) + (a − 1)E(MSγ )

)2

×
[

1

a − 1

E(MSα)2 + (n − 1)E(MSγ )2

(E(MSα) + (n − 1)E(MSγ ))2

+ 1

n − 1

E(MSβ)2 + (a − 1)E(MSγ )2

(E(MSβ) + (a − 1)E(MSγ ))2

− 2E(MSγ )2((E(MSα) + (n − 1)E(MSγ ))

× (E(MSβ) + (a − 1)E(MSγ ))
)−1

]

.

In this case, because the approximate variance involves squares
and ratios of mean squares, we simply substitute mean squares
for their expectations and take the square root of the foregoing
expression as the standard error of η̂2

i .
The empirical performance of these standard errors, along

with that of the point estimates themselves, is examined for var-
ious permuted column sampling plans in the example of Sec-
tion 4.

2.3 Replicated Latin Hypercube Sampling

The replicated Latin hypercube sample (rLHS) is a refine-
ment of the randomized permuted column sample, described by
McKay (1995). To generate a Latin hypercube sample (LHS)
corresponding to array A1, the range of each input is divided
into an equal-probability partition of n intervals, that is,

x[1]
i < x[2]

i < · · · < x[n−1]
i ;

I1 = (−∞, x[1]
i

]
, I2 = (

x[1]
i , x[2]

i

]
, . . . ,

In = (
x[n−1]

i ,∞);
and

P(xi ∈ Ir) = n−1, r = 1,2,3, . . . ,n.
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The input value corresponding to “1” in the ith column of A1 is
selected by picking (randomly) one of the elements of this parti-
tion and then drawing a value from the conditional distribution
of xi restricted to that interval. The input value corresponding to
“2” is selected in a similar way, except that the partition element
selected for “1” is eliminated; that is, intervals are drawn with-
out replacement as the input values are selected. The result is
a stratified sample, in which the strata are the equal-probability
intervals, for each input. The resulting matrix of input values is
then an LHS as introduced by McKay, Conover, and Beckman
(1979), and the collection of a matrices generated through col-
umn permutation is an LHS. McKay et al. showed that Latin
hypercube sampling is more efficient than unconstrained ran-
dom sampling when the goal of the experiment is estimation of
the mean output and the output is a monotonic function of each
of the inputs. Subsequent research has led to further charac-
terization of sampling efficiency for LHS and related sampling
schemes (e.g., Stein 1987; Tang 1993; Owen 1994).

2.4 Estimation Bias Associated With Randomized
Column Permutation

The intent of column permutation in the aforementioned
sampling plans is to “scramble” individual input values into dif-
ferent combinations within each array, so that groups of a runs
can be identified within which all inputs except one vary. Thus,
for example, the a runs corresponding to the rows of A1 through
Aa within which the first element is “4” are identified, and the
sample variance of the corresponding values of y is computed
as a component of the estimate of E1[V−1{y(x)}]. The resulting
estimate would be unbiased if the random column permutations
resulted in “perfect mixing” of the input values from array to ar-
ray, that is, if no two input values paired together in one array
also were paired in another array. But unconstrained random
permutation of columns does not guarantee this result; in the
foregoing example, there is some nonzero probability that two
runs sharing the fourth selected value of x1 also share a com-
mon value of another input. The result is that each estimate of
Ei[V−i{y(x)}] is negatively biased (i.e., the within-group vari-
ances are too small on average), and thus the estimate of θi

is positively biased. The extent of this bias was characterized
by Morris, Moore, and McKay (2006); the magnitude of the
bias is generally larger when the number of influential inputs
is large or the number of runs in each array (n) is small. In the
next section we describe a deterministic process for selecting
the column permutations used to construct A1–Aa, that elimi-
nates estimator bias from such “accidental matching” of input
values.

3. UNBIASED PERMUTED COLUMN SAMPLES

The following formal definitions provide useful structure and
notation. Except in the statement of Theorem 1, we disregard
how the actual values are selected for each input and focus on
the combinatorial aspect of constructing the integer arrays dis-
cussed earlier. Proofs of all results are given in the Appendix.
Both Latin hypercube and unconstrained random sampling are
used in the demonstration exercise reported in Section 4.

Definition 1. Let u = (1,2,3, . . . ,n)′. A permuted column
sample (PCS) is a set of arrays, A1,A2,A3, . . . ,Aa, where the
array columns are denoted as

Aj = {aj
1,aj

2,aj
3, . . . ,aj

k},
such that each aj

i is a permutation of u for all i = 1,2,3, . . . , k
and j = 1,2,3, . . . ,a.

Definition 2. An unbiased permuted column sample (UPCS)
satisfies Definition 1 and is constructed such that

({aj
i}r, {aj

i′ }r) �= ({aj′
i }r′, {aj′

i′ }r′)

for all i = 1,2,3, . . . , k, i′ = 1,2,3, . . . , k, i �= i′; j = 1,2,3,

. . . ,a, j′ = 1,2,3, . . . ,a, j �= j′; and r = 1,2,3, . . . ,n, r′ =
1,2,3, . . . ,n.

Note that Definition 1 specifies only that each array column
contain the same set of symbols, as explained in Section 2.2.
Definition 2 also requires that no pair of inputs take the same
pair of values in runs contained in any two arrays.

The following theorem is the formal statement of how the
UPCS improves the quality of estimation of θi when uncon-
strained random sampling is used to select values for each in-
put.

Theorem 1. Given a UPCS plan, with unconstrained inde-
pendent sampling used to select values of the inputs, E[θ̂i] = θi,
i = 1,2,3, . . . , k.

Theorem 2, the main result of this article, describes the re-
lationship between UPCS and orthogonal arrays of strength 2.
The following two lemmas, which lead up to this theorem, state
restrictions among a, k, and n that are necessary for the exis-
tence of a UPCS.

Lemma 1. If n < k, then a UPCS with a > 1 arrays does not
exist.

Lemma 2. If n = k, then the number of arrays in any UPCS
is a ≤ k.

Here we limit our attention to unbiased permuted column
samples for which each array is of minimum size (n = k;
Lemma 1), and the number of arrays is as large as possible
(a = k; Lemma 2). Thus n = a = k.

Theorem 2. Require that n = a = k. Let A1, A2,A3, . . . ,An
be a PCS. Define an n2-by-(k + 1) array as

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
1
· · ·
1

A1

2
2
2
· · ·
2

A2

· · · · · ·
n
n
n
· · ·
n

An

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Then A1,A2,A3, . . . ,An is a UPCS if and only if C is an or-
thogonal array of strength 2, that is, an OA(n2, k + 1,n,2).

Recall that an array of n “symbols” is an orthogonal array of
strength s if for each collection of s columns, each of the ns pos-
sible ordered s-tuples appears in the same number of rows. (See,
e.g., Hedayat, Sloane, and Stufken 1999 for a thorough treat-
ment of the structure and construction techniques for orthogo-
nal arrays.) For our result, s = 2, and so the defining geometric
property applies in two-dimensional projections, reflecting the
fact that we are focusing on pairs of input values in multiple
runs. Further, Theorem 2 requires that the OA contain n2 runs,
immediately implying that each set of input values for each pair
of inputs is included exactly once, eliminating the possibility of
replication leading to the bias discussed in Section 2.4. Table 1
contains an example of an orthogonal array of strength 2, used
in the demonstration described in Section 4. Note that for any
s = 2 columns of this array, each of the n2 = 64 ordered pairs
of n = 8 symbols appears once.

Theorem 2 establishes that an OA(n2, k + 1, n, 2) can be
used to construct any UPCS when n = a. For a given number of
inputs, k, the smallest such OA will require some value n = a
at least as great as k. Of course, once the OA is identified, not
all n = a generated arrays or k columns of each array need be
used; any subset of the columns selected from any subset of the
constructed Aj, j = 1,2,3, . . . ,n, also constitutes a UPCS with
k ≤ n and a ≤ n.

Orthogonal arrays also are useful for other purposes in com-
puter experiments. Owen (1992) exploited the fact that they
generalize the one-dimensional stratification structure of the
LHS and thus can reduce the variance of multidimensional
numerical integration relative to less-structured Monte Carlo
methods.

Other related forms of structure also have been considered in
the selection of input vectors for computer experiments. Mini-
mum discrepancy sequences, such as those described by Faure,
Niederreiter, and Sobol’ (e.g., Niederreiter and Shiue 1995)
are often used in numerical integration. In particular, sampling
plans based on Sobol’ sequences have been used, along with
bootstrap techniques, as the basis for estimating sensitivity in-
dices.

Table 1. OA(64, 9, 8, 2), g-function example

Rows 1–16 Rows 17–32 Rows 33–48 Rows 49–64

111111111 313333333 515555555 717777777
122345678 325162487 523271846 726854213
133456782 331624875 532718463 738542136
144567823 346248751 547184632 745421368
155678234 352487516 551846327 754213685
166782345 364875162 568463271 762136854
177823456 378751624 574632718 771368542
188234567 387516248 586327184 783685421
212222222 414444444 616666666 818888888
221583764 428617352 627438125 824726531
235837641 436173528 634381257 837265314
248376415 441735286 643812574 842653147
253764158 457352861 658125743 856531472
267641583 463528617 661257438 865314726
276415837 475286173 672574381 873147265
284158376 482861735 685743812 881472653

4. DEMONSTRATION: g-FUNCTION

Saltelli and Sobol’ (1995) described the “g-function” and
used it as a test case in demonstrating and comparing methods
of sensitivity analysis. The g-function is defined as

y =
k∏

i=1

|4xi − 2| + ci

1 + ci
, x ∈ [0,1]k.

Here the nonnegative function parameters ci, i = 1,2,3, . . . , k,
control the relative importance of each input; y is relatively sen-
sitive to the values of inputs xi for which the corresponding val-
ues of ci are near 0 and less sensitive to inputs for which the pa-
rameters are larger. Although the model is not mathematically
complicated, the product form and discontinuous derivative at
1
2 in each dimension hampers empirical evaluation of sensitiv-
ity for some methods. An additional benefit for demonstration
purposes is that the sensitivity coefficients can be easily deter-
mined by direct analysis.

In this demonstration, we investigated the behavior of a g-
function in k = 8 arguments, with coefficients c = (0,1,1,2,3,

5,8,13)′. Permuted column samples were generated consist-
ing of a = 8 arrays, each of size n = 8 runs, for a total sample
size of 64. Arrays Aj were constructed both by unconstrained
random selection of column permutations and by construction
based on an orthogonal array, OA(64, 9, 8, 2), as described in
the previous section. The specific orthogonal array used was
obtained from http://www.research.att.com/∼njas/oadir/ and is
listed in Table 1. Table 2 shows how A1 was constructed as
the first eight rows of columns 2–9 of the array; A2–A8 were
constructed similarly using subsequent batches of eight array
runs each. In each case, values of the inputs were drawn by
unconstrained random sampling and by Latin hypercube sam-
pling. The means and standard deviations of estimates of θi,
i = 1,2,3, . . . ,8, based on a simulation study of 1,000 replica-
tions, are summarized in Table 3 for each of the 4 combinations
of array structure and input selection. Here average (over the
1,000 simulations) values of each standard error also are tabu-
lated, along with coverage proportions for intervals constructed
as θ̂i ±2 standard error (θ̂i). Similar results for η̂2

i = θ̂i/ ˆV(y) are
presented in Table 4. Note that by symmetry of the g-function
and because c2 = c3 = 1, any differences between the entries
for inputs 2 and 3 reflect only simulation error.

The general patterns of Tables 3 and 4 are quite similar. The
UPCS plan, using unconstrained sampling of input values, re-
sults in mean estimates that are within simulation error of the

Table 2. A1 Constructed from the first
eight rows of the OA(64, 9, 8, 2)

1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8
3 3 4 5 6 7 8 2
4 4 5 6 7 8 2 3
5 5 6 7 8 2 3 4
6 6 7 8 2 3 4 5
7 7 8 2 3 4 5 6
8 8 2 3 4 5 6 7

NOTE: A2–A8 are constructed similarly from
subsequent sets of 8 rows.
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Table 3. Means and standard deviations (SDs) of θ̂i, average standard errors (ASEs), and coverage of approximate
95% confidence intervals, g-function example

i 1 2 3 4 5 6 7 8
ci 0 1 1 2 3 5 8 13

θi (analytical) .3333 .0833 .0833 .0370 .0208 .0093 .0041 .0017

Random arrays, unconstrained sampling
Mean .3723 .1509 .1519 .1087 .0912 .0815 .0767 .0752
SD .2085 .1126 .1140 .0866 .0767 .0665 .0624 .0635
ASE .1814 .0772 .0777 .0575 .0493 .0448 .0426 .0419
Coverage .8520 .9050 .9210 .9610 .9900 .9930 .9720 .9370

Random arrays, Latin hypercube sampling
Mean .4105 .1602 .1581 .1177 .0981 .0866 .0830 .0807
SD .1337 .0861 .0872 .0754 .0652 .0558 .0535 .0559
ASE .2007 .0830 .0820 .0631 .0540 .0486 .0470 .0459
Coverage .9900 .9840 .9750 .9930 .9950 .9970 .9860 .9620

Orthogonal arrays, unconstrained sampling
Mean .3287 .0838 .0843 .0378 .0213 .0087 .0045 .0016
SD .1740 .0592 .0604 .0327 .0215 .0146 .0123 .0113
ASE .1615 .0466 .0468 .0255 .0181 .0128 .0111 .0100
Coverage .8300 .7870 .7800 .8030 .8310 .8930 .9610 .9900

Orthogonal arrays, Latin hypercube sampling
Mean .3647 .0896 .0890 .0394 .0225 .0099 .0040 .0018
SD .0783 .0323 .0325 .0232 .0196 .0151 .0133 .0125
ASE .1801 .0511 .0508 .0281 .0208 .0156 .0133 .0125
Coverage .9990 .9890 .9830 .9500 .9440 .9570 .9870 .9940

analytical values. The UPCS plan with Latin hypercube sam-
pling of input values leads to estimates that are mildly biased
but have substantially smaller standard deviations for the most
important inputs (i.e., smallest values of ci). In contrast, the es-
timates based on random permutation arrays, with either form

of input sampling, have substantial positive bias. The use of
Latin hypercube sampling reduces standard errors in this case
as well, but for a given type of input sampling (either uncon-
strained or Latin hypercube), the precision is no worse (and in
some cases is better) for UPCS plans than for plans based on

Table 4. Means and standard deviations (SD) of η̂2
i , average standard errors (ASEs), and coverage of approximate

95% confidence intervals, g-function example

i 1 2 3 4 5 6 7 8
ci 0 1 1 2 3 5 8 13

η2
i (analytical) .4890 .1223 .1223 .0543 .0306 .0136 .0060 .0025

Random arrays, unconstrained sampling
Mean .5427 .2154 .2160 .1560 .1307 .1178 .1126 .1091
SD .1335 .0999 .0990 .0836 .0733 .0660 .0652 .0638
ASE .1356 .0984 .0987 .0796 .0706 .0659 .0638 .0623
Coverage .6620 .9020 .8950 .9070 .9130 .9020 .8820 .8840

Random arrays, Latin hypercube sampling
Mean .5450 .2091 .2061 .1532 .1278 .1150 .1099 .1074
SD .0838 .0843 .0864 .0780 .0674 .0644 .0614 .0640
ASE .1420 .0988 .0977 .0799 .0707 .0657 .0638 .0625
Coverage .7730 .9490 .9490 .9350 .9370 .9210 .9140 .8940

Orthogonal arrays, unconstrained sampling
Mean .4831 .1250 .1250 .0553 .0310 .0127 .0061 .0022
SD .1288 .0679 .0676 .0374 .0265 .0187 .0159 .0152
ASE .1383 .0699 .0699 .0410 .0298 .0214 .0185 .0169
Coverage .8220 .9560 .9600 .9600 .9830 .9940 1.0000 1.0000

Orthogonal arrays, Latin hypercube sampling
Mean .4850 .1183 .1176 .0514 .0293 .0127 .0051 .0022
SD .0615 .0334 .0346 .0264 .0237 .0190 .0172 .0163
ASE .1463 .0702 .0698 .0407 .0305 .0231 .0199 .0187
Coverage .9840 1.0000 1.0000 .9940 .9900 .9930 1.0000 1.0000
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randomly constructed arrays. The approximate standard errors
derived in Section 2.2.1 are reasonably accurate estimates of
the respective simulation standard deviations in most cases but
tend to be too large (as estimates of the standard deviation) for
the most important inputs when Latin hypercube sampling is
used. Coverage of ±2 standard error intervals can be substan-
tially greater or less than .95; this observation is not surprising,
because the working distributional assumptions used to derive
the standard errors, although heuristically convenient, are not
technically justified.

5. SOME ALTERNATIVE APPROACHES

The methods discussed in Sections 1–4 are entirely nonpara-
metric in that they require no assumptions about the nature of
y as a function of x. Indeed, y can be nondifferentiable or even
discontinuous in x, and the arguments for estimation of θi re-
main valid. Other methods have been developed that are built
at least tacitly on assumptions about y(x), and that may pro-
vide better efficiency when these assumptions are warranted.
We briefly mention a few that have been mentioned by the re-
viewers of this article:

• The Fourier amplitude sensitivity test (FAST), introduced
by Cukier, Fortuin, Shuler, Petschek, and Schaibly (1973),
method uses input vectors selected as points along a para-
metric curve through �, characterized in part by a stepsize
s and a set of integer frequencies {ω1,ω2, . . . ,ωk}. The re-
sulting output data support a Fourier analysis from which
estimates of the θi can be constructed.

• Because the standard approach to selecting frequencies
leads to rapidly increasing sample size with increasing
k, the suggested FAST sample sizes can often be quite
large. Tarantola, Gatelli, and Mara (2006) recently sug-
gested ways of modifying the FAST sampling and analy-
sis process using random balance designs (Satterthwaite
1959) that can reduce data requirements in some cases.

• Oakley and O’Hagan (2004) described a Bayesian ap-
proach to estimation of θi, as well as other indices related
to model sensitivity, based on regarding y(x) as a random
function, a realization of a Gaussian stochastic process in-
dexed in �. By specifying prior distributions for the pa-
rameters of the process and computing output values at
a collection of input vectors, Bayesian arguments can be
used to derive a posterior process for y(x), and posterior
distributions for functionals of y, including θi.

• Other methods have been developed that more explicitly
rely on assumptions about the smoothness of y as a func-
tion of x. For example, Ratto, Pagano, and Young (2007)
described another methodology based on metamodels re-
lated to linear regression models and Kalman filters.

Assumptions about y(x) are fundamental to any approach
based on output modeling and are typically reflected in choices
that must be made in implementation. These include, for exam-
ple, the number of “harmonic” frequencies considered to be ad-
equate in FAST, the spatial correlation functions used in meth-
ods based on spatial stochastic processes, and the particular se-
lection of functional approximations used in regression-based
methods. As is always true in statistical estimation problems,

various methods can be developed based on different assump-
tions. Nonparametric sampling-based methods can be expected
to yield valid estimates of θi for a wide variety of model func-
tions, but techniques based on stronger assumptions should pro-
vide more precision when the assumptions are justified. Taken
together, these methods allow an experimenter to select the ap-
proach that is best matched to the application at hand.

6. DEMONSTRATION: ENVIRONMENTAL
PATHWAYS MODEL

The environmental pathways model is a mathematical model
of an ecosystem. It simulates the flow of material among eight
different compartments, as prescribed by a set of linear differ-
ential equations that relate concentrations in the compartments
as functions of time. In this analysis, 25 transfer coefficients
are regarded as model inputs and were examined to assess their
effects on two scalar-valued outputs. Each of these 25 inputs
was assigned an appropriate uniform distribution, reflecting the
uncertainty in their respective values. The model computes ma-
terial concentration as a function of time for each of the eight
compartments. Interest in this study was in component C3; the
output time series for this compartment are displayed in Fig-
ure 1 for the 841 model runs described later. Because the shape
of the output function is similar in each case, output can be ef-
fectively reduced to an equilibrium (large time) concentration
value and the time at which 99% of the equilibrium value is
reached. In our analysis, we also transformed equilibrium con-
centration to a logarithmic scale because of the skewed distrib-
ution of values generated; the equilibrium concentrations for a
relatively few runs were larger than the bulk of the values ob-
served.

The orthogonal array used as the design for this computer
experiment was an OA(292,30,29,2) constructed by the Rao–
Hamming technique (e.g., Hedayat et al. 1999). One of the 30
columns served as the array index, 25 columns were used to rep-
resent the inputs, and the remaining 4 columns were discarded.
As described in Section 3, the orthogonal array (or matrix C)
is the basis for up to 29 input sampling arrays, each specifying

Figure 1. Output concentration of compartment C3 as a function of
time, for each of 841 runs of the environmental pathways model.
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Figure 2. Estimates of η2
i , sorted by size, for 25 inputs in the envi-

ronmental pathways model, for log(equilibrium concentration). Sen-
sitivity analyses were based on computer experiments of 841 runs
(a = 29; ), 580 runs (a = 20; ), and 290 runs (a = 10; ).

a set of 29 input vectors. Twenty-nine values were generated
for each of the 25 inputs; the full collection of values for each
input was represented in each array, and the orthogonal array
structure ensured that no pair of values for two inputs appeared
together more than once.

In this exercise, the actual values of the input vectors were
generated by a popular variant of the Latin hypercube sampling
technique. The uncertainty distribution for each input was par-
titioned into 29 equal-probability intervals as described in Sec-
tion 2.2; however, the midpoints of these intervals, rather than
random selections from them, were used as the input values.
With as many as 29 intervals, any bias introduced by this sim-
plification was likely to be minor, unless some input distribu-
tions had very long tails (not the case in this example).

Figures 2 and 3 display the results of sensitivity analyses for
the two outputs of interest. The solid dots depict values of η̂2

i
based on an analysis of the 292 = 841 model evaluations spec-
ified by the entire orthogonal array. These results suggest that

Figure 3. Estimates of η2
i , sorted by size, for 25 inputs in the en-

vironmental pathways model, time to 99% equilibrium concentration.
Sensitivity analyses were based on computer experiments of 841 runs
(a = 29; ), 580 runs (a = 20; ), and 290 runs (a = 10; ).

equilibrium concentration in C3 was most heavily influenced
by three inputs (identified as X01, X68, and X69), that three
additional inputs also may be of some importance (identified as
X24, X84, and X63), and that the remaining 19 inputs had rel-
atively less or minimal influence. The results for time to 99%
equilibrium concentration in C3 were much simpler; a single
input (X63) clearly accounted for nearly all of the variability in
this output.

The environmental pathways model used in this example
does not require substantial computational effort; a single eval-
uation executes in less than 1 second on a modern workstation.
But many important models are far more computationally in-
tensive, and a budget of 841 evaluations often would be im-
practical. Recall that it is not necessary to include all 29 sam-
pling arrays associated with the complete orthogonal array; any
subset of these sampling arrays also represents a UPCS. We re-
peated the sensitivity analysis using only the first 10 and first
20 arrays constructed from the OA(292,30,29,2), requiring
computer experiments of approximately 1

3 and 2
3 the number

of model executions of the analysis described earlier. Results
for these also are displayed in Figures 2 and 3 (with squares
for a = 10 and asterisks for a = 20). In this case little informa-
tion was lost by using 20 arrays instead of the full 29; similar
conclusions would be reached as to which inputs are most im-
portant (although the ranking of the apparently most important
three inputs is not the same). With a = 10 arrays (290 model
runs), 5 of the 6 most important inputs likely would be correctly
identified, but the estimate for input X24 would not suggest an
“active” input in this case. None of the apparently unimportant
inputs would be incorrectly identified as being among the most
important in the sensitivity analyses based on 10 or 20 arrays.

6.1 Comparisons With Other Approaches

We also carried out sensitivity analyses of the environmental
pathways code using the FAST analysis of Cukier et al. (1973)
and the Bayesian modeling approach of Oakley and O’Hagan
(2004). As mentioned in Section 5, FAST requires data col-
lected according to a particular form of sampling plan or ex-
perimental design; these were constructed in 291, 581, and 841
runs to correspond in size to the arrays used in demonstrating
our approach. (The smaller designs were increased in size by
one run to accommodate the need for an odd number of func-
tion evaluations with this method.) The frequencies used in this
construction, given in Table 5, were selected so as to elimi-

Table 5. Frequencies (ω) used in FAST analyses
of the environmental pathways model

291 and 581 runs
3 5 7 11 13

17 19 23 25 27
29 31 35 37 41
43 45 47 49 53
55 59 61 63 65

841 runs
5 13 17 19 23

31 35 37 59 63
71 73 77 85 143

145 155 159 161 169
171 185 191 203 207
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nate second-order aliasing and as much third-order aliasing as
possible, although the sample sizes that we used appear to be
substantially smaller than those usually suggested for FAST.
We evaluated the environmental pathways model for each input
vector in these designs, and used FAST analysis with these data
to estimate first-order variance ratios for each input. We car-
ried out the Oakley and O’Hagan analysis using GEP–SA soft-
ware (available at http://ctcd.group.shef.ac.uk/gem.html), and
because there is no requirement for a special experimental de-
sign with this approach, we used the output generated from our
original 290-run design (a = 10). GEP–SA imposes an upper
limit of 400 on the number of model evaluations that can be
accommodated, so we made no comparisons to our 580- and
841-run exercises.

Estimates of η2 for each input based on FAST and Bayesian
modeling approaches are displayed in Figures 4 and 5; for com-
parison, the 25 inputs are sorted in the same order in these
graphs as in Figures 2 and 3. The general conclusions con-
cerning which inputs appear to be most important were es-
sentially the same with each method; FAST and the Bayesian
modeling methodology also identified X01, X68, and X69 as
having the most important influence on equilibrium concen-
tration and X24, X84, and X63 as also having notable ef-
fects on this output, and identified X63 as the primary “driver”
of time to equilibrium. Strong agreement is not surprising
in this case, because the environmental pathways model ac-
tually is a fairly simple function with fairly few influential
inputs. Results are not plotted for the 291-run FAST analy-
sis, because these were essentially identical to those for the
581-run result. Because both methods are based on substan-
tially stronger assumptions than the sampling approach de-
scribed in Sections 1–4, they appear to offer more precise re-
sults for the smallest array sizes. For more complex functional
forms, this advantage can be offset by bias arising from inad-
equacy of the Fourier approximation assumed by FAST and
the preference for simple functions embodied in the Bayesian
prior.

Figure 4. Estimates of η2
i , sorted as in Figure 2, for 25 inputs

in the environmental pathways model, for log(equilibrium concentra-
tion), based on FAST analyses of 581 runs ( ) and 841 runs ( ), and
Bayesian analysis of 290 runs ( ).

Figure 5. Estimates of η2
i , sorted as in Figure 3, for 25 inputs in

the environmental pathways model, time to 99% equilibrium concen-
tration, based on FAST analyses of 581 runs ( ) and 841 runs ( ), and
Bayesian analysis of 290 runs ( ).

7. CONCLUSION

As computer speed and memory capacity have increased, sci-
entists and others who develop computer models have written
increasingly complex representations of the systems that they
study. In many cases, the resulting computer models, although
completely defined on paper, cannot be fully understood be-
cause of this complexity, even by their creators. The techniques
summarized by Saltelli, Chan and Scott (2000) have been devel-
oped to provide experimental evidence of which model inputs
are most crucial in determining output values.

First-order sensitivity indices θi and η2
i are useful tools

for characterizing the individual importance of model inputs.
Saltelli’s generalization of Sobol’s substituted column plan sup-
ports estimation of both first-order and total sensitivity indices.
Permuted column sampling plans, such as the replicated Latin
hypercube arrays described by McKay (1995), support efficient
estimation of first-order sensitivity indices. But if the column
permutations are selected at random, then these estimates can
be substantially biased, especially when the number of influen-
tial inputs is large or the number of runs in each sampling array
is small. Like the sampling plans presented here, the balanced
replication array sampling plans (Morris et al. 2006) also sup-
port unbiased estimation, but generally with less precision than
can be attained with permuted column samples of comparable
size.

In this article we have shown that UPCSs can be constructed
if the column permutations are selected deterministically, and
that UPCSs containing up to the largest possible number of ar-
rays, in the smallest possible number of runs per array, are char-
acterized by orthogonal arrays of strength 2. In practice, the size
requirements can be avoided by constructing sampling plans
for more than k inputs (thereby increasing the array size n; the
unneeded columns can be simply ignored) or by not using the
entire collection of arrays specificed by the OA. As with other
permuted column sampling plans, UPCS plans can be imple-
mented using either Latin hypercube sampling or unconstrained
sampling of input values. In the demonstration exercise of Sec-
tion 4, the UPCS plans also resulted in more precise estimation
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of first-order variance indices than did the random permutation
plans. In addition, UPCS plans are more flexible than balanced
replication arrays in that there are fewer restrictions on the size
of sample that can be constructed.

One operational advantage of selecting column permutations
randomly is that this procedure is very simple; a sampling de-
sign for any number of inputs can be easily constructed using
only a random number generator. The construction of system-
atic sampling arrays requires more effort. The result of this arti-
cle is that the considerable effort that has gone into construction
techniques for orthogonal arrays (described by, e.g., Hedayat et
al. 1999) and websites that contain collections of orthogonal
arrays (e.g., http://www.research.att.com/∼njas/oadir/ ) can be
directly used to construct UPCS plans.
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APPENDIX: PROOFS OF LEMMAS AND
THEOREMS OF SECTION 3

To facilitate the proof of unbiasedness of θ̂i for UPCS plans,
we extend the notation of Section 3. Let S2(Aj) represent the
sample variance of output values associated with the rows (in-
put vectors) of array Aj. For given i = 1,2,3, . . . , k, define Br ,
r = 1,2,3, . . . ,n, to be the a × k array in which row j is the
single row from Aj in which the ith element is r. Let S2(Br)

represent the sample variance of output values associated with
rows of array Br . Thus Br specifies a set of input vectors that
share a common value for input i, and each S2(Br) is an esti-
mate of the output variance conditioned on this fixed value of
xi. Note that in this notation,

θ̂i = 1

a

a∑

j=1

S2(aj) − 1

n

n∑

r=1

S2(Br).

We prove the unbiasedness of θ̂i by examining the expectation
of each term.

Proof of Theorem 1

By construction, the ith column of Aj is a permutation of
u, and the corresponding set of input values (of xi) is a ran-
dom sample of fi(xi). This is true independently for each col-
umn (value of i = 1,2,3, . . . , k), and so the set of input vectors
(x) corresponding to the rows of Aj compose a random sample
from f (x) = ∏k

i=1 fi(xi). Therefore, E{S2(Aj)} = V[y(x)] and,
consequently, E{ 1

a

∑a
j=1 S2(Aj)} = V[y(x)].

By construction, the ith column of Br is r × 1, and every
other column is a permutation of u. For i′ �= i, the elements of
the i′th columns of Br correspond to a random sample of fi′(xi′),
and so the rows of Br , excluding the ith element, correspond to
a random sample of f−i(x−i); therefore,

E{S2(Br)|xi = xi,r} = V−i[y(x−i)|xi = xi,r],

where xi,r is the random value drawn for xi corresponding to
the coded value r. Because {xi,r, r = 1,2,3, . . . ,n} is a random
sample from fi(xi),

E

{
1

n

n∑

r=1

S2(Br)

}

= Ei
[
V−i{y(x)}].

Finally, combining these two results directly implies unbiased-
ness of θ̂i.

Before presenting proofs of the main results, we note that
these are most easily demonstrated by writing the UPCS in a
“standardized” form. Without loss of generality, suppose that
the UPCS is arranged so that

a1
1 = a1

2 = a1
3 = · · · = a1

k = a2
1 = a3

1 = a4
1 = · · · = aa

1 = u;
that is, the permutations used in all columns of A1 and the first
column of each of arrays A2–Aa leave the elements of u in
unchanged order.

Proof of Lemma 1

Consider purposeful selection of column permutations in a
standardized PCS to satisfy Definitions 1 and 2 (Sec. 3). One
implication of this standardization is that 1 cannot appear as
the first entry of the second column of A2, because this would
pair it with the 1 in the first column (and that pair is already
represented in A1); say that, without loss of generality, we place
it in the second row of A2 instead. Given this choice, a 1 cannot
appear as the first or second entry in the third column of A2,
because this would pair it with a 1 in either the first or second
column; suppose that we choose to place it in the third column
instead. We may continue this pattern through as many as n
columns, but if k > n, then this leaves us with the following
partially characterized array:

(column n)

A2 =

⎛

⎜
⎜
⎜
⎝

1 - - - - · · · - - · · ·
2 1 - - · · · - - · · ·
3 - - 1 · · · - - · · ·
· · · · · · · · · · · · · · · · · ·
n - - - - · · · 1 · · ·

⎞

⎟
⎟
⎟
⎠

.

But this presents a situation in which any ordering of 1–n in
subsequent columns will produce a row containing at least two
1’s, so that at least some pairs of runs, one from each of A1
and A2, will have more than one input value in common. Thus
avoiding this problem requires a minimum of a k runs in each
array.

Proof of Lemma 2

Consider the first two elements in the first row of each stan-
dardized array, for example,

A1 A2 A3 A4 · · ·
(1,1) (1, -) (1, -) (1, -) · · ·

Note that each blank must be filled in with a different number
from 2 through k; otherwise, at least two arrays would have
the same entries in the first two positions of row one, and the
condition would not be met. Thus the number of arrays cannot
be greater than k.
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Proof of Theorem 2

Sufficiency. By Definition 1, each column of Aj, j = 1,2,3,

. . . ,n, contains each of the n symbols once, so the first col-
umn and any other columns of C contain each possible pair of
symbols exactly once. Furthermore, if Aj, j = 1,2,3, . . . ,n, is
a UPCS, then the requirement of Definition 2 implies that each
pair of the last k columns of C must contain each possible pair
of symbols at most once, and this also must be exactly once,
because C contains n2 rows. Thus sufficiency is proven.

Necessity. If C is an orthogonal array of strength 2 in n
symbols, then each column of Aj, j = 1,2,3, . . . ,n, must be a
permutation of u, satisfying the requirement of Definition 1,
to satisfy the balance condition with the first column of C.
Furthermore, orthogonality implies that any two of the last
k columns of C contain each ordered pair of values exactly
once, so the requirement of Definition 2 also is satisfied. Thus
Aj, j = 1,2,3, . . . ,n, is a UPCS, and necessity is proven.

[Received December 2005. Revised February 2008.]
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