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Introduction

Acronyms and Concepts
EBglmnet is a package that implements the empirical Bayesian Lasso (EBlasso) and Elastic Net (EBEN)
method for generalized linear models (GLMs). Additionally, in EBlasso, two different prior distributions are
also developed: one with two-level hierarchical Normal + Exponential prior (denoted as NE), and the other
one with three-level Normal + Exponential + Gamma prior (denoted as NEG). The major difference of the
prior distributions are the probability density around zero and two tails:

• Probability density around zero: higher probability density around zero will enforce stronger shrinkage
effect, resulting in more sparse model (i.e., the model set the coefficients of predictors with small or
noise prediction power to zero);

• Probability density on tails: higher probability density around tails leave enough room for strong
predictors to stay with none-zero coefficients.

A good prior distribution is a balance of the aforementioned properties as shown in the Figure 1. Generally,
NE prior leads to more non-zero predictors with smaller absolute coefficient values, while NEG prior leads to
less non-zero predictors with stronger signals in terms of both absolute coefficient values as well as significance
level.

Figure 1: Prior distributions that penalise posterior distributions
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The following names should not be confused with the lasso and elastic net method from the comparison
package glmnet:

EBglmnet: package that implements EBlasso and EBEN methods.

EBlasso: empirical Bayesian method with lasso prior distribution, which includes two sets of prior distri-
butions: NE and NEG.

EBEN: empirical Bayesian method with elastic net prior distribution.

lasso prior: the hierarchical prior distribution that is equivalent with lasso penalty term when the marginal
probability distribution for the regression coefficients is considered.

elastic net prior: the hierarchical prior distribution that is equivalent with elastic net penalty term
when the marginal probability distribution for the regression coefficients is considered.

EBlasso-NE: EBlasso method with NE prior.

EBlasso-NEG: EBlasso method with NEG prior.

Generalized Linear Models (GLMs) In a GLM

η = µI + Xβ,

where X is an n×p matrix containing p variables for n samples (p can be ≫ n). η is an n×1 linear predictor
and is related to the response variable y through a link function g: E(y|X)=g−1 (µI + Xβ), and β is a p × 1

vector of regression coefficients. Depending on certain assumption of the data distribution on y, the GLM is
generally inferred through finding the set of model parameters that maximize the model likelihood function
p(y|µ, β, ϕ), where ϕ denotes the other model parameters of the data distribution. However, such Maximum
Likelihood (ML) approach is no longer applicable when p ≫ n. With Bayesian lasso and Bayesian elastic
net (EN) prior distribution on β, EBglmnet solves the problem by inferring a sparse posterior distribution

for β̂, which includes exactly zero regression coefficients for irrelevant variables and both posterior mean
and variance for non-zero ones. Comparing with the glmnet package, not only does EBglmnet provide
features including both sparse outcome and hypothesis testing, simulation study and real data analysis in
the reference papers also demonstrates the better performance in terms of Power of Detection (PD), False
Discovery Rate (FDR), as well as Power Detecting Group Effects when applicable. While mathematical
details of the EBlasso and EBEN methods can be found in the reference papers, the principle of the methods
and differences on the prior distributions will be briefly introduced here.

Lasso and its Bayesian Interpretation

Lasso applies a penalty term on the log likelihood function and solves for β̂ by maximizing the following
penalized likelihood:

β̂ = argβ max [log p(y|µ, β, ϕ) − λ||β||1] .

The l1 penalty term can be regarded as a mixture of hierarchical prior distribution:

βj ∼ N (0, σ2
j ), σ2

j ∼ exp(λ), j = 1, . . . , p,

and maximizing the penalized likelihood function is equivalent to maximizing the marginal posterior distri-
bution of β :

β̂ = argβ max log p(β|y, X, µ, λ, ϕ) ≈ argβ max log

∫



p(y|µ, β, ϕ) · (2π)−p/2|A|1/2 exp{−1

2
βT Aβ} ·

p
∏

j=1

λ exp{−λσ2
j }



 dσ2,
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where A is a diagonal matrix with σ−2 on its diagonal. Of note, lasso integrates out the variance information
σ2 and estimates a posterior mode β̂. The l1 penalty ensures that a sparse solution can be achieved. In
Bayesian lasso (Park and Casella, 2008), the prior probability distribution is also conditional on the residual
variance so that it has a unique mode.

Empirical Bayesian Lasso (EBlasso)

EBglmnet keeps the variance information, while still enjoying the sparse property by taking a different and
slightly complicated approach as showed below using EBlasso-NE as an example:

In contrary to the marginalization on β, the first step in EBlasso-NE is to obtain a marginal posterior
distribution for σ2 :

p(σ2|y, X, µ, λ, ϕ) =

∫

c



p(y|µ, β, ϕ) · (2π)−p/2|A|1/2 exp{−1

2
βT Aβ} ·

p
∏

j=1

λ exp{−λσ2
j }



 dβ,

where c is a constant. While the integral in lasso is achieved through the conjugated Normal + Exponential
(NE) prior, the integral in EBlasso-NE is completed through mixture of two normal distributions: p(β|σ2)
and p(y|µ, β, ϕ), and the latter one is typically approximated to a normal distribution through Laplace
approximation if itself is not a normal PDF. Then the estimate σ̂2 can be obtained by maximizing this
marginal posterior distribution, which has the following form:

σ̂2 = argσ2 max log p(σ2|y, X, µ, λ, ϕ) = argσ2 max



log p(y|µ, σ2, ϕ, λ) −
p

∑

j=1

λσ2
j + c



 .

Given the constraint that σ2 > 0, the above equation essentially maximizes the l1 penalized marginal
likelihood function of σ2, which images the l1 penalty in lasso with the beauty of producing a sparse
solution for σ̂2. Note that if σ̂2

j = 0, β̂j will also be zero and variable xj will be excluded from the model.

Finally, with the sparse estimate of σ̂2, the posterior estimate of β̂ and other nuance parameters can then
be obtained accordingly.

Hierarchical Prior Distributions in EBglmnet

Prior 1: EBlasso-NE
βj ∼ N (0, σ2

j ), σ2
j ∼ exp(λ), j = 1, . . . , p

As illustrated above, assuming a Normal + Exponential hierarchical prior distribution on β (EBlasso-NE)
will yield exactly the lasso prior. EBlasso-NE accommodates the properties of sparse solution and hypothesis
testing given both the estimated mean and variance information in β̂ and σ̂2. The NE prior is “peak zero and
flat tails”, which can select variables with relatively small effect size while shrinking most of irrelevant effects
to exactly zero. EBlasso-NE can be applied to natural population analysis when effect sizes are relatively
small.

Prior 2: EBlasso-NEG The prior in EBlasso-NE has a relatively large probability mass on the nonzero
tails, resulting in a large number of non-zero small effects with large p-values in simulation and real data
analysis. We further developed another well studied conjugated hierarchical prior distribution under the
empirical Bayesian framework, the Normal + Exponential + Gamma (NEG) prior:

βj ∼ N (0, σ2
j ), σ2

j ∼ exp(λ), λ ∼ gamma(a, b), j = 1, . . . , p
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Comparing with EBlasso-NE, the NEG prior has both large probability density centered at 0 and two tails,
and will only yield nonzero regression coefficients for effects having relatively large signal to noise ratio.

Prior 3: Elastic Net Prior for Grouping Effect Similar to lasso, EBlasso typically selects one
variable out of a group of correlated variables. While elastic net was developed to encourage a grouping
effect by incorporating an l2 penalty term, EBglmnet implemented an innovative elastic net hierarchical
prior:

βj ∼ N
[

0, (λ1 + σ̃−2
j )−1

]

, σ̃j
2 ∼ generalized gamma(λ1, λ2), j = 1, . . . , p.

The generalized gamma distribution has PDF: f(σ̃j
2|λ1, λ2) = c(λ1σ̃j

2 + 1)−1/2 exp{−λ2σ̃j
2}, j = 1, . . . , p,

with c being a normalization constant. The property of this prior can be appreciated from the following
aspects:

(1): λ1 = 0 When λ1 = 0, the generalized gamma distribution becomes an exponential distribution:
f(σ̃j

2|λ2) = c exp{−λ2σ̃j
2}, j = 1, . . . , p, with c = λ2, and the elastic net prior is reduced to the two level

EBlasso-NE prior.

(2): λ1 > 0 When λ1 > 0, the generalized gamma distribution can be written as a shift gamma distribution
having the following PDF: f(σ̃j

2|a, b, γ) = ba

Γ(a) (σ̃j
2 − γ)a−1 exp{−b(σ̃j

2 − γ)}, where a = 1/2, b = λ2, and

γ = −1/λ1. In (Huang A. 2015), it is proved that the marginal prior distribution of βj can be obtained as
p(βj) ∝ exp{− λ1

2 β2
j −

√
2λ2|βj |}, which is equivalent to the elastic net method in glmnet.

(3): structure of σ2 and interpretation of the elastic net prior Note that the prior variance for
the regression coefficients has this form: σ2 = σ̃2/(λ1σ̃2 + I). This structure seems counter-intuitive at first
glance. However, if we look at it from precision point of view, i.e., α = σ−2, and α̃ = σ̃−2, then we have:

α = λ1I + α̃.

The above equation demonstrates that we actually decompose the precision of the normal prior into a
fixed component λ1 shared by all explanatory variables and a random component α̃ that is unique for each
explanatory variable. This design represents the mathematical balance between the inter-group independence
and intra-group correlation among explanatory variables, and is aligned with the objective of sparseness while
encouraging grouping effects.

The empirical Bayesian elastic net (EBEN) in EBglmnet is solved similarly as EBlasso using the aforemen-
tioned empirical Bayesian approach. Research studies presented in the reference papers demonstrated that
EBEN has better performance comparing with elastic net, in terms of PD, FDR, and most importantly,
Power of Detecting Groups.

EBglmnet Implementation and Usage

The EBglmnet algorithms use greedy coordinate descent, which successively optimizes the objective func-
tion over each parameter with others fixed, and cycles repeatedly until convergence. Key algorithms are
implemented in C/C++ with matrix computation using the BLAS/LAPACK packages. Due to closed form
solutions for σ̂2 in all prior setups and other algorithmic and programming techniques, the algorithms can
compute the solutions very fast.

We recommend using EBlasso-NEG when there are a large number of candidate effects (eg., ≥ 106 number of
effects such as whole-genome epistasis analysis and GWAS), and using EBEN when groups of highly correlated
variables are of interest.
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The authors of EBglmnet are Anhui Huang and Dianting Liu. This vignette describes the principle and usage
of EBglmnet in R. Users are referred to the papers in the Reference section for details of the algorithms.

Installation

EBglmnet can be installed directly from CRAN using the following command in R console:

install.packages("EBglmnet", repos = "http://cran.us.r-project.org")

which will download and install the package to the default directory. Alternatively, users can download the
pre-compiled binary file from CRAN and install it from local package.

Back to Top

Quick Start

We will give users a general idea of the package by using a simple example that demonstrates the basis
package usage. Through running the main functions and examining the outputs, users may have a better
idea on how the package works, what functions are available, which parameters to choose, as well as where
to seek help. More details are given in later sections.

Let us first clear up the workspace and load the EBglmnet package:

rm(list = ls())

library(EBglmnet)

We will use an R built-in dataset state.x77 as an example, which includes a matrix with 50 rows and 8
columns giving the following measurements in the respective columns: Population, Income, Illiteracy, Life
Expectancy, Murder Rate, High School Graduate Rate, Days Below Freezing Temperature, and Land Area.
The default model used in the package is the Gaussian linear model, and we will demonstrate it using Life
Expectancy as the response variable and the remaining as explanatory variables. We create the input data
as showed below, and users can load their own data and prepare variable y and x following this example.

varNames = colnames(state.x77);

varNames

y= state.x77[,"Life Exp"]

xNames = c("Population","Income","Illiteracy", "Murder","HS Grad","Frost","Area")

x = state.x77[,xNames]

We fit the model using the most basic call to EBglmnet with default prior

set.seed(1)

output = EBglmnet(x,y,hyperparameters = c(0.1, 0.1))

“output” is a list containing all the relevant information of the fitted model. Users can examine the output
by directly looking at each element in the list. Particularly, the sparse regression coefficients can be extracted
as showed below:

glmfit = output$fit

variables = xNames[glmfit[,1,drop=FALSE]]

cbind(variables,as.data.frame(round(glmfit[,2:5,drop=FALSE],4)))
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The hyperparameters in each of the prior distributions control the number of non-zero effects to be selected,
and cross-validation (CV) is perhaps the simplest and most widely used method in deciding their values.
cv.EBglmnet is the main function to do cross-validation, which can be called using the following code.

cvfit = cv.EBglmnet(x, y)

cv.EBglmnet returns a cv.EBglmnet object, which is a list with all the ingredients of CV and the final
fit results using CV selected hyperparameters. We can view the CV results, selected hyperparameters and
the corresponding coefficients. For example, result using different hyperparameters and the corresponding
prediction errors are shown below:

cvfit$CrossValidation

The selected parameters and the corresponding fitting results are:

cvfit$hyperparameters

cvfit$fit

Back to Top

GLM Family

Two families of models have been developed in EBglmnet, the gaussian family and the binomial family,
which are essentially different probability distribution assumptions on the response variable y.

Gaussian Model

EBglmnet assumes a Gaussian distribution on y by default, i.e., p(y|µ, β, ϕ) = N(µI + Xβ, σ2
0I), where

ϕ = σ2
0 is the residual variance. In the above example, both µ̂ and σ̂0

2 are listed in the output:

output$Intercept

output$residual

Binomial Model

If there are two possible outcomes in the response variable, a binomial distribution assumption on y is
available in EBglmnet, which has p(y|µ, β, ϕ) following a binomial distribution and ϕ ∈ ∅. Same as the

widely-used logistic regression model, the link function is ηi = logit(pi) = log( P r(yi)=1
1−P r(yi=1) ), i = 1, . . . , n. To

run EBglmnet with binomial models, users need to specify the parameter family as binomial:

yy = y>mean(y);

output = EBglmnet(x,yy,family="binomial", hyperparameters = c(0.1, 0.1))

For illustration purpose, the above codes created a binary variable yy by set the cutoff at the mean Life
Expectancy value.

Back to Top
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Prior and Hyperparameters

The three sets of hierarchical prior distribution can be specified by prior option in EBglmnet. By default,
EBglmnet assumes the lassoNEG prior. The following example changes the prior via prior parameter:

output = EBglmnet(x,yy,family="binomial", prior = "elastic net", hyperparameters = c(0.1, 0.1))

output$fit

Note that the hyperparameters setup is associated with a specific prior. In lasso prior, only one hyperpa-
rameter λ is required, while in elastic net and lassoNEG, two hyperparameters need to be specified. For
EBEN having the elastic net prior distribution, the two hyperparameters λ1 and λ2 are defined in terms of
other two parameters α ∈ [0, 1] and λ > 0 same as in glmnet package, such that λ1 = (1 − α)λ and λ2 = αλ.
Therefore, users are asked to specify hyperparameters = c(α, λ).

Back to Top

Example of p>n Data

Gaussian Model with Main Effects

We will demontrate the application of EBglmnet in multiple QTL mapping using a simulated F2 population,
which is available along with EBglmnet package. The genotype of the F2 population is simulated from
cross of two inbred lines. A total of p = 481 gentic markers were simulated to be evenly spaced on a large
chromosome of 2400 centi-Morgan (cM) with an interval of d = 5 cM. Theoretically, two adjacent markers
have a correlation coefficient R = e−2d = 0.9048 since the Haldane map function is assumed. The dummy
variable for the three genotypes, AA, Aa and aa of individual i at marker j was defined as xij = 1, 0, −1,
respectively.

data(BASIS)#this is the predictors matrix

N = nrow(BASIS)

p = ncol(BASIS)

j = sample((p-2),1)

cor(BASIS[,c(j,j+1,j+2)]) #Correlation structure among predictors

## m464 m465 m466

## m464 1.0000000 0.9172078 0.8249249

## m465 0.9172078 1.0000000 0.8955560

## m466 0.8249249 0.8955560 1.0000000

Let us first simulate a quantitative phenotype with population mean 100 and residual variance that contribute
to 10% of population variance. Ten QTLs were simulated from the 481 markers, and effect sizes are randomly
generated from [2,3]. We assume that QTLs were coincided with markers. If QTLs were not on markers,
they may still be detected given the above correlation structure, although a slightly larger sample size may
be needed to give the same PD:

set.seed(1);

Mu = 100; #population mean;

nTrue = 10; # we assume 10 out of the 481 predictors are true causal ones

trueLoc = sort(sample(p,nTrue));

trueEff = runif(nTrue,2,3); #effect size from 2-3

xbeta = BASIS[,trueLoc]%*%trueEff;

s2 = var(xbeta)*0.1/0.9 #residual variance with 10% noise

residual = rnorm(N,mean=0,sd=sqrt(s2))

y = Mu + xbeta + residual;
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To demonstrate the performance of EBglmnet in analyzing dataset with p > n, we will analyze the simulated
dataset using a smaller sample size n = 300:

n = 300;

index = sample(N,n);

CV = cv.EBglmnet(x=BASIS[index,],y=y[index],family="gaussian",prior= "lassoNEG",nfold= 5)

With 5 fold CV, EBlasso-NEG identified the following effects:

CV$fit

trueLoc

Comparing with the true QTL locations, EBlasso-NEG successfully identified all QTLs. Of note, an identified
marker that is <20cM from a true QTL is generally not considered as a false effect, given the small distance
and high genotype correlation. Since there is limited prior information in this simulation, other methods in
EBglmnet will yield similar results.

Binomial Model and Separation Problem

In many genetics and population analysis such as binary QTL mapping or GWAS, both genetic effects (eg., X

takes values of 1, 0, -1 denoting three genotype values AA, Aa, aa) and response variable (eg., y takes values
of 0 and 1 denoting the two phenotype classes) are discrete values. Separation problem (complete separation
and semi-complete separation) occurs often in such data, especially when epistasis is considered due to the
larger number of variables p′ = p(p+1)/2. Of note, separation is a problem in logistic regression where there
exist some coefficients β such that yi = 1 whenever xT

i β > 0, and yi = 0 whenever xT
i β < 0, i = 1, . . . , n.

Unless the phenotype is a Mendelian trait, finding a genetic factor/set of factors that perfectly predict the
phenotype outcome is too good to be true. While separation problem has been well documented in many
statiscal textbook (eg., Ch9 of Altman M, Gill J, Mcdonald M P. (2005)), it is less studied in high dimensional
sparse modeling methods. We next examine the problem using lasso as an example.

Benchmarking using EBglmnet In the simulated F2 population, if we consider both main and epistatic
effects, there will be a total number p′ = 115, 921 candidate effects. We will randomly select 10 main and 10
interaction effects as true effects. we will use sample size n = 300, and also randomly generate effect sizes
from unif[2,3]. Note that an epistatic effect is generated by dot product of two interacting main effects:

n = 300;

set.seed(1)

index = sample(nrow(BASIS),n)

p = ncol(BASIS);

m = p*(p+1)/2;

#1. simulate true causal effects

nMain = 10;

nEpis = 10;

mainLoc = sample(p,nMain);

episLoc = sample(seq((p+1),m,1),nEpis);

trueLoc = sort(c(mainLoc,episLoc)); #a vector in [1,m]

nTrue = length(trueLoc);

trueLocs = ijIndex(trueLoc, p); #two columns denoting the pair (i,j)

#2. obtain true predictors

basis = matrix(0,n,nTrue);

for(i in 1:nTrue)

{
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if(trueLocs[i,1]==trueLocs[i,2])

{

basis[,i] = BASIS[index,trueLocs[i,1]]

}else

{

basis[,i] = BASIS[index,trueLocs[i,1]]*BASIS[index,trueLocs[i,2]]

}

}

#3. simulate true effect size

trueEff = runif(nTrue,2,3);

#4. simulate response variables

xbeta = basis%*%trueEff;

vary = var(xbeta);

Pr = 1/(1+ exp( -xbeta));

y = rbinom(n,1,Pr);

Now we have the phenotype simulated. Let us demonstrate the data analysis using EBlasso-NE as an
example. Given the significant larger number of candidate effects (200 times more effects), this will take a
longer time for CV to finish (nfolds × nhyperparameters + 1) times of calling EBglmnet algorithm. In fact, the
computational time is mostly determined by the number of nonzero effects selected by the model. This can
be seen if a larger sample size is used (note: if you set n = 1000, this will take several more hours to finish
the (nfolds × nhyperparameters + 1) times computation (Altough a higher PD will be obtained).

CV = cv.EBglmnet(x=BASIS[index,],y=y,family="binomial",prior="lasso",nfold=5)

## Empirical Bayes LASSO Logistic Model (Normal + Exponential prior) 5 fold cross-validation

ind = which(CV$fit[,5]<=0.1)#p-value cutoff

CV$fit[ind,]

## predictor beta posterior variance t-value p-value

## [1,] 54 0.3574937 0.04064460 1.773238 0.077207261

## [2,] 56 0.6570230 0.05495714 2.802648 0.005399570

## [3,] 72 0.5370808 0.03918611 2.713148 0.007051139

## [4,] 91 0.5854443 0.04522653 2.752890 0.006268404

## [5,] 210 0.5296459 0.03667812 2.765554 0.006036039

## [6,] 225 0.5406408 0.05317435 2.344540 0.019704733

## [7,] 227 0.4852761 0.04927319 2.186168 0.029578514

## [8,] 239 0.4313054 0.04712116 1.986904 0.047845428

## [9,] 240 0.3445439 0.04333749 1.655056 0.098962334

## [10,] 270 0.5462582 0.04604777 2.545621 0.011410310

## [11,] 293 -0.3105339 0.02784121 1.861080 0.063714242

## [12,] 336 0.3962398 0.03394442 2.150671 0.032303559

As discussed earlier, lasso prior assigns a large probability mass in the two tails, resulting in a large number
of small effects with large p-values.

Separation Problem Compared with EBglmnet, glmnet does not have a reasonable result in analyzing
this dataset, partially because of the separation problem. Let us first show the result using lasso approach.

Since glmnet has no built-in facility for epistasis analysis, we will manually create a genotype matrix X

containing all main and epistasis effects.
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X = matrix(0,n,m);

X[,1:p] = BASIS[index,];

kk = p + 1;

for(i in 1:(p-1))

{

for(j in (i+1):p)

{

X[,kk] = BASIS[index,i] * BASIS[index,j];

kk = kk + 1;

}

}

Let us analyze the dataset using lasso, examine the lasso selection path:

library(glmnet);

## Loading required package: Matrix

## Loaded glmnet 4.1-6

alpha = 1

lambdaRatio = 1e-4; #same as in EBlasso

cv = cv.glmnet(X, y, alpha = alpha,family="binomial",nfolds = 5,lambda.min.ratio=lambdaRatio)

nLambda = length(cv$lambda)

nLambda

## [1] 81

nbeta = rep(0,nLambda);

fit0 = cv$glmnet.fit;

for(i in 1:nLambda)

{

nbeta[i] = length(which(fit0$beta[,i]!=0))

}

plot(nbeta,xlab=expression(paste(lambda, " in lasso selection path(n=300,p=115,921)")),

ylab="No. of nonzero effects",xaxt="n")#

ticks = seq(1,nLambda,10)

axis(side=1, at= ticks,labels=round(cv$lambda[ticks],5), las=1,cex.axis = 0.5)

title("Number of nonzero effects in lasso selection path")
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The result above demonstrated that lasso was not able to complete the selection path, and exited at the 81
out of 100 candidate λs. From the scatterplot, it is shown that the number of nonzero effects has stablized
after the 25th λ due to semi-complete separation that fewer candidate variables can be selected, even lambda
is decreasing exponentially (will be explained in lasso discarding rule in the ensuing section). See the glmnet

user manual for the built-in exit mechanism.

We can also take a closer look by re-fitting the lasso selected effects in an ordinary logistic regression model,
which will explicitly print out the warning message of separation:

lambda= cv$lambda.min

coefs = fit0$beta

ind = which(cv$lambda==cv$lambda.min)

beta = coefs[,ind]

betaij = which(beta!=0)

Xdata = X[,betaij];

colnames(Xdata) = betaij;

refit = glm(y ~ Xdata, family = binomial(link = "logit"))#separation occurs

## Warning: glm.fit: algorithm did not converge

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

The warning message describes that separation occurs. Separation problem is detrimental to lasso/elastic net
due to the discarding rules (Tibshirani et al., 2012). Of note, the lasso discarding rule for logistic regression
states that variable xj can be discarded if:

|xT
j (y − p(β̂λk−1

))| < 2λ − λk−1, ∀j

where β̂λk−1
is the nonzero coefficients found by lasso using λk−1 at the k − 1 step. Suppose with λk−1,

lasso selected a set of variables X̃ that perfectly separate y, which lead to y − p(β̂λk−1
) ≈ 0. Then, the
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above discarding rule will have most of the remaining variables discarded. Note that y − p(β̂λk−1
) will not

be exactly 0 due to numerical estimations, and as λ decreases exponentially, a few variables can still pass
the discarding rule (shown from 25th - 81st λ in the above example). However, finding a genetic factor/set
of factors that perfectly predict the phenotype outcome is unlikely, and it is the case given the simulation
setup. With the perfect separation provided by X̃, other true effects cannot be selected into the zon-zero
set, resulting in limited PD.

EBglmnet doesn’t implement such type of discarding rule and is more numerically stable. In the above
simulation, EBglmnet can still identify several true effects with reasonable FDR. More simulation results
using EBglmnet are available in (Huang et al., 2013) and the EBglmnet Application Note.
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