Getting Started with GaussianLib

Lukas Hermanns

August 14, 2016

Introduction

The GaussianLis is a simple C++ library for 2D and 3D applications. It provides only basic linear algebra functionality
for Vectors, Matrices, and Quaternions.

Compilation

In the following we consider to have a single C++ file named “Example.cpp”. More over %GaussianLibPath% denotes
your GaussianLib installation directory.

GNU/C++

The GaussianLis requires g++ version 4.8.1 or higher, with C++11 feature set enabled. To compile your application
with GNU/C++ (or MinGW on Windows), type this into a command line:

g++ -I %GaussianLibPath%/include -std=c++11 Example.cpp -o ExampleOutput

If everything worked properly, your executable is named “ExampleOutput”.

VisualC++

The GaussianLis requires VisualC++ 2013 (12.0) or higher, to support the C++11 features, which are used in the
library.

Fine Tuning

By default, all vectors, quaternions, and matrices are initialized. To increase performance by not automatically
initialize this data, add the following to your compiler pre-defined macros:

GS_DISABLE_AUTO_INIT

If you don’t want to disable the automatic initialization overall, you can explicitly construct a data type who is
uninitialized. This can be done with UninitializeTag:

Gs::Matrix4 m(Gs::UninitializeTag{});

UninitializeTagis an empty struct, so no memory will be allocated. It’s just a hint to the compiler, to call another
constructor, which does no initialization. Note, that uninitialized data should always be explicitly marked as such!
This is useful when the data is initialized manually after construction anways:

Gs::Matrix4 m(Gs::UninitializeTag{});
m[o] 1;

m[1] -1;

m[2] 2.5;

m[15] = 1;

Vectors

In the GaussiaNLiB vectors are considered to be column vectors per default, as it is common in mathematics. Le. if
you want a vector y as a result of a multiplication with a matrix M and a vector x, write: ¥ = M X x. To use row vectors
instead, define the macro GS_ROW_VECTORS before you include the library. There is the generalized base Vector<T, N>
class, where T specifies the data type of the vector components and N specifies the number of components. There are
three specialized template classes for vectors: Vector<T, 2>, Vector<T, 3>, and Vector<T, 4>. These specialized
templates allow you to access the components by their names x, y, z, and w. For larger vectors you need to use the
bracket operator []. There are also pre-defined type aliases (N is either 2, 3, or 4):

e VectorN Is a type alias to VectorNT<Real>, where Real is either from type float or double.
e VectorNf Is a type alias to VectorNT<float>.

e VectorNd Is a type alias to VectorNT<double>.

e VectorNi Is a type alias to VectorNT<int>.

e VectorNui Is a type alias to VectorNT<unsigned int>.

e VectorNb Is a type alias to VectorNT<char>.

e VectorNub Is a type alias to VectorNT<unsigned char>.

#include <Gauss/Gauss.h>
#include <iostream>

int main()

{
Gs::Vector3 a(l, 2, 3), b(4, 5, 6);
std::cout << "a = " << a << std::endl; // Prints "(1 | 2 | 3)" to standard output
std::cout << "b = " << b << std::endl; // Prints "(4 | 5 | 6)" to standard output
std::cout << "a.x = " << a.x << std::endl; // Component access by name
std::cout << "b.x = " << b[0O] << std::endl; // Component access by [] operator
std::cout << "a * b = " << a*b << std::endl; // Per-component multiplication
std::cout << "a . b = " << Gs::Dot(a, b) << std::endl; // Dot product (or scalar product)
std::cout << "a X b = " << Gs::Cross(a, b) << std::endl; // Cross product (or vector product)
std::cout << "a V b = " << Gs::Angle(a, b) << std::endl; // Vector angle (in radians)
std::cout << "|a|] = " << a.Length() << std::endl; // Vector length (or norm of the vector)
std::cout << "Ja|A2 = " << a.LengthSq() << std::endl; // Squared vector length
std::cout << "a / |a| = " << a.Normalize() << std::endl; // Normalized vector (unit length of 1)
return 0;

}

For the specialized Vector templates, there are public members available: x, y, z, and w. L.e. you are not restricted to
the bracket operator [] to access vector components:

a.x = 2;
a.z = 3;
a[®0] += 2; // equivalent to a.x += 2;

Matrices

There is only a single general-purpose class for matrices (except AffineMatrix3T and AffineMatrix4T, see section
Affine Matrices): Matrix<T, Rows, Cols>, where T specifies the template typename T, Rows specifies the number of
rows of the matrix, and Cols specifies the number of columns of the matrix.

#include <Gauss/Gauss.h>
#include <iostream>

int main()

{
Gs::Matrix4 A;
A< 1, 0, 2, 0,
0, -2, 0, 1,
4, 0, 5, 6,
0, 1, 0, 1;
Gs::Matrix<float, 3, 4> B;
B << 4, 2, 9, -1,
o, 1, 6, 2,
3, 7, -2, 0;
Gs::Matrix<float, 4, 3> C;
C = B.Transposed();
Gs::Matrix<float, 3, 3> D;
D = B*(C;
Gs::Matrix<float, 4, 4> E;
E = C*B;
std::cout << "A = " << std::endl << A << std::endl;
std::cout << "B = " << std::endl << B << std::endl;
std::cout << "C = " << std::endl << C << std::endl;
std::cout << "B*C = " << std::endl << D << std::endl;
std::cout << "C*B = " << std::endl << E << std::endl;
std::cout << "AA-1 = " << std::endl << A.Inverse() << std::endl;
std::cout << "A¥AA-1 = " << std::endl << A*A.Inverse() << std::endl;
std::cout << "Trace(A) = " << std::endl << A.Trace() << std::endl;
std::cout << "Determinant(A) = " << std::endl << A.Determinant() << std::endl;
return 0;
}

Affine Matrices

In 3D applications a 4x4 matrix is frequently used for affine transformations of 3D models, i.e. translation, rotation,
scaling, and sometimes shearing. However, with many 3D models, such transformations require a lot of memory.
Moreover, the 4th row of these 4x4 affine matrices is always (0,0, 0, 1) — except that row vectors are used, where the
4th column is always (0,0, 0, 1).

To reduce the memory footprint (and some computations), the GaussianLis provides the AffineMatrix4T<T>
class, where the 4th row (or column for row-vectors) is implicit, and the AffineMatrix3T<T> class, where the 3rd row
(or column for row-vectors) is implicit:

#include <Gauss/Gauss.h>

int mainQ)

{
// Affine matrices are always initialized to their identity matrix
Gs::AffineMatrix4 m;

.Translate(Gs::Vector3 (0, 4, -2));
.RotateX(M_PI*0.5);
.RotateFree(Gs::Vector3(l, 1, 1), M_PI*1.5);
.Scale(Gs::Vector3(1l, 0.5, 2));
.MakeInverse();

58888

Gs::Vector3 v(®, 0, 1);
auto a = Gs::TransformVector(m, v); // Rotate and Translate (with implicit v.w = 1)
auto b = Gs::RotateVector(m, v); // Only rotate

return 0;

Quaternions

Quaternions have the four components %, y, z, and w just like Vector4. In contrast to vectors, quaterions can only have
floating-point components.

#include <Gauss/Gauss.h>

int main()

{
Gs::Quaternion g0, ql; // Equivalent to Gs::QuaternionT<Gs::Real>
Gs::Quaternionf gFloat;
Gs::QuaternionT<double> gDouble;
// Spherical Linear intERPolation (SLERP) between q0 and ql
auto q2 = Gs::Slerp(qg®, ql, 0.5);
// Convert to 3x3 matrix
Gs::Matrix3 rotation = g2.ToMatrix3();
// Store rotation of quaterion in the left-upper 3x3 matrix of the sparse 4x4 matrix ’transform’
Gs::AffineMatrix4 transform;
Gs::QuaternionToMatrix(transform, q2);
return 0;
}

Swizzle Operator

For the three vector classes, there is support for the swizzle operator (like in shading languages):

// Enable

‘swizzle operator’

#define GS_ENABLE_SWIZZLE_OPERATOR

#include <Gauss/Gauss.h>

int main()

{

}

Gs::Vector4 a,
Gs::Vector3 c,
Gs::Vector2 e,

U U <V V)

-xy O
.zz(Q);

T N Hh o

-xyxy ()

b;
d
f;

xxz() + e.yxy()*2.0f;

// References can not be used (pointless operation).

//a.yz() += e;
//a.zx() *= 2;

a = e.xxyy(Q;

Every combination is possible!

Shading Languages

There are two extra header files, which can be included optionally:

#define GS_ENABLE_SWIZZLE_OPERATOR
#include <Gauss/Gauss.h>

// Includes all type aliases with name conventions of the DirectX High Level Shading Language (HLSL).
#include <Gauss/HLSLTypes.h>

// Includes all type aliases with name conventions of the OpenGL Shading Language (GLSL).
#include <Gauss/GLSLTypes.h>

int main()

{

// HLSL types
float4x4 mO;
double2x3 ml;
int3 vO;

// GLSL types
mat4 m2 = m0;

ivec2 vl = v0.yz();

ivec3 v2

return 0;

vO.xxy();

