
Bisect 1.3

Reference Manual
http://bisect.x9c.fr

Copyright c© 2008-2012 Xavier Clerc – bisect@x9c.fr
Released under the GPL v3

November 3, 2012

http://bisect.x9c.fr
mailto:bisect@x9c.fr

i

Contents

1 Overview 1
1.1 Purpose . 1
1.2 License . 2
1.3 Contributions . 2

2 Building Bisect 3
2.1 Step 0: dependencies . 3
2.2 Step 1: configuration . 3
2.3 Step 2: compilation . 4
2.4 Step 3: installation . 4

3 Using Bisect 5
3.1 Instrumenting the application . 5

3.1.1 Instrumentation mode . 6
3.1.2 Controlling instrumentation . 6
3.1.3 Unsafe compilation mode . 7
3.1.4 Linking . 7

3.2 Running the instrumented application . 8
3.3 Generating the coverage report . 8

3.3.1 By simply merging all data . 8
3.3.2 By defining how data sets should be combined 10

4 Complete example 13

5 Known issues 15

Appendixes 17

A File formats 17
A.1 CSV file format . 17
A.2 Text file format . 17
A.3 XML file format . 17
A.4 XML EMMA-compatible format . 20
A.5 Dump format . 20

1

Chapter 1

Overview

1.1 Purpose

Bisect is a code coverage tool for the OCaml language1. Its name stems from the following
acronym: Bisect is an Insanely Short-sized and Elementary Coverage Tool. The shortness of
the source files can be seen as a tribute to the camlp4 tool and API bundled with the standard
OCaml distribution. Over the time, features have been added and the source code is not so
small anymore; however, the core functionality of Bisect is implemented only a few hundreds of
lines.

Code coverage is a mean of software testing. Associated with unit or functional testing, the goal
of code coverage is to measure the portion of the application source code that has actually been
exercised by tests. To achieve this goal, the code coverage tool defines points in the source code
and memorizes at runtime (that is, when tests are run) if the execution path of the program
passes at these points. The so-called points are places of interest in the source code (as an
example, the branches of an if or match construct are interesting points), to ensure that all
alternatives have been tested. In practice, code coverage is often performed in three steps:

• first, the application is instrumented : this means that (the compiled form of) the applica-
tion is enhanced in such a way that it will count at runtime how many times the application
passed at a given point ;

• then, the tests are actually run, producing some runtime data about code coverage;

• finally, a report is generated from the data produced at the previous step; this report
shows which points were actually passed through during tests.

Bisect can be seen as an improved version of the ocamlcp/ocamlprof2 couple (both of these
tools being part of the standard OCaml distribution). In this respect, Bisect performs statement
and condition coverage, but not path coverage. This means that it only counts how many times
the application passed at each point, independently of which was the statement previously
executed (that is, the previously visited point). At the opposite, path coverage is not only
interested in points but also in paths, the goal being to ensure that every possible execution

1The official OCaml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2Indeed, a code coverage tool can be used as a primitive profiler because it tells how many time each execution
point in the program is crossed.

http://caml.inria.fr

1. OVERVIEW 2

path has been followed.

Code coverage is a useful software metric but, being based on tests, it cannot ensure that a
program is correct. It only gives hints about where to look for untested, possibly dead, code.
For program correction, one should consider more involved tools and formalisms such as model
checking, or proof systems. Code coverage is still convenient in practice because it is a much
simpler method that require no particular knowledge from the developer. Bisect provides
several output modes (ranging from bare text to Jenkins3-compatible xml) in order to allow
easy integration with an existing toolchain.

1.2 License

Bisect is released under the GPL version 3. This licensing scheme should not cause any
problem, as instrumented applications are intended to be used during development but should
not be released publicly. The GPL contamination has thus no consequence here.

1.3 Contributions

In order to improve the project, I am primarily looking for testers and bug reporters. Pointing
errors in documentation and indicating where it should be enhanced is also very helpful.
Bugs and feature requests can be made at http://bugs.x9c.fr.
Other requests can be sent to bisect@x9c.fr.

3Continuous integration engine available at http://http://jenkins-ci.org/

http://bugs.x9c.fr
mailto:bisect@x9c.fr
http://http://jenkins-ci.org/

3

Chapter 2

Building Bisect

2.1 Step 0: dependencies

Before starting to build Bisect, one first has to check that dependencies are already installed.
The following elements are needed in order to build Bisect:

• OCaml, version 4.00.0 (trunk at revision 13061 or later for building using ppx);

• make, in its GNU Make 3.81 flavor;

• a classical Unix shell, such as bash;

• optionally: Findlib1, version 1.3.3.

2.2 Step 1: configuration

The configuration of Argot is done by executing ./configure. One can specify elements if they
are not correctly inferred by the configure script; the following switches are available:

• -ocaml-prefix to specify the prefix path to the OCaml installation (usually /usr/local);

• -ocamlfind to specify the path to the ocamlfind executable;

• -no-native-dynlink to disable the build of the native version, even if native dynamic
linking is available.

Moreover, two command-line switches allow to choose which version(s) of the instrumenter
should be built:

• -no-camlp4 to specify not to build the camlp4-based instrumenter (meaning that support
for camlp4 is opt-out);

• -ppx to specify to build the ppx-based instrumenter (meaning that support for ppx is
opt-in).

The Java2 version will be built only if the ocamljava3 compiler is present and located by the
makefile. The syntax extension will be compiled only to bytecode.

1Findlib, a library manager for OCaml, is available at http://projects.camlcity.org/projects/findlib.

html.
2The official website for the Java Technology can be reached at http://java.sun.com.
3OCaml compiler generating Java bytecode, by the same author – http://www.ocamljava.org

http://projects.camlcity.org/projects/findlib.html
http://projects.camlcity.org/projects/findlib.html
http://java.sun.com
http://www.ocamljava.org

2. BUILDING BISECT 4

2.3 Step 2: compilation

The actual build of Bisect is launched by executing make all. When build is finished, it is
possible to run some simple tests by running make tests. Documentation can be generated by
running make doc.

2.4 Step 3: installation

Bisect is installed by executing make install. According to local settings, it may be necessary
to acquire privileged accesses, running for example sudo make install. The actual instal-
lation directory depends on the use of ocamlfind: if present the files are placed inside the
Findlib hierarchy, otherwise they are placed in the directory ‘ocamlc -where‘/bisect (i. e.
$PREFIX/lib/ocaml/bisect).

5

Chapter 3

Using Bisect

As previously stated, using a code coverage tool usually requires to follow three steps: instru-
mentation, execution, and report. Bisect is no exception in this respect; the following sections
discuss each of these three steps.

3.1 Instrumenting the application

Bisect instruments the application at compile-time using either a camlp4- or a ppx-based pre-
processor. Relying on preprocessors allows the user to choose exactly which module (i. e. source
file) of the application should be instrumented. Code samples 1 and 2 show how to instrument
a file named source.ml during compilation (the very same effect can be achieved using either
ocamlopt or ocamljava as a replacement of ocamlc). Code sample 3 does the same through
ocamlfind. During this step, Bisect will produce a file named source.cmp1. Files with the cmp

extension contain point information for a given source file, that is: identifiers, positions, and
kinds of points. Of course, the usual cmi, cmo, cmx, and cmj files are also produced, depending
on the compiler actually invoked. It is necessary to pass the -I +bisect option to the compiler
because instrumentation adds calls to functions defined in the runtime modules of Bisect.

Code sample 1 Compiling and instrumenting a file (using camlp4).

ocamlc -c -I +bisect -pp ’camlp4o str.cma /path/to/bisect_pp.cmo’ source.ml

Code sample 2 Compiling and instrumenting a file (using ppx).

ocamlc -c -I +bisect -ppx ’/path/to/bisect_ppx.byte’ source.ml

Code sample 3 Compiling and instrumenting a file through ocamlfind.

ocamlfind ocamlc -package bisect -syntax camlp4o -c source.ml

1This file will be stored in the very same directory as the cmo, cmx, or cmj file produced by the compiler.

3. USING BISECT 6

Note: the use of camlp4o implies that the OCaml grammar is slightly modified. Most notably,
camlp4o enables quotation by default. Practically, this means that characters sequences such
as << or >> now delimit quotations. This mechanism can be disabled by passing the -no quot

command-line switch to camlp4o.

3.1.1 Instrumentation mode

Since version 1.1, it is possible to select an instrumentation mode through the -mode command-
line switch followed by one these values:

• safe, that will perform instrumentation as done in version 1.0;

• fast, that will perform instrumentation in order to allow instrumented code to run faster
(by approximately an order of magnitude, relatively to safe);

• faster, that will perform instrumentation in order to allow instrumented code to run even
slightly faster but will not be thread-safe, even if linked with the BisectThread module
(see below).

3.1.2 Controlling instrumentation

By language constructs

It is possible to choose which language constructs should be instrumented by passing -enable

and/or -disable command-line switches to either bisect pp.cmo or bisect pp.byte. Both
switches are followed by a string describing the kinds of points the user wants to either enable
or disable. The possible characters are:

• b for binding

• s for sequence

• f for for

• i for if/then

• t for try

• w for while

• m for match/function

• c for class expression

• d for class initializer

• e for class method

• v for class value

• p for toplevel expression

• l for lazy operator

By default, all point kinds are enabled. As an example, -disable cdev will disable instrumen-
tation of all class constructs.

7 Instrumenting the application

By excluding top-level values

Since version 1.1, the -exclude command-line switch allows to exclude top-level values from
instrumentation. It should be followed by a comma-separated list of patterns2. Any top-level
function matching one of the patterns will not be instrumented.

Since version 1.2, the -exclude-file command-line switch allows to exclude top-level values
whose list is stored in a file. The contents of the file should respect the following grammar:

contents ::= file list

file list ::= file list file | ε
file ::= file string [exclusion list] opt separator

opt separator ::= ; | ε
exclusion list ::= exclusion list exclusion | ε
exclusion ::= name string opt separator | regexp string opt separator

By special comments

Since version 1.1, it is also possible to use special comments in order to precisely control instru-
mentation on a code area basis. The following comments are recognized:

• (*BISECT-MARK*) and (*BISECT-VISIT*) allow to consider (all the points of) a line as
visited even if not at runtime3;

• (*BISECT-IGNORE*) allows to ignore the line, that is generate no point for the whole line;

• (*BISECT-IGNORE-BEGIN*) and (*BISECT-IGNORE-END*) (that should be correctly paren-
thesized) allow to exclude whole parts of the source from being instrumented (equivalent
to have (*BISECT-IGNORE*) comments on each line from (*BISECT-IGNORE-BEGIN*) to
(*BISECT-IGNORE-END*), both inclusive).

3.1.3 Unsafe compilation mode

When compiling in unsafe mode4, the -unsafe switch should be passed to camlp4 instead of
the compiler. Indeed, as camlp4 is building a syntax tree that is passed to the compiler, issuing
the -unsafe switch to the compiler has no effect because it is too late: the code has been built
by camlp4 in safe mode. In such a case, the compiler warns the user with the following message:
Warning: option -unsafe used with a preprocessor returning a syntax tree. The
correct command-line invocations are shown by code samples 4 and 5.

3.1.4 Linking

Linking a program containing instrumented modules is not different from classical linking, except
that one should link the Bisect library to the produced executable. This is usually done by adding
one of the following to the linking command-line:

2These patterns should follow the conventions set by the Str module.
3It may be useful to avoid a lower coverage due to a line containing e. g. assert false.
4One should keep in mind that the usefulness of using the unsafe mode in an instrumented application is

questionable, as the instrumentation of an application results in very degraded performances.

3. USING BISECT 8

Code sample 4 Compiling and instrumenting a file using unsafe mode.

ocamlc -c -I +bisect \

-pp ’camlp4o str.cma -unsafe /path/to/bisect_pp.cmo’ \

source.ml

Code sample 5 Compiling and instrumenting a file using unsafe mode through ocamlfind.

ocamlfind ocamlc -package bisect -syntax camlp4o -ppopt -unsafe -c source.ml

• -I +bisect bisect.cma (for ocamlc version);

• -I +bisect bisect.cmxa (for ocamlopt version);

• -I +bisect bisect.cmja (for ocamljava version).

In order to use Bisect in multithread applications, it is necessary to also link with the
BisectThread module. This also implies to pass the -linkall option to the compiler.

3.2 Running the instrumented application

Running an instrumented application is not different from running any application compiled
with an OCaml compiler. However, Bisect will produce runtime data in a file each time
the application is run. A new file will be created at each invocation, the first one being
bisect0001.out, the second one bisect0002.out, and so on. It is also possible to define the
scheme used for file names by setting the BISECT FILE environment variable. If BISECT FILE

is equal to file, files will be named filen.out where n is a natural number value padded with
zeroes to 4 digits (i. e. “0001”, “0002”, and so on).

Bisect can also be parametrized using another environment variable: BISECT SILENT. If this
variable is set to either “YES” or “ON” (defaulting to “OFF”, case being ignored), then Bisect
will not output any message at runtime. If not silent, Bisect will output a message on the
standard error in various situations such as:

• the output file for runtime data cannot be created at program initialization;

• the runtime data cannot be written at program termination.

3.3 Generating the coverage report

3.3.1 By simply merging all data

In order to generate the coverage report for the instrumented application, it is suffi-
cient to invoke the bisect-report executable (alternatively either bisect-report.opt, or
bisect-report.jar). This program recognizes the following command-line switches:

• -bisect <file> Set output to bisect, data being written to given file

• -combine-expr <expr> Combine file according to given expression to produce data

9 Generating the coverage report

• -csv <file> Set output to csv, data being written to given file

• -dump <file> Set output to bare dump, data being written to given file

• -dump-dtd <file> Dump the DTD to the given file

• -html <dir> Set output to html, files being written in given directory

• -I <dir> Add the directory to the search path

• -no-folding Disable code folding (HTML only)

• -no-navbar Disable navigation bar (HTML only)

• -separator <string> Set the separator for generated output (CSV only)

• -summary-only Output only a summary (text only)

• -tab-size <int> Set tabulation size in output (HTML only)

• -text <file> Set output to text, data being written to given file

• -title <string> Set the title for generated output (HTML only)

• -verbose Set verbose mode

• -version Print version and exit

• -xml <file> Set output to xml, data being written to given file

• -xml-emma <file> Set output to EMMA xml, data being written to given file

Wherever a destination file is waited, the use of - (i. e. minus sign) is interpreted as the
standard output. The user should also provide on the command-line the list of the runtime
data files that should be used to produce the report. As a result, a typical invocation is:
bisect-report -html report bisect*.out to process all data files in the current directory
and generate an html report into the report directory.

If relative file paths are used at the instrumentation step, the report executable should be
launched from the same directory. Another option is of course to use absolute paths. Using
absolute paths is also useful when playing with the -pack option. Indeed, it is possible
in this case to have several source files with the same name in different directories and
packed to different enclosing modules. In the case of packed modules, absolute paths allows
to avoid ambiguities but are not necessary. It is in fact sufficient to have discriminating
paths, that is: paths that always allow to distinguish files packed in different enclosing mod-
ules. It is also possible to use the -I command-line switch to specify a search path for source files.

When the html output mode is chosen, a bunch a files is produced: one index.html file,
and one html file per instrumented module. The index.html file provides application-wide
statistics about coverage, as well as links to the other files. The module files provide module-
wide statistics, as well as a duplicate of the module source, enhanced with point information.
Points are represented in the source as special comments having the form (*[n]*) where n
indicates how many times the point was passed at runtime. For easier appreciation, colors are
also used to annotate source lines:

3. USING BISECT 10

• a line will be green-colored if it contains points whose values are all strictly positive;

• a line will be red-colored if it contains points whose values are all equal to zero;

• a line will be yellow-colored if it contains some points whose values are all equal to zero,
and some others whose values are strictly positive;

• a line will not be colored at all if it contains no point.

When another output mode is chosen, only one file is produced (or none, if - is used) containing
the whole coverage information. The appendix details the various file formats.

3.3.2 By defining how data sets should be combined

Since version 1.2, it is possible to perform some computation on data files. The aforementioned
command-line bisect-report -html report bisect*.out combines the data of all files
matching the bisect*.out pattern, but it may be useful to specify how data should be
combined. This is done through the -combine-expr command-line switch that should be
followed by an expression. Using this switch is intended to replace the list of files to process,
leading to the command-line bisect-report -html report -combine-expr ’expr ’.

The expression should be well-formed according to the following grammar:

expr ::= expr binop expr | (expr) | func name (expr) | value
binop ::= + | - | * | /
func name ::= sum | nonnull
value ::= single file | file set | integer

where:

• a single file is given by its path between quotes (e. g. "file");

• a file set is given by its pattern between angle brackets (e. g. <file*.out>);

• + and - allow to respectively add and subtract point values from two single files;

• * and / allow to respectively multiply and divide point values from a single file by an
integer;

• function nonnull allows to replace every point value that is different from 0 by 1;

• function sum allows to convert values from a file set to make them appear as coming from
a single file.

Using -combine-expr permits sophisticated analysis of program runs, thus allowing fine-grained
debugging. Suppose that you are able to produce two runs of a program, one exhibiting a bug
and the other one not exhibiting it. The expression

notnull("first.out") + notnull("second.out")*2

will produce a report where;

• a point value of 0 means that no run evaluated the related expression;

• a point value of 1 means that only the first run evaluated the related expression;

11 Generating the coverage report

• a point value of 2 means that only the second run evaluated the related expression;

• a point value of 3 means that both run evaluated the related expression.

It then far easier to spot the area where the bug stems from.

13

Chapter 4

Complete example

Code sample 6 shows the makefile used for the compilation (with instrumentation), run, and
report phases for a one-file application: source.ml. Code sample 7 shows the same information
when relying on ocamlfind.

Code sample 6 Example makefile.

default: clean compile run report

clean:

rm -fr report

rm -f *.cm* *.out bytecode

compile:

ocamlc -c -I +bisect \

-pp "camlp4o str.cma ‘ocamlc -where‘/bisect/bisect_pp.cmo" source.ml

ocamlc -o bytecode -I +bisect bisect.cma source.cmo

run:

BISECT_FILE=coverage ./bytecode

report:

bisect-report -dump - -html report coverage*.out

It is also possible to compile the source.ml file through the ocamlbuild tool. The most
convenient way is to first define a new bisect tag in a myocamlbuild.ml plugin. This tag will
add the necessary elements when compiling or linking a file using the Bisect features, as shown
by code sample 8. Then, it is sufficient to use the newly introduced tag in the tags file to use
bisect, as shown by code sample 9.

Finally, ocamlbuild can also leverage ocamlfind, leading to the following command-line in-
vocation: ocamlbuild -use-ocamlfind -tag ’package(bisect)’ -tag ’syntax(camlp4o)’

-tag ’syntax(bisect pp)’ source.byte.

4. COMPLETE EXAMPLE 14

Code sample 7 Example makefile (ocamlfind-based).

default: clean compile run report

clean:

rm -fr report

rm -f *.cm* *.out bytecode

compile:

ocamlfind ocamlc \

-package bisect -linkpkg -syntax camlp4o -o bytecode source.ml

run:

BISECT_FILE=coverage ./bytecode

report:

ocamlfind bisect/bisect-report -html report coverage*.out

Code sample 8 myocamlbuild.ml plugin file.

open Ocamlbuild_plugin

open Ocamlbuild_pack

let () =

dispatch begin function

| After_rules ->

flag ["bisect"; "pp"]

(S [A"camlp4o"; A"str.cma"; A"/path/to/bisect/bisect_pp.cmo"]);

flag ["bisect"; "compile"]

(S [A"-I"; A"/path/to/bisect"]);

flag ["bisect"; "link"; "byte"]

(S [A"-I"; A"/path/to/bisect"; A"bisect.cma"]);

flag ["bisect"; "link"; "native"]

(S [A"-I"; A"/path/to/bisect"; A"bisect.cmxa"]);

flag ["bisect"; "link"; "java"]

(S [A"-I"; A"/path/to/bisect"; A"bisect.cmja"])

| _ -> ()

end

Code sample 9 tags file.

<source.*>: bisect

15

Chapter 5

Known issues

Bisect suffers from the following issues:

• Bisect, being based on either camlp4 or ppx, performs a purely syntactic treatment. It
can thus sometimes produce unaccurate results due to semantics subtleties. For a concrete
example consider lazy operators: in expressions such as e1 && e2 or e1 || e2, Bisect adds
points to both e1 and e2 to allow the user to know which parts of the whole expression
were actually evaluated. However, it is possible that the programmer redefined one of these
operator in such a way that its new semantics is no more lazy (e. g. let (&&) = (+)).
In this case, Bisect will still add points to subexpressions even if they appear useless1.
A dual issue would occur if a programmer defined a new operator with lazy semantics
(e. g. external (++) : bool -> bool -> bool = "%sequor"), in this case Bisect will
not define points for subexpressions while they would clearly be of interest.

• when linking the tested application, the Bisect module should be linked as (one of) the
first ones; indeed, the Bisect runtime performs some operations at initialization, such as
determining the target file for runtime information: the current working directory should
hence not have been modified by another module or should have been modified purposely
(it is also possible to use BISECT FILE to specify an absolute path);

• for performance reasons, OCaml ints are used store store point data; it implies that one
should not use the report executable on a 32-bit architecture if the tested application has
been instrumented and run on a 64-bit architecture2.

1One may notice that it could not be possible to overcome this problem by keeping track of local (i. e. file)
redefinitions, as the redefinition may occur in another module that has been opened.

2This is indeed an over-cautious recommendation, as the OCaml runtime gracefully handles platforms differ-
ences; one should only get inaccurate results (but not false results: neither an unvisited will be considered as
visited, nor the opposite) when working at the 32-bit limit.

17

Appendix A

File formats

A.1 CSV file format

The csv mode outputs statistics line by line: first for the whole application, and then for each
file. Each line has the following format: first the path of the source file (- being used for
the overall application), then 14 × 2 integer values (13 for the various point kinds, plus one
for the total). Each integer couple consists, for each point kind, of (i) the number of visited
points and (ii) the total number of points. The point kinds are output in the following order: let
bindings, sequence, for loops, if/then constructs, try/with constructs, while loops, match/function
constructs, class expressions, class initializers, class methods, class values, top level expressions,
lazy operators. Code sample 10 shows such an output.

Code sample 10 csv file format.

-;3;3;5;5;1;1;0;0;0;0;0;0;2;2;0;0;0;0;0;0;0;0;0;0;2;2;13;13

source.ml;3;3;5;5;1;1;0;0;0;0;0;0;2;2;0;0;0;0;0;0;0;0;0;0;2;2;13;13

A.2 Text file format

The text mode outputs statistics first for the overall application, and then for each file. The
statistics always take the same form, that is the ratio number of visited points over total number
of points for each point kind, followed by the ratio for all point kinds. Code sample 11 shows
such an output.

A.3 XML file format

The xml mode outputs both statistics and information for each of the points in the source files.
Code sample 12 shows the dtd for produced xml files (it can be generated using the -dump-dtd

command-line option). Statistics are output for the whole application and for each file inside
<summary elements, while information relative to each point is encoded into <point elements.
Code sample 13 shows an xml output.

A. FILE FORMATS 18

Code sample 11 Text file format.

Summary:

- ’binding’ points: 3/3 (100.00 %)

- ’sequence’ points: 5/5 (100.00 %)

- ’for’ points: 1/1 (100.00 %)

- ’if/then’ points: none

- ’try’ points: none

- ’while’ points: none

- ’match/function’ points: 2/2 (100.00 %)

- ’class expression’ points: none

- ’class initializer’ points: none

- ’class method’ points: none

- ’class value’ points: none

- ’toplevel expression’ points: none

- ’lazy operator’ points: 2/2 (100.00 %)

- total: 13/13 (100.00 %)

File ’source.ml’:

- ’binding’ points: 3/3 (100.00 %)

- ’sequence’ points: 5/5 (100.00 %)

- ’for’ points: 1/1 (100.00 %)

- ’if/then’ points: none

- ’try’ points: none

- ’while’ points: none

- ’match/function’ points: 2/2 (100.00 %)

- ’class expression’ points: none

- ’class initializer’ points: none

- ’class method’ points: none

- ’class value’ points: none

- ’toplevel expression’ points: none

- ’lazy operator’ points: 2/2 (100.00 %)

- total: 13/13 (100.00 %)

Code sample 12 dtd for produced xml files.

<!ELEMENT bisect-report (summary,file*)>

<!ELEMENT file (summary,point*)>

<!ATTLIST file path CDATA #REQUIRED>

<!ELEMENT summary (element*)>

<!ELEMENT element EMPTY>

<!ATTLIST element kind CDATA #REQUIRED>

<!ATTLIST element count CDATA #REQUIRED>

<!ATTLIST element total CDATA #REQUIRED>

<!ELEMENT point EMPTY>

<!ATTLIST point offset CDATA #REQUIRED>

<!ATTLIST point count CDATA #REQUIRED>

<!ATTLIST point kind CDATA #REQUIRED>

19 XML file format

Code sample 13 xml file format.

<?xml version="1.0" encoding="iso-8859-1"?>

<bisect-report>

<summary>

<element kind="binding" count="1" total="1"/>

<element kind="sequence" count="0" total="0"/>

<element kind="for" count="0" total="0"/>

<element kind="if/then" count="0" total="0"/>

<element kind="try" count="0" total="0"/>

<element kind="while" count="0" total="0"/>

<element kind="match/function" count="0" total="0"/>

<element kind="class expression" count="0" total="0"/>

<element kind="class initializer" count="0" total="0"/>

<element kind="class method" count="0" total="0"/>

<element kind="class value" count="0" total="0"/>

<element kind="toplevel expression" count="0" total="0"/>

<element kind="lazy operator" count="0" total="0"/>

<element kind="total" count="1" total="1"/>

</summary>

<file path="source.ml">

<summary>

<element kind="binding" count="1" total="1"/>

<element kind="sequence" count="0" total="0"/>

<element kind="for" count="0" total="0"/>

<element kind="if/then" count="0" total="0"/>

<element kind="try" count="0" total="0"/>

<element kind="while" count="0" total="0"/>

<element kind="match/function" count="0" total="0"/>

<element kind="class expression" count="0" total="0"/>

<element kind="class initializer" count="0" total="0"/>

<element kind="class method" count="0" total="0"/>

<element kind="class value" count="0" total="0"/>

<element kind="toplevel expression" count="0" total="0"/>

<element kind="lazy operator" count="0" total="0"/>

<element kind="total" count="1" total="1"/>

</summary>

<point offset="11" count="1" kind="binding"/>

</file>

</bisect-report>

A. FILE FORMATS 20

A.4 XML EMMA-compatible format

This mode outputs only overall statistics, in a format that is compatible with EMMA1. This
compatibility allows to use Bisect output in tools that provide support for EMMA, notably
giving an easy way to use Bisect with continuous integration servers like Jenkins.

EMMA defines only four categories for coverage: classes, methods, blocks, and lines. Bisect
defining more point kinds, the following mapping is used:

• class expressions, class initializers, and class values are merged into the class category;

• class methods are mapped to the method category;

• let bindings, sequence, for loops, if/then constructs, try/with constructs, while loops,
match/function constructs, andlazy operators are merged into the block category;

• top level expressions are mapped to the line category.

Another element should be noted regarding this output mode: for all the categories, any 0/0
value is replaced by a 1/1 value. This replacement is justified by the fact that 0/0 may result
in 0% while 1/1 results in 100%, and one would not want to have a build failure in Jenkins due
to low coverage. Code sample 14 shows an EMMA-compatible xml output.

Code sample 14 xml EMMA file format.

<?xml version="1.0" encoding="iso-8859-1"?>

<report>

<stats>

<packages value="1"/>

<classes value="1"/>

<methods value="1"/>

<srcfiles value="1"/>

<srclines value="1"/>

</stats>

<data>

<all name="all classes">

<coverage type="class, %" value="100% (1/1)"/>

<coverage type="method, %" value="100% (1/1)"/>

<coverage type="block, %" value="100% (1/1)"/>

<coverage type="line, %" value="100% (1/1)"/>

</all>

</data>

</report>

A.5 Dump format

The dump format is mainly used for debugging, only displaying the various points and their
associated counts for each file. Code sample 15 shows such a dump.

1EMMA is a code coverage tool for Java - http://emma.sourceforge.net/

http://emma.sourceforge.net/

21 Dump format

Code sample 15 Dump format.

file "source.ml"

point sequence at offset 17: 1

point sequence at offset 42: 1

point for at offset 64: 5

point sequence at offset 118: 1

point sequence at offset 144: 1

point for at offset 166: 3

point match/function at offset 253: 1

point match/function at offset 278: 1

point match/function at offset 297: 0

	Overview
	Purpose
	License
	Contributions

	Building Bisect
	Step 0: dependencies
	Step 1: configuration
	Step 2: compilation
	Step 3: installation

	Using Bisect
	Instrumenting the application
	Instrumentation mode
	Controlling instrumentation
	Unsafe compilation mode
	Linking

	Running the instrumented application
	Generating the coverage report
	By simply merging all data
	By defining how data sets should be combined

	Complete example
	Known issues
	Appendixes
	File formats
	CSV file format
	Text file format
	XML file format
	XML EMMA-compatible format
	Dump format

