The Logtalk Handbook
Release v3.89.0

Paulo Moura

Feb 14, 2025

CONTENTS

1 User Manual 1
1.1 Declarative object-oriented programming oottt e 1
1.2 Mainfeatures. v v i i e e e e e e e e e e e e e e 2

1.2.1 Integration of logic and object-oriented programming 2
1.2.2 Integration of event-driven and object-oriented programming 2
1.2.3 Support for component-based programming 3
1.2.4 Support for both prototype and class-based systems 3
1.2.5 Support for multiple object hierarchies 3
1.2.6 Separation between interface and implementation 3
1.2.7 Private, protected and public inheritanceo o o L 3
1.2.8 Private, protected and public object predicates, 4
1.2.9 Parametric ObJeCts L L e e e e e e e e e e e e e e e 4
1.2.10 High level multi-threading programming support 4
1.2.11 Smooth learning curve e e e e e 4
1.2.12 Compatibility with most Prolog systems and the ISO standard 4
1.2.13 Performance v o i i e 4
1.2.14 Logtalk SCOPE . . . v v v v e e e e e e e e e e e e e e e e e 5
1.3 Nomenclature i i i it e e e e e e e e e e e e 6
1.3.1 Prolognomenclature v v i i i it e e e e e e e e e 6
1.3.2 Smalltalk nomenclature e 8
1.3.3 CH++nomenclature L. e e e e 9
1.3.4 Javanomenclatureot e e e e e 11
1.3.5 Pythonnomenclature o i i i e e e e e e e 12
1.4 MESSAZES .« v v v v i e e e e e e e e e e e e e e e e e e e 14
1.4.1 Operators used in message-sending 14
1.4.2 Sending amessagetoanobject e e e e 14
1.4.3 Delegating amessagetoanobject 15
1.4.4 Sending amessage toselft e e e e e e e e e 15
1.4.5 Broadcasting e e e e e e e e e e e e 15
1.4.6 Calling imported and inherited predicates 15
1.4.7 Message sending and event generation 16
1.4.8 Sending a message fromamodule, 17
1.4.9 Message sending performance i it it e e e e e e e e e 17
1.5 Objects . . . o o i e e e e e e e e e e e 17
1.5.1 Objects, prototypes, classes, and instances 17
1.5.2 Defininganewobject. e e e e e e 18
1.5.3 Parametric 0bJECtS i i e e e e e e e e e e e e e e e e e e 21
1.5.4 Finding defined objects L e e e 23
1.5.5 Creating a new object in runtimettt e . 23
1.5.6 Abolishing an existing object e e . 24

1.5.7 Objectdirectives o v i i i e e e e e e e e e e e e 24

1.5.8 Objectrelationships o i e e e e e e 26
1.5.9 Object properties v v vt it e e e e e e e e e e 27
1.5.10 Built-in objects e e e e e e e e e e e e 29
1.6 Protocols i e e e e e e e e e e e e e 30
1.6.1 Defining a new protocol e e e e e e 30
1.6.2 Finding defined protocols e e e e 31
1.6.3 Creating a new protocol inruntime 0oL, 31
1.6.4 Abolishing an existing protocol L. 31
1.6.5 Protocol direCtives v v v v v i e e e e e e e e e e e e e e e e e e 32
1.6.6 Protocol relationships. o i i e e e e e 32
1.6.7 Protocol properties v v v i i e e e e e e e e e e e e e e e e e 33
1.6.8 Implementing protocols e e e e e e 34
1.6.9 Built-in protocols L e e e e e e 35
1.7 QategOri€S . . . v v v i e 35
1.7.1 Defining anew category o ottt e e e e e e e e e e e e e 35
1.7.2 Hotpatching i e e e e e e 37
1.7.3 Finding defined categorieso e e e e e e e e 39
1.7.4 Creating a new category inruntime oo v v v it e e 39
1.7.5 Abolishing an existing category« c v v v it e e e e e e e 40
1.7.6 Category direCtiVes ot i v i it i e e e e e e e e e e e e e e e 40
1.7.7 Category relationships e 41
1.7.8 Category ProPerties v v v v v e 41
1.7.9 Importing categories v v v v i v it e e e e e e e e e e e e e e 43
1.7.10 Calling category predicates o i i vttt e e e e e e e e 44
1.7.11 Parametric Cate€gOTi€S« v v v v v it e e e e e e e e e e e e e e e 45
1.7.12 Built-in categories e e e e e e e e e e e 45
1.8 PrediCateS. v v i i e e e e e e e e e 46
1.8.1 Reserved predicate NAMES v v v v v v v e e et e e e e e e e e e e e 46
1.8.2 Declaring predicates e e e e e e 46
1.8.3 Defining predicates L. e e e e e e e 57
1.8.4 Definite clause grammarrules L 64
1.8.5 Built-inmethods 67
1.8.6 Predicate properties. v v v i i e e e e e e e e e e e e e e e 71
1.8.7 Finding declared predicates 73
1.8.8 Calling Prolog predicates oo i i i i e e e e e e e e 73
1.8.9 Defining Prolog multifile predicates 77
1.8.10 Asserting and retracting Prolog predicates 78
1.9 Inheritance L e e e e e 79
1.9.1 Protocol inheritance e e e e e 80
1.9.2 Implementation inheritance 80
1.9.3 Public, protected, and private inheritanceo oo L oL 83
1.9.4 Multiple inheritance e e 84
1.9.5 Composition versus multiple inheritance 85
1.10 Event-driven programming v v v v v ittt e e e e e e e e e e e e e e e e e e 85
1.10.1 Definitions v v i e e e e e e e e e e e e e e e e e e e 86
1.10.2 Event generation v i i it it e e e e e e e e e e e e 87
1.10.3 Communicating events to MONItOrS v v v v v v v v v e e et e e e et e e 87
1.10.4 Performance CONCEINS . . « ¢ v v v v v v vt b e e e e e e e e e e e e e e e e 87
1.10.5 Monitor SemantiCs v v v v i e e e e e e e e e e 87
1.10.6 Activation order of MONItOrs v i i e e e e e e 88
1.10.7 Eventhandling e e e e e e 88
1.11 Multi-threading programming v i i i it e e e e e e e e e e 90
1.11.1 Enabling multi-threading support i it 90

1.11.2 Enabling objects to make multi-threading calls 91

1.11.3 Multi-threading built-in predicates 91
1.11.4 Ome-way asynchronouscalls 93
1.11.5 Asynchronous calls and synchronized predicates 94
1.11.6 Synchronizing threads through notifications 95
1.11.7 Threaded engines o i e e e e e 95
1.11.8 Multi-threading performance ittt 97
1.12 Errorhandling e e e e e 97
1.12.1 Raising EXCeptions o v i i i i i e e e e e e e 97
1.12.2 Type-checking o o e e e e e e e e 98
1.12.3 Expected tEITNS . . « v v v v v v e 99
1.12.4 Compiler warnings and €ITorS o i vt i e e e e e e e e e e e e e e 99
1.12.5 RUDtME ITOTS .+ ¢ v v v v v v v v v v e e e e e e e e e e e e e e e e 101
1.13 Reflection o o e e e e 102
1.13.1 Structural reflection e e e e e e e 102
1.13.2 Behavioral reflection e 103
1.14 Writing and running applicationso e e 103
1.14.1 Starting Logtalk e e e e e e e e e 103
1.14.2 Running parallel Logtalk processes 104
1.14.3 Source files i e e e e e e e e e e e 105
1.14.4 Multi-passcompiler L e e e e e 105
1.14.5 Compiling and loading your applications 106
1.14.6 Compiler errors, warnings, and comments« v v v vt bbbt 107
1.14.7 Loaderfiles e e e 107
1.14.8 Libraries of source files e 108
1.14.9 Settingsfiles e e e e e e e e 109
1.14.10 Compiler linter L e e e e e e 110
1.14.11Compiler flags L e e e e e e e e e e 110
1.14.12Reloading source files i i i i e e e e e e 118
1.14.13Batch processing e e e e e e e e 118
1.14.14 Optimizing performance e e e 118
1.14.15Portable applications e e e e e 119
1.14.16 Conditional compilation e e . 119
1.14.17 Avoiding COMMON €ITOTS &+ + & v v v v v v e et e 119
1.14.18 Coding style guidelines e 120
1.15 Printing messages and asking questionsl e e e 120
1.15.1 Printing MeSSAZES . .« « v v v v e 121
1.15.2 Message toKenization v v v v i i e e e e e e e e e e e e e e 122
1.15.3 Meta-meSSAZES . « v v v v v v v e 123
1.15.4 Defining message prefixes and output streams v v o ot e e ww e 123
1.15.5 Defining message prefixes and outputfiles 123
1.15.6 Intercepting MEeSSAZES . . « ¢ v v v v v v e 124
1.15.7 Asking qUeStionS v i it e e e e e e e e e e e e e e 125
1.15.8 Intercepting qQUESLIONS v v v v i v i e e e e e e e e e e e e e e e e e e e 126
1.16 Term and goal eXpansion i i v v i i i e e e e e e e e e e e e e e e e 127
1.16.1 Defining eXpansions o v v vttt e e e e e e e e e e e e e e 127
1.16.2 Expanding grammar rul€S ittt e e e e e e e e e e e e e e e e e 129
1.16.3 Bypassing eXpansions v v o vttt i e e e e e e e e e e e e e e e e 129
1.16.4 Hookobjects o e e e e e e 129
1.16.5 Virtual source file terms and loading context, 131
1.16.6 Default compiler expansion workflow L. 132
1.16.7 User defined expansion workflows. 132
1.16.8 Using Prolog defined expansions.t 132
1.16.9 Debugging eXpansions v v v vt i e e e e e e e e e e e e e 133

1.17 DOCUMENLINE . . . v v v v vt e 134

1.17.1 Entity documenting directives e e e . 135
1.17.2 Predicate documenting directives ittt 136
1.17.3 Describing predicateso e e e e e e e e 137
1.17.4 Documenting predicate eXCeptions ittt it e e e e 138
1.17.5 Processing and viewing documenting files o L. 139
1.17.6 Inline formatting in comments teXt« v v v ittt e e e e e e e e . 140
1.17.7 Diagrams v v v vt et e e e e e e e e e e e e e e e e e e 141

1.18 Debugging i e e e e e e e e e e e e e e e e 141
1.18.1 Compiling source filesindebugmode 141
1.18.2 Procedure boxmodel e 142
1.18.3 Activating the debugger e e e 143
1.18.4 Defining breakpoints e e e 143
1.18.5 Defininglog points e e e e e e e 147
1.18.6 Tracing program eXeCULION « ¢ v v v v v v v v b e e e e e e e e e e e e e 148
1.18.7 Debugging using breakpoints Lo 149
1.18.8 Debugging commands e e e e e e e e 149
1.18.9 Customizing term Writing« o Lt e e e e e e e e 151
1.18.10 Context-switching calls 152
1.18.11Debugging mMeSSaAgES . « « « ¢ v v v it e 153
1.18.12 Using the term-expansion mechanism for debugging 155
1.18.13Ports profiling o . e e e e e e e e e 155
1.18.14Debug and trace €VENLS v v v v vt e e e e e e e e e e e e e e e e 155
1.18.15Source-level debugger e e e 156

1.19 Performance o v v v i it e 156
1.19.1 Source code compilationmodeso 157
1.19.2 Local predicatecalls e 157
1.19.3 Calls to imported or inherited predicates 157
1.19.4 Calls to module predicates o v it e e e e e e e e 157
1.19.5 MeSSages . . . v v i i e e e e e e e e e e 157
1.19.6 Automatic expansion of built-in meta-predicates 158
1.19.7 Inlining o e e e e e e e e e e 158
1.19.8 Generated code simplification and optimizations 158
1.19.9 Size of the generatedcode i i e e e 158
1.19.10Circular references o i ittt e e e e e e e e e e 159
1.19.11Debug mode overhead 159
1.19.12 Other considerations o v vt it e e e e e e e e e e e e 159

1.20 Installing Logtalk. 0 o o i e e e e e e e e e 159
1.20.1 Hardware and software reqUirements v v v v v v v et e e . 160
1.20.2 Logtalkinstallers e e e e 160
1.20.3 Source distribution L. e e e e e 160
1.20.4 Distribution OVErvieW o v i . e e e e e e e e e e e e e e e e e e e 161

1.21 Prolog integration and Migration v v v v v v b e e e e e e e e e e e e e e e e 163
1.21.1 Source files with both Prolog code and Logtalkcode 163
1.21.2 Encapsulating plain Prolog code inobjects 164
1.21.3 Converting Prolog modules intoobjects 165
1.21.4 Compiling Prolog modules as objects 166
1.21.5 Dealing with proprietary Prolog directives and predicates 168
1.21.6 Calling Prolog module predicates 169
1.21.7 Loading converted Prolog applications, 169

2 Reference Manual 171
21 Grammar v v e 171
2. 1.1 EntitieS. . . . o v v e e e e e e e e e e e 171

2.2

2.3

2.4

2.5

2.1.2 Objectdefinition i e e e e e e e e e e 171

2.1.3 Category definition i e e e e e e e e e e 172
2.1.4 Protocol definition e 172
2.1.5 Entityrelations e e e e e e e e e e e e e e 173
2.1.6 Enmtityidentifiers e e e 176
2.1.7 Sourcefiles e e e 177
2.1.8 Sourcefilenames i e e e e e e e e e e e 177
219 TermsS i e e e e e e 178
2.1.10 DIrectivesS v v v et e 178
2.1.11 Clausesand goals i e e e e 186
2.1.12 Lambda expressions i e e e 187
2.1.13 Entity properties v v v v i e 188
2.1.14 Predicate properties.« o ot e e e e e e e e e e e e e 191
2.1.15 Compilerflags o o i e e e e e e e e e 192
Control CONSITUCES + « v v v v v e e v e 192
2.2.1 Message sendinNg e e e e e e e e e e e e e e e e e e 192
2.2.2 Messagedelegation L e e e e e 195
2.2.3 Calling imported and inherited predicates 196
2.2.4 Calling predicates in this« o v v i i i i i e e e e e e e e e 197
2.2.5 Calling external predicates v vttt e e e e e e e e e e 198
2.2.6 Context switchingcalls e 200
DIreCtiVes« o i i e et e e e e e e e e e e e e e e e e e 202
2.3.1 Sourcefiledirectives e e e e e e e e 202
2.3.2 Conditional compilation directives oo 208
2.3.3 Entitydirectives e e e e e e e e e e 212
2.3.4 Predicate dir€CtiVES v i i i e e e e e e e e e e e e e e e e e e 225
Built-in predicates e e e e e e e e e 243
2.4.1 Enumerating objects, categories and protocols 243
2.4.2 Enumerating objects, categories and protocols properties 246
2.4.3 Creating new objects, categories and protocols 249
2.4.4 Abolishing objects, categories and protocols 253
2.4.5 Obijects, categories, and protocols relations, 256
2.4.6 Eventhandling e e 266
2.4.7 Multi-threading e e e e e e e e e e e e e 269
2.4.8 Multi-threading engines e 280
2.49 Compiling and loading source files 289
2400 FIaZS . o v o o e e e e e e e e e e e e e 304
2417 LINDEr . . . o v ot e e e e e e e e e e e e e e e e 307
Built-inmethods e e e e e e e e 308
2.5.1 Logicand control e e e e e e e e e e e 308
2.5.2 EXeCUution CONLEXL . . .« v v v v v i et e 311
2.5.3 Reflection e e e e e e e 316
2.5.4 Database e e e e e e e e 320
2.55 Meta-calls e 329
2.5.6 Errorhandling. e e e e e e e e 334
2.5.7 Allsolutions e e e e e e 351
2.5.8 Eventhandling e 357
2.5.9 Message forwardingl e e 358
2.5.10 Definite clause grammarrules o e 359
2.5.11 Termand goal eXpansion v v v v v v v i i e e e e e e e e e e e e e e 365
2.5.12 Coinduction hooks L e 369
2.5.13 Message Printing v v i it i e e e e e e e e e e e e e e e e e e e 371
2.5.14 Questionasking e e 377

3 Tutorial 381

3.1

3.2

3.3

3.4

FAQ
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

List predicates o vt i i e e e e e e e e e e e e e e e e e 381
3.1.1 Defining alistobject e e 381
3.1.2 Defining alist protocol 382
3. 1.3 SUMMATY . . . v oot e 384
Dynamic object attributes e e e e 384
3.2.1 Defining acategory v v v v i e 384
3.2.2 Importing the category i i i e e e e e e e e e e 385
3.2.3 SUMMAIY « ¢ v v v v e 386
A reflective class-based system e e e e e 386
3.3.1 Definingthe baseclasses o i i e e e 386
3.3.2 Summary e e e e e e e e e e e e e 387
Profiling programs e e e e e e e e e e e e e e e e e e 387
3.4.1 MeSsageS @S €VENLS . . v ¢ v v v v b h e 388
3.4.2 Profilers as monitors i e e e e e e e e e e e e e e e e e 388
343 Summary e e e e e e e e e e e e e e e e e e e 390
391
General L e e e e e e e e 391
4.1.1 Why are all versions of Logtalk numbered 2.xor 3.x? 391
4.1.2 Why do I need a Prolog compiler to use Logtalk? 391
4.1.3 Is the Logtalk implementation based on Prolog modules? 391
4.1.4 Does the Logtalk implementation use term-expansion? 392
Compatibility o o e e e e e e e e e e 392
4.2.1 What are the backend Prolog compiler requirements to run Logtalk? 392
4.2.2 Can I use constraint-based packages with Logtalk? 392
4.2.3 Can I use Logtalk objects and Prolog modules at the same time? 392
Installation o e 392
4.3.1 The integration scripts/shortcuts are not working! 392
4.3.2 1 get errors when starting up Logtalk after upgrading to the latest version! 393
Portability o o e e e e e e e e e e e e 393
4.4.1 Are my Logtalk applications portable across Prolog compilers? 393
4.4.2 Are my Logtalk applications portable across operating systems? 393
Programming o e e e e e e e e e e e 393
4.5.1 Should I use prototypes or classes in my application? 394
4.5.2 Can I use both classes and prototypes in the same application? 394
4.5.3 Can I mix classes and prototypes in the same hierarchy? 394
4.5.4 Can I use a protocol or a category with both prototypes and classes? 394
4.5.5 What support is provided in Logtalk for defining and using components? 394
4.5.6 What support is provided in Logtalk for reflective programming? 394
Troubleshooting i e e e e e e e e e e 394

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates does
not work! 395

4.6.2 Gecko-based browsers (e.g., Firefox) show non-rendered HTML entities when brows-
ing XML documenting files! 395

4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler reports
a successful compilation with zero errors and zero warnings! 395
Usability o o e e e e e e e e e e e e e e e e 395
4.7.1 Is there a shortcut for compiling and loading source files? 395
4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive? 396
4.7.3 Are there shortcuts for the make functionality? 396
DeployMENt . . . o v vt e 396
4.8.1 Can I create standalone applications with Logtalk? 396
Performance o i i e e e e e e e e e 396

Vi

4.9.1 Is Logtalk implemented as a meta-interpreter? v v v v ... 396
4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code? Static

code? ..o e e 397
4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-
namic binding? e e e e e e 397

4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance? . . . 397
4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog modules? 397

4.10 LIiCENSING . . . v v v o i e 397
4.10.1 What'’s the Logtalk distribution license? 398
4.10.2 Can Logtalk be used in commercial applications? 398
4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler? 398

N T] 05) o 398
4.11.1 Are there professional consulting, training and supporting services? 398

Developer Tools 399

S.1 0 OVEIVIEW . v v vttt e 399
5.1.1 Loading the developertools i i it 400
5.1.2 Toolsdocumentation e e 400
5.1.3 Toolscommon flags e e e e e 400
5.1.4 ToolsS reqUIreMEeNtS v v v v v v v e 400

5.2 asdf . o e e e e e e e e 403

5.3 assertions i e e e e e e e e e e e e 403
5.3.1 APIdocumentation i v v i it e e e e e e e 403
532 Loading v v it e e e e e e e e e e e e e e e e 403
5.3.3 Testing« o oo e e e e e e e e e e e e e e 403
5.3.4 Adding assertions to your source codeo e e e e 404
5.3.5 Automatically adding file and line context information to assertions 404
5.3.6 Suppressing assertion calls from sourcecode 404
5.3.7 Redirecting assertion failure messages 404
5.3.8 Converting assertion failures into errors e 405

5.4 code_mMetriCsS. . . v v v v v i e e e e e e e e e e e e e e e e e e e 405
5.4.1 APIdocumentation ittt e 405
542 Loading i i e e e e e e e e e e e e e e 406
543 TeStiNg . . . v v vt e 406
5.4.4 Available metrics e e e e e e e e e 406
5.45 Coupling metrics o o i i e e e e e e e e e e 406
5.4.6 Halstead metric i e e e e 407
547 UPNIELIIC . . . o v v vttt e e e e e e e e e e e e e 408
5.4.8 Cyclomatic complexity metric e 408
549 USAE . . v it i e e e e e e e e e e e e e e e 409
5.4.10 Excluding code from analysis oo 409
5.4.11 Defining new metrics o i i i i e e e e e e e e e e 409
5.4.12 Third-party tools e e e e e e e e e e e e e 409
5.4.13 Applying metrics to Prologmodules o . o 409
5.4.14 Applying metrics to plain Prologcode 410

5.5 dead_code_scanner e e e e e e e e e e e e 410
5.5.1 APIdocumentation v it ittt e e 411
552 Loading i i i e e e e e e e e e e e e e 411
553 Testing o i e 411
554 USAZE « v o v v oot e e e e 411
5.5.5 Excluding code from analysis e 412
5.5.6 Integration with themaketool 412
557 Qaveats e e e e e e e e e e e e e 412
5.5.8 Scanning Prologmodules e e 412

vii

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.5.9 Scanning plain Prologfiles 412

debUg_MESSAZES . . v v i e 413
5.6.1 APIdocumentation v v v v it vttt e e e e e e e 413
5.6.2 LoadiNg v v v it e e e e e e e e e e e e e e e e e 413
5.6.3 Testing oo e e e e e e e e e e e e e e e e 413
5614 Usage . . . oot e e e 414
debUgger e 415
5.7.1 APIdocumentation i v v v i it e e e e e e e e e e 415
5.7.2 Loading i e e e e e e e 415
5.7.3 TeStINg L . e e e e e e e e e e e e e e e e e 415
5.74 Usageo e e e e e e e e e e 415
5.7.5 Alternative debuggertools e e e e 416
5.7.6 KnOWNissueS o i v v i it it e e e e e e e e e e e e e e 416
diagrams . . . i e e e e e e e e e e e e e e e e 416
5.8.1 ReqUiremMents v v v it i e 417
5.8.2 APIdocumentationt i ittt e e e e e e 418
583 Loading o i i e e e e e e e e e e e e 418
584 TestinNg . . . v v o e e e e e e e e e e e e e e e e e e 418
5.8.5 Supported diagrams e e e e e e e e e e 418
5.8.6 Graphelements e e e e e e e 419
5.8.7 Supported graph languages e 420
5.8.8 CuStOmIzation v v i e e e e e e e e e e e e e e e 421
5.8.9 Linking diagrams e e e e e e e e e e e 425
5.8.10 Creating diagrams for Prolog module applications 427
5.8.11 Creating diagrams for plain Prologfiles 427
5.8.12 Othernotes v v i i i i i i e e e e e e e e e e e e 428
doclet e e e e e e e e e e e 428
5.9.1 APIdocumentation v v v v v vttt e e e e e e e e e e e e 429
5.9.2 Loading i i i i e e e e e e e e e e e e e e 429
5.9.3 Automating running doclets L. oL e 429
5.9.4 Integration with themaketool. 429
Relp . o o e e e e e e e e e e e e e e e 429
5.10.1 ReqUIremMeNnts v v v v v v it e 429
5.10.2 APIdocumentation v v v v v i it e e e e e e e e e e e e e 429
5.10.3 Loading o it i e e e e e e e e e e e e e e e e 430
5104 TeStiNg . . . v v v v it e 430
5.10.5 Supported operating-SySte€ims v v v v vt e e e e e e e e e e e e e e e 430
5.10.6 USage . . . v v v v it e e e e e e e e e e e e 430
5.10.7 Experimental features @ . i i e e e e e e e e 430
5.10.8 KNOWNISSUES . . ¢ v v v v v vt e it e 431
issue_creator L e e e e e e e e e e 431
5.11.1 Requirements o v i i i i i i e e e e e e e e e e e e e e e e e e e 431
5.11.2 Loading ¢ v v i e e e e e e e e e e 432
5.11.3 USAe . . v v v o e 432
5.11.4 KNOWNISSUES . . ¢ v v v v v it e it e 433
1gtdoc . . L e e e e e e e e e e e e e e e e e e 433
5.12.1 ReqUITEMENTS v vt v v e e e i e 433
5.12.2 APIdocumentation vttt ittt e e e e e e e 434
5.12.3 Loading v v vt e e e e e e e e e e e e e e e 434
5124 Testing . . . o v v v i e 434
5.12.5 Documenting source code ittt e e e e e e e e e 434
5.12.6 Generating documentation v v v vttt e e e e e e e e e e e e 434
5.12.7 Documentation linterchecks L L 435
Igtunit & o e 436

viii

5.14

5.15

5.16

5.13.1 Mainfiles e e e e e e e e e e e e 436

5.13.2 APIdocumentationottt e 436
5.13.3 Loading o it e e e e e e e e e e e e e e e 436
5.13.4 TeStig . « .« v v v e 436
5.13.5 Writing and running testso e e e e e e e e 437
5.13.6 Automating running testS o Lt e e e e e e e e e e e e e e e e 439
5.13.7 Parametric teSt ObJECES e e e e e e e e e e e e e e e e 440
5.13.8 Testdialects e 441
5.13.9 User-defined testdialects o i i i i e e e 443
5.13.10QuickCheck e e e e e e e 443
5.13.11SKIippIng tests v o v i e 448
5.13.128Selecting tests i i e 449
5.13.13 Checking test goal results L e e e e e e 449
5.13.14 Testing local predicates L. e 451
5.13.15 Testing non-deterministic predicates i i i i i 451
5.13.16 Testing generators « ¢ v v v v v v bt e e e e e e e e e e e e e 451
5.13.17 Testing input/output predicates v v ittt e e 452
5.13.18 Suppressing tested predicates oUtput v . . e e e e e e e e e e 453
5.13.19 Tests with timeout limits e 454
5.13.20Setup and cleanup goals e e e e e e 454
5.13.21Test annotationS v v v v v v i i e 454
5.13.22 Test execution times and MemMOTry USAZE v« v v v v v v v v v et e 455
5.13.23Working with test datafiles 455
5.13.24Flaky teStS . . v v v vt e 456
5.13.25Mocking e e e e e e e 456
5.13.26 Debugging messages iN teStS v v v v v vt e e e e e e e e e e e e 457
5.13.27Debugging failed tests 458
5.13.28C0d€ COVETAZE . .« v v v v i e 458
5.13.29 Utility predicates v i i i e e e e e e e e e e e e e e e e 460
5.13.30 Exporting test results in xUnit XML format 461
5.13.31 Exporting test results in the TAP output format. 462
5.13.32 Generating Allure reports Lo e e e e e e e e 462
5.13.33 Exporting code coverage results in XML format 464
5.13.34 Automatically creating bug reports at issue trackers 465
5.13.35Minimizing test results output L. ..o e 465
5.13.36Help with warnings o o i v i e e e e e e e e e e e 465
5.13.37KNnOWNiSSUES v it e e e e e e e e e e e e e e e e e 465
linter . . L e e e e e e e e 465
5.14.1 Mainlinterchecks e 466
5.14.2 Help onlinter warnings o o v v v v v v i e e e e e e e e e e e e 467
5.14.3 Extendingthelinter. e e 467
5.14.4 Linting Prologmodules L 467
5.14.5 Linting plain Prolog files e 467
1151 P 468
5.15.1 APIdocumentation ittt i e 468
5.15.2 Helpwithwarnings 0 o o et e e e e 468
PACKS v v v i e 468
5.16.1 ReqUITEMENTS v v v v v e et e 469
5.16.2 APIdocumentation ittt i it e e e e 470
5.16.3 Loading o o it i e e e e e e e e e e e e e e e e e 470
5164 Testing« v v i i e 470
5.16.5 Usage v v i it e 470
5.16.6 Registries and packs StOTage v v v it e e e e e e e e e e e e e 470
5.16.7 Virtual environments i it e e e e e e e e e e e e e e e e 471

6

5.16.8 Registry specification i it e e e e e e e e e e e e e e 472

5.16.9 Registry handling e e e e e e e 474
5.16.10Registry development e e e e e e e 475
5.16.11Pack specification i i i i e e e e e e e e e e e e e 475
5.16.12Encrypted packs e e 476
5.16.13Signed packs e e e e e 477
5.16.14Pack URLs and Single Sign-On o 0t i i it e it e e e e 477
5.16.15Multiple pack versions e e e e e e e e 478
5.16.16Pack dependencies L e e 478
5.16.17Pack portability e e e e 479
5.16.18Pack development i e e e e e e e e e e 479
5.16.19Pack handling e e e e e e e e e e 480
5.16.20 Pack documentation L il e e e e e e 482
5.16.21 Pinning registriesand packs L. o Lo 483
5.16.22Testing packs v i i i e e e e e e e e e e e e e e 483
5.16.23 Security considerations i it e e e e e e e e e e e e e e 484
5.16.24BeSt PractiCes . . .« v v v v v v et e 484
5.16.25Installing Prolog packs i i i e e e e e e e e e 484
5.16.26Helpwith warnings o o e e e e e e 485
5.16.27KNOWN SSUES .+« v v v o v e 485
5.17 ports_profiler i e 485
5.17.1 APIdocumentation v ittt i ittt e e 486
5.17.2 Loading o o i i e e e e e e e e e e e e e e e e e 486
5.17.3 Testing v v i e 486
5.17.4 Compiling source files for port profiling 486
5.17.5 Generating profilingdata e 486
5.17.6 Printing profiling datareports e 487
5.17.7 Interpreting profilingdata i i e 488
5.17.8 Profiling Prologmodules 489
5.17.9 Profiling plain Prologcode e e 489
5.17.10KNOWN iSSUES & v v i e 490
5.18 profiler e e e e e e e e e e e e e e e e e e 490
5.18.1 Loading v v v vt e e e e e e e e e e e e e e e e 490
5182 Testing . . . v v v v it e 490
5.18.3 Supported backend Prolog compilerso 490
5.18.4 Compiling source code for profiling 491
519 tULOr . . o i e e e e e e e e e e e e 491
5.19.1 APIdocumentation v ittt i ittt e e e e 491
5.19.2 Loading i i i e e e e e e e e e e e e e e e e e e e 491
5.19.3 USAge . . v v v i i e 492
5.20 WFaPPeI & v v i e 492
5.20.1 APIdocUumentation ¢ v v v v v vt e e e e e e e e e e e e e e e e e 493
5.20.2 LoadiNg v v vt e e e e e e e e e e e e e e e e 493
5.20.3 Workflows L e e e 493
5.20.4 CuStOmIZAtION v v v v v v e e e e e e e e e e e e e 493
5.20.5 Current limitations L e e e e e e e 494
Libraries 495
6.1 OVEIVIEW . . . o v vttt e et e e s e e e e e e e e e e 495
6.1.1 Library documentation e e e e e e e e 495
6.1.2 Loading libraries i i e e e e e e e e e 495
6.1.3 Testing libraries e e e e e e e e e e 496
6.1.4 Credits o e e e e e e e e 496
6.1.5 Othernotes e e 496

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

arbitrary ..o e 496
6.2.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e e 496
6.2.2 Loading i i e e e e e e e e e e e e e e 497
6.2.3 Testing e e e e e e e e e e e e e e e 497
6.2.4 Pre-defined types e e e 497
6.2.5 Usage i e e e e e e e e e e e 497
6.2.6 Defining new generators and shrinkers 497
6.2.7 Scoped generators and shrinkers o oo 500
6.2.8 Reproducing sequences of arbitraryterms L. 501
6.2.9 Default size of generated terms e 502
6.2.10 KNOWNiSSUES . . « . v v v v i e e i e 502
ASSIGNVAIS & & v v i e 502
6.3.1 APIdocumentation o v v v i it e e e e e e e e e e e e e 502
6.3.2 Loading i i e e e e e e e e e e e e 503
6.3.3 Testing o e e e e e e e e e e e e e e e 503
DasSEbd . . e 503
6.4.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e 503
6.4.2 Loading i i e e e e e e e e e e e e e e e 503
0.4.3 Testing o e 503
6.4.4 Encoding. i e e e e e e e e e e 503
6.4.5 Decoding i e e e e e e e 504
basic_typPesS . . . i e 505
6.5.1 APIdocumentation v i v v v it e e e e e e e e e e e e e 505
6.5.2 Loading i i e e e e e e e e e e e e e 505
6.5.3 Testing e e e e e e e e e e e e e 505
ChOr « o e 505
6.6.1 Representation L. e e e e e e e e e e e e e 505
6.6.2 Encoding. i i i e e e e e e e e e e e e 506
6.6.3 Decoding i v i i e e e e e e e e e e e e e e e e 506
6.6.4 APl documentation ¢ v v v vt it e e e e e e e e e e e e e e e 507
6.6.5 LoadiNg o v v it e e e e e e e e e e e e e e e e 507
6.6.6 TeSting e e e e e e e e e e e e e e e 507
oo = 507
6.7.1 APl documentation v v v v v it e e e e e e e e e e e e e 507
6.7.2 Loading i i e e e e e e e e e e e e e e 507
6.7.3 TeStiNg o e e e e e e e e e e e e e 507
COroutining i i i e 507
6.8.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e e e e 508
6.8.2 Loading i i i i e e e e e e e e e e e 508
6.8.3 Testing e e e e e e e e e e e e e e e e e e 508
6.8.4 Usage i i i e e e e e e e 508
CSV e 508
6.9.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e e e 509
6.9.2 Loading i i e e e e e e e e e e e e 509
6.9.3 Testing i e 509
0.9.4 USAZE . . . v i e 509
dates . . o e 510
6.10.1 APIdocUmMENtation v v v v v v vt e e e e e e e e e e e e e e e e e e 511
6.10.2 Loading o v v it e e e e e e e e e e e e e e e 511
dependents L e 511
6.11.1 APIdocumentation v v v v v v vt i e e et e e e e e e e e e e e e e 511
6.11.2 Loading v v it e e e e e e e e e e e e e 511
dictionaries . . . v v v i i i e 511
6.12.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e e e 511

Xi

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.12.2 Loading i i e e e e e e e e e e e e e e e e e e 511

6.12.3 Testing v i e 512
6.12.4 USAZE . . ¢ v v v i i e 512
6.12.5 CreditS . . . v v v e e e e e e e e e e e e 513
o T 513
6.13.1 APIdocumentation v i v v i i it e e e e e e e e e e e e e e 513
6.13.2 Loading i i e e e e e e e e e e e e e e e e 513
6.13.3 Testing o v i e 513
6.13.4 USAZE . . ¢ v v v i i e 513
BACE . . . e e e e e e e e e e e e e e 514
6.14.1 APl documentation v i v v i i i e e e e e e e e e e e e e 514
6.14.2 Loading i i e 514
6.14.3 TestiNg« i i e 514
0.14.4 Usage o i i i e 515
6.14.5 IntroducCtion v v v v it e 515
6.14.6 SYNEAX . . .« v i i e 516
6.14.7 Declaration of Predicates i e e e e e e e e e e e 516
6.14.8 Declaration of Accumulators i i e e e e e e e e e e e e e e 516
6.14.9 Declaration of Passed ArgUMENS o v v v v v v vt e e e e e e 517
6.14.10 Additional documentation i it e e e e e e e e e e 517
BVENTES . L L e s e e e 517
6.15.1 APIdocumentation o i v v i v it e e e e e e e e e e e e e e e 518
6.15.2 Loading ¢ i i e e e e e e e e e e e e e e e 518
expand_library_alias_paths. e e e e e e e 518
6.16.1 API docUmentation v v v v v v v e 518
6.16.2 Loading o i e e e e e e e e e e 518
6.16.3 USAZE i v i i e 518
eXpPeCtedS e 518
6.17.1 APl documentation i v i v i i et e e e e e e e e e e e e e e 519
6.17.2 Loading i i e e e e e e e e e e e 519
6.17.3 TeStiNg . . « v« v v v e 519
6.17.4 USaZe . . . v v v it e e e e e e e e e e e e e e e 519
6.17.5 Seealso e e e e e e e e e e 519
format . . e 520
6.18.1 APIdocumentation i i it i i e e e e e e e e e e e e e e e e 520
6.18.2 Loading i i e e e e e e e e 520
6.18.3 Testing o i i e 520
6.18.4 UsSage . . . v v vt e e e e e e e e e 520
6.18.5 Portability e e e e e e e e e e e e 521
== 0 1 521
6.19.1 API docUmentation v v v v v v vt e e e e e e e e e e e e e e e e e e 521
6.19.2 Loading i i e e e e e e e e e e 521
6.19.3 TeSting . . .« v v v i e e e e e e e e e e e e e e e e e e 521
6.19.4 USAZE . . « v v v i i e 521
EENSYM v v v v e 522
6.20.1 APIdocumentation i v i i i i e e e e e e e e e e e e e e e e 522
6.20.2 LoadiNg v v vt e e e e e e e e e e e e e e e e e 522
6.20.3 Testing i i e 522
6.20.4 USaZe . . . v v v it e e e e e e e e e e 522
= 522
6.21.1 APIdocumentation i i i i i e e e e e e e e e e e e e e e e 523
6.21.2 Loading v i i e e e e e e e e e e e 523
6.21.3 Testing v i i i e 523
6.21.4 USaZe v v it e e e e e e e e e e e e e 523

Xii

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

o= 11111 1= o 524
6.22.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e 524
6.22.2 Loading i i e e e e e e e e e e e e e e e e 524
6.22.3 Testing o . i e e e e e e e e e e e e e e e e e 524
6.22.4 USAZE . .« v v i e 524
NEAPS v v i i e e e e e e e e e e e e e e e e e e 525
6.23.1 APIdocumentation v v v v v vt e e e e e e e e e e e e e 525
6.23.2 Loading i i e e e e e e e e e e e e e e e 525
6.23.3 TeStiNg i i e e e e e e e e e e e e e e e e e 525
6.23.4 Credits v v i i e e e e e e e e e e e e e e e e e e 525
hierarchies i i i e 525
6.24.1 APIdocumentation ¢ v v v v v v it e e e e e e e e e e e e e e 525
6.24.2 Loading i i e e e e e e e e e e 525
6.24.3 TeStiNg i i e 526
HOOK _TLOWS & & v v o e 526
6.25.1 APIdoCUMENtatiON v v v v v v vt e e e e e e e e e e e e e e e e e 526
6.25.2 Loading i i e e e e e e e e e e e e e 526
6.25.3 Testing v v e 526
60.25.4 UsSage v v i e e e e e e e e e e e e e e e 526
hook_objects e e e e e e e e e e e e e 527
6.26.1 APIdoCUMENAtION . . . v v v v v v i i i e e e e e e e e e e e e e e e e e e 527
6.26.2 Loading i i e e e e e e e 527
6.26.3 TeSting . . . v v v i e 527
6.26.4 USAZE v v i e e e e e e e e e e e e e e e e e e e 527
ML . L e 531
6.27.1 APIdocumentation v v v v v v i e e e e e e e e e e e e e e e e e e e 531
6.27.2 Loading e e e e e e e e 531
6.27.3 Testing . . . v v v i e e e e e e e e e e e e e e e e e e e 532
6.27.4 Generatinga HTML document i ittt i it ie e e oo 532
6.27.5 Generating a HTML fragment v v v v v v v v vttt et e e e e e 532
6.27.6 Working with callbacks to generate content 533
6.27.7 Working with custom elements e 533
1AS o e e e e e e e e 533
6.28.1 APIdocumentation v v v v v i it e e e e e e e e e e e e e 534
6.28.2 Loading i i e e e e e e e e e e e e e 534
6.28.3 TeStiNg i i e e e e e e e e e e e e e e e e e 534
6.28.4 USAZE . . . v i i it e e e e e e e e e e e e e e e 534
intervals . . . e 535
6.29.1 APIdocumentation v v v v v vt e e e e e e e e e e e e 535
6.29.2 Loading i i e e e e e e e e e e e e e e e e 535
6.29.3 TeStiNg i i e e e e e e e e e e e e e e e e e e 535
JAVA . e 535
6.30.1 APIdocUmMENntation v v v v v vt e e e e e e e e e e e e e e e e e e 535
6.30.2 Loading it e e e e e e e e e e e e e e e e e 536
6.30.3 TeSting v v i e 536
60.30.4 USAZE . . ¢ v i v i e 536
6.30.5 KNOWN ISSUES . .« & v v v v i e e e e et e e e e e e e e e e e e e e e e e e e 536
JSON L e 536
6.31.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e e e 537
6.31.2 Loading i i i e e e e e e e e e e e e e e e e e e 537
6.31.3 Testing o v i e 537
6.31.4 Representation v ittt it e e e e e e e e e e e e e e e e 537
6.31.5 Encoding. o v v i v e e e e e e e e e e e e e e e e e e 539
6.31.6 Decoding i i e e e e e e e 540

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.31.7 KNOWINISSUES . . . v v v o v e 540

Listing . . o o i e 540
6.32.1 APl documentation i i i i i e e e e e e e e e e e e e e e e 540
6.32.2 LoadiNg v v it e e e e e e e e e e e e e e e e e 540
6.32.3 TeStiNg v vt e 540
6.32.4 USAZE . . v v v it e e e e e e e e e e e e 540
o)== 1 = 542
6.33.1 APl documentation i i i i it e e e e e e e e e e e e e e e 542
6.33.2 Loading o i e e e e e e e e e e e e e e 542
100PS . . . e e e e e e e e e e e e e e e e 542
6.34.1 APl documentation v i v v i i it e e e e e e e e e e e e 542
6.34.2 Loading i i e e e e e e e e e e e e e e e e e 542
6.34.3 Testing v v e 542
0.34.4 USAZE . . . v v i e 542
112 o 543
6.35.1 APIdocumentation v i v v i i it e e e e e e e e e e e e 543
6.35.2 Loading i i e e e e e e e e e e e e 543
6.35.3 Testing v e 543
0.35.4 USAZE . . . v i e 543
Mmeta_COMPiler v i it e 543
6.36.1 APl documentation v i v v i i i e e e e e e e e e e e e e e 543
6.36.2 Loading L e e e e e e e 543
6.36.3 TeSting . . . v v v e 544
0.30.4 USAZE . . . v i e 544
6.36.5 KNOWNISSUES v v i i e 544
MUtations e e e e e e e e e e e e e e e e 544
6.37.1 APl documentation« i v v i i it e e e e e e e e e e e e e 545
6.37.2 Loading i i i e e e e e e e e e e e e e e e e e 545
6.37.3 Testing v v i e 545
0.37.4 USAZE . . . v v i e 545
nested_dictionaries v i i i i e e e e e e e e 546
6.38.1 APIdocumentation v i v v i i i e e e e e e e e e e e e e e 546
6.38.2 Loading o v i i e e e e e e e e e e e 546
6.38.3 TeSting . . . v v v e 546
60.38.4 USAE . . v vt i e 546
6.38.5 Curly term representation i i e e e e e e e e e 547
OPtioNals e 547
6.39.1 APIdocumentation v i v v i i i e e e e e e e e e e e e e e e 547
6.39.2 Loading it e e e e e e e e e e e e e e 547
6.39.3 TeSting v e 548
6.39.4 USAZE . . v v v i i e 548
6.39.5 Seealso e e e e e e e 548
OPLIONS . o o ot e 548
6.40.1 APIdocumentation i v i i i it e e e e e e e e e e e e e e e 548
6.40.2 Loading i i i e e e e e e e e e e e e e e e e e 549
60.40.3 Testing o v i e 549
6.40.4 USAZE . . . v v it e e e e e e e e e e e e e e e e 549
o 550
6.41.1 APIdocumentationt i v v i i it e e e e e e e e e e e e e e 550
6.41.2 Loading i i e e e e e e e e e e e e e e e e e e 550
6.41.3 Testing o v i e 550
6.41.4 KNOWIISSUES . . . & v v v i i e 550
QUEBUES o v v e 551
6.42.1 APl documentation v i v v i i i e e e e e e e e e e e e e e 551

Xiv

6.43

6.44

6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.42.2 Loading i i e e e e e e e e e e e e e e e e e 551

6.42.3 TeStiNg . . . v v v i e 551
0.42.4 USAZE . . v v v i e 551
Fandom . . . o i e 552
6.43.1 APl documentation v i v v i i i e e e e e e e e e e e e e e e 552
6.43.2 Loading i e e e e e e 552
6.43.3 TeSting . . . v v v i e 552
0.43.4 USAZE . . v v v i e 552
S T= T = 553
6.44.1 APl documentation v i v v i i i e e e e e e e e e e e e e 553
6.44.2 Loading i i e e e e e e 553
60.44.3 TeStiNg . . . v v v i e 553
recorded_database e e e e e e e e e e e e e e e e 553
6.45.1 APIdocumentation i i i i i i e e e e e e e e e e e e e e e 553
6.45.2 Loading i i e e e e e e e e e e 553
6.45.3 TeSting« o ot e e e e e e e e e e e e e e e e e 554
6.45.4 USAZE i i i e e e e e e e e e e e e e e e e e e 554
6.45.5 KNOWN iSSUES v v i i e i e 554
redis . . . i e 554
6.46.1 APl documentation v v v v it e e e e e e e e e e e e e e 554
6.46.2 Loading i e e e e e e e e 555
6.46.3 TeStiNg o it e e e e e e e e e e e e e e e 555
6.46.4 CreditS v i i e e e e e e e e e e e e e e e 555
6.46.5 KNOWN iSSUES . . . v v v i i i e i e 555
SEES i e 555
6.47.1 APl documentation v i v v i i i e e e e e e e e e e e 555
6.47.2 Loading i e e e e e e e 556
6.47.3 Testing v i e 556
6.47.4 USAZE . . . v v v i i e e e e e e e e e e e e e e e e e e 556
6.47.5 CreditS o i e e e e e e e e e e e e e e e e 557
Statistics . . v v i e e e e e e e e e e e e 557
6.48.1 APl documentation v i v v i i i e e e e e e e e e e e e e e 557
6.48.2 Loading o v i i e e e e e e e e e e e e e e 558
6.48.3 TeSting . . . v v v i e 558
LErM 10 & o e 558
6.49.1 APIdocumentation v v v v v i e e e e e e e e e e e e e e e 558
6.49.2 Loading i i e e e e e e e 558
6.49.3 TeStiNg v o it e e e e e e e e e e e e e 558
timeoUt & . . . L e e e e e e e e e e e e e e e e e 558
6.50.1 APIdocumentation i i i i i i e e e e e e e e e e e e e e e e 559
6.50.2 Loading o i i e e e e e e e e e e 559
6.50.3 Testing i i e 559
6.50.4 KNOWI iSSUES . + v v v v v e 559
BV v e e e e e e e e e e e e e e e e e e 559
6.51.1 APIdocumentation & v v i i i i e e e e e e e e e e e e e e e e e 560
6.51.2 Loading i i e e e e e e e e e e e e e e 560
6.51.3 TeStiNg . . « v v v e 560
6.51.4 UsSage . . . v i it e e e e e e e e e e e e e e 560
LY PES v o i e 561
6.52.1 APl documentation« i i v i i it e e e e e e e e e e e e e e e e 561
6.52.2 Loading o i e e e e e e e e e e e e e e 561
6.52.3 TeStiNg i i e e e e e e e e e e e e e e e e e e 561
6.52.4 Type-checking e 561
6.52.5 Defining New LYPES . . . v v v v i i i e e e e e e e e e e e e e e e e e 562

XV

0.53 ULid . . . e e e e e e e e e e e e e e e e e e e 562
6.53.1 APIdocumentation v ¢ v v v v v it et e e e e e e e e e e e e e e e 563
6.53.2 Loading i i e e e e e e e e e 563
6.53.3 Testing i e e e e e e e e e e e e e e e e e e 563
6.53.4 Generating ULIDs o i i e e e e e 563
6.53.5 Type-checking ULIDS v v v i i et e e e e e e e e e e e e e e e e e 564

6.54 unicode_data. L e e e e e e e e e e e e e e e e e e e 564
6.54.1 Authors e e e e e e e e e e 564
6.54.2 LICENSE . . . o v v i i e 564
6.54.3 Website e e e e e e e e e 564
6.54.4 DesCription i i e 565
6.54.5 RequUirements v v v v i v et e 565
0.54.6 USAZE . . . v v v i e 565
6.54.7 KNOWIN ISSUES . . + & v v v e e e e e et e e e e e e e e e e e e e e e e e e e 565
6.54.8 Acknowledgementsl e e e e 565
6.54.9 Filesand API SUMMATY ¢ v v v v i e e e e e e e e e e e e e e e e e e e 566

6.55 union_find e e e e e e e e e e e e e e e e e e 571
6.55.1 APIdocumentation v ¢ v v v vt it e e e e e e e e e e e e e e e 571
6.55.2 Loading v v v it e e e e e e e e e e e e e e e e e 571
6.55.3 TeSting« o it e e e e e e e e e e e e e e e 571
6.55.4 UsSage o o i i e e e e e 571

0.560 UUId . . . o e 572
6.56.1 APIdocumentation o v v v i it e e e e e e e e e e e e e 573
6.56.2 Loading i . e e e e e e e e e 573
6.56.3 Testing o i e e e e e e e e e e e e e e e e e e 573
6.56.4 Generatingversion 1 UUIDs it 573
6.56.5 Generating version 4 UUIDS i v i i i i e e e e e e e e e e 573
6.56.6 GeneratingthenullUUID i 574

0.57 ZIPPEIrS « v v v i i e e e e e e e e e e e 574
6.57.1 APIdocUumentation ¢ v v v v v et et e e e e e e e e e e e e e 574
6.57.2 Loading v v i e e e e e e e e e e e e e e e 574
6.57.3 Testing o e e e e e e e e e e e e e e e e e 574

Ports 575

7.1 fcUbe . e 575
7.1.1 APIdocumentation i i i it e e e e e e e e e e e 576
7.1.2 Loading e e e e e e e e e e e e e e e e e 576
7013 TESHNZ « v v o o e 576

7.2 Metagol i e 576
7.2.1 APIdocumentation v i i it e e e e e e e e e e e e e 577
7.2.2 Loading i e e e e e e e e e e e e e e e 577
7.2.3 TeStNE . . . v v i e 577

7.3 tOYCNT L e e e e e e e e e e e e 577
7.3.1 APIdocumentation i i i i i i e e e e e e e e e e e e e e 578
7.3.2 Loading e e e e e e e e e 578
7.3.3 Testingo e e 578

Contributions 579

8.1 Flags . v i e 579
8.1.1 APIdocumentation ¢ v v v v vt e e e e e e e e e e e e e e 579
8.1.2 Loading ¢ i i i e e e e e e e e e e e e e 579
8.1.3 Testing v i e 579

8.2 15086071 e 580

Xvi

8.2.1 APIdocumentation i i i i i i e e e e e e e e e e e e e e
8.2.2 Loading i i e e e e e e e e e e e e
8.2.3 Testing o e e e e e e e e e e e e e e e e e e
8.3 pddl_parser ..o e
8.3.1 APIdocumentation v v v v i e e e e e e e e e e e e e e e e e e e
8.3.2 Loading o i i e e e e e e e e
8.3.3 Testing i e
8.4 verdi_neruda. e
8.5 XMl _parser . . .o e
8.5.1 APIdocumentation v i v i i i i e e e e e e e e e e e e
8.5.2 Loading o v i i e e e e e e e
8.5.3 Testing i i e e e e e e e e e e e e e e e e e e e
8.5.4 KNOWNISSUES . . . v v v i v i e i e
9 Glossary
Bibliography
Index

Xvii

xviii

CHAPTER
ONE

USER MANUAL

1.1 Declarative object-oriented programming

Logtalk is a declarative object-oriented logic programming language. This means that Logtalk shares key
concepts with other object-oriented programming languages but abstracts and reinterprets these concepts in
the context of declarative logic programming.

The key concepts in declarative object-oriented programming are encapsulation and reuse patterns. Notably,
the concept of mutable state, which is an imperative concept, is not a significant concept in declarative object-
oriented programming. Declarative object-oriented programming concepts can be materialized in both logic
and functional languages. In this section, we focus only on declarative object-oriented logic programming.

The first key generalization of object-oriented programming concepts is the concept of object itself. What
an object encapsulates depends on the base programming paradigm where we apply object-oriented pro-
gramming concepts. When these concepts are applied to an imperative language, where mutable state and
destructive assignment are central, objects naturally encapsulate and abstract mutable state, providing dis-
ciplined access and modification. When these concepts are applied to a declarative logic language such as
Prolog, objects naturally encapsulate predicates. Therefore, an object can be seen as a theory, expressed by
a set of related predicates. Theories are usually static, and thus Logtalk objects are static by default. This
contrasts with imperative object-oriented languages where usually classes are static and objects are dynamic.
This view of an object as a set of predicates also forgoes a distinction between data and procedures that is
central to imperative object-oriented languages but moot in declarative, homoiconic logic languages.

The second key generalization concerns the relation between objects and other entities such as protocols
(interfaces) and ancestor objects. The idea is that entity relations define reuse patterns and the roles played
by the participating entities. A common reuse pattern is inheritance. In this case, an entity inherits, and thus
reuses, resources from an ancestor entity. In a reuse pattern, each participating entity plays a specific role.
The same entity, however, can play multiple roles depending on its relations with other entities. For example,
an object can play the role of a class for its instances, the role of a subclass for its superclasses, and the role
of an instance for its metaclass. Another common reuse pattern is protocol implementation. In this case, an
object implementing a protocol reuses its predicate declarations by providing an implementation for those
predicates and exposing those predicates to its clients. An essential consequence of this generalization is that
protocols, objects, and categories are first-class entities, while e.g. prototype, parent, class, instance, metaclass,
subclass, superclass, or ancestor are just roles that an object can play. When sending a message to an object,
the corresponding predicate declaration and predicate definition lookup procedures (reuse patterns) depend
on the role or roles that the object plays (see the Inheritance section for details). Another consequence
of this generalization is that a language can provide multiple reuse patterns instead of selecting a set of
patterns and supporting this set as a design choice that excludes other reuse patterns. For example, most
imperative object-oriented languages are either class-based or prototype-based. In contrast, Logtalk supports
both classes and prototypes by providing the corresponding reuse patterns using objects as first-class entities
capable of playing multiple roles.

The Logtalk Handbook, Release v3.89.0

1.2 Main features

Several years ago, I decided that the best way to learn object-oriented programming was to build my own
object-oriented language. Prolog being always my favorite language, I chose to extend it with object-oriented
capabilities. Strong motivation also comes from my frustration with Prolog shortcomings for writing large
applications. Eventually this work led to the Logtalk programming language as we know it today. The first
system to use the name Logtalk appeared in February 1995. At that time, Logtalk was mainly an experiment
in computational reflection with a rudimentary runtime and no compiler. Based on feedback by users and
on the author’s subsequent work, the name was retained and Logtalk was created as a full programming
language focusing on using object-oriented concepts for code encapsulation and reuse. Development started
in January 1998 with the first public alpha version released in July 1998. The first stable release (2.0) was
published in February 1999. Development of the third generation of Logtalk started in 2012 with the first
public alpha version in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

1.2.1 Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On
one hand, the object orientation allows us to work with the same set of entities in the successive
phases of application development, giving us a way of organizing and encapsulating the knowl-
edge of each entity within a given domain. On the other hand, logic programming allows us
to represent, in a declarative way, the knowledge we have of each entity. Together, these two
advantages allow us to minimize the distance between an application and its problem domain,
making the writing and maintenance of programming easier and more productive.

From a pragmatic perspective, Logtalk objects provide Prolog with the possibility of defining
several namespaces, instead of the traditional Prolog single database, addressing some of the
needs of large software projects.

1.2.2 Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which
takes place at each moment is a result of the observation of occurring events. This integration
complements object-oriented programming, in which each computing is initiated by the explicit
sending of a message to an object. The user dynamically defines what events are to be observed
and establishes monitors for these events. This is especially useful when representing relation-
ships between objects that imply constraints in the state of participating objects [Rumbaugh87],
[Rumbaugh88], [Fornarino et al 89], [Razek92]. Other common uses are reflective applica-
tions like code debugging or profiling [Maes87]. Predicates can be implicitly called when a spied
event occurs, allowing programming solutions which minimize object coupling. In addition,
events provide support for behavioral reflection and can be used to implement the concepts of
pointcut and advice found in Aspect-Oriented Programming.

2 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.2.3 Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without
any code duplication and irrespective of object hierarchies. A category is a first-class encapsula-
tion entity, at the same level as objects and protocols, which can be used as a component when
building new objects. Thus, objects may be defined through composition of categories, which
act as fine-grained units of code reuse. Categories may also extend existing objects. Categories
can be used to implement mixins and aspects. Categories allow for code reuse between unrelated
objects, independent of hierarchy relations, in the same vein as protocols allow for interface
reuse.

1.2.4 Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or
prototype-based [Lieberman86], with a strong predominance of class-based languages. Logtalk
provides support for both hierarchy types. That is, we can have both prototype and class hi-
erarchies in the same application. Prototypes solve a problem of class-based systems where we
sometimes have to define a class that will have only one instance in order to reuse a piece of code.
Classes solve a dual problem in prototype based systems where it is not possible to encapsulate
some code to be reused by other objects but not by the encapsulating object. Stand-alone objects,
that is, objects that do not belong to any hierarchy, are a convenient solution to encapsulate code
that will be reused by several unrelated objects.

1.2.5 Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java [Joy et al 00] define
a single hierarchy rooted in a class usually named Object. This makes it easy to ensure that
all objects share a common behavior but also tends to result in lengthy hierarchies where it is
difficult to express objects which represent exceptions to default behavior. In Logtalk we can
have multiple, independent, object hierarchies. Some of them can be prototype-based while
others can be class-based. Furthermore, stand-alone objects provide a simple way to encapsulate
utility predicates that do not need or fit in an object hierarchy.

1.2.6 Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming
language. Logtalk provides support for separating interface from implementation in a flexible
way: predicate directives can be contained in an object, a category or a protocol (first-order
entities in Logtalk) or can be spread in both objects, categories and protocols.

1.2.7 Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++
[Stroustrup86], enabling us to restrict the scope of inherited, imported or implemented pred-
icates (by default inheritance is public).

1.2. Main features 3

The Logtalk Handbook, Release v3.89.0

1.2.8 Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in
a way similar to C++ [Stroustrup86]. Private predicates can only be called from the container
object. Protected predicates can be called by the container object or by the container descendants.
Public predicates can be called from any object.

1.2.9 Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize ob-
ject predicates. Parametric objects are implemented in a similar way to L& [McCabe92], OL (P)
[Fromherz93] or SICStus Objects [SICStus95] (however, access to parameter values is done via
a built-in method instead of making the parameters scope global over the whole object). Para-
metric objects allows us to treat any predicate clause as defining an instantiation of a parametric
object. Thus, a parametric object allows us to encapsulate and associate any number of predicates
with a compound term.

1.2.10 High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-
end Prolog compilers, allowing objects to support both synchronous and asynchronous messages.
Logtalk allows programmers to take advantage of modern multi-processor and multi-core com-
puters without bothering with the details of creating and destroying threads, implement thread
communication, or synchronizing threads.

1.2.11 Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an
incremental learning and use of most of its features.

1.2.12 Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in
particular, with the ISO Prolog standard [ISO95]. It runs in almost any computer system with a
modern Prolog compiler.

1.2.13 Performance

The current Logtalk implementation works as a trans-compiler: Logtalk source files are first com-
piled to Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore,
Logtalk performance necessarily depends on the backend Prolog compiler. The Logtalk compiler
preserves the programmers choices when writing efficient code that takes advantage of tail re-
cursion and first-argument indexing.

As an object-oriented language, Logtalk can use both static binding and dynamic binding for
matching messages and methods. Furthermore, Logtalk entities (objects, protocols, and cate-
gories) are independently compiled, allowing for a very flexible programming development. En-
tities can be edited, compiled, and loaded at runtime, without necessarily implying recompilation
of all related entities.

4 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

When dynamic binding is used, the Logtalk runtime engine implements caching of message
lookups (including messages to self and super calls), ensuring a performance level close to what
could be achieved when using static binding.

For more detailed information on performance, see its dedicated section.

1.2.14 Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also ex-
tends them with those areas where object-oriented features provide an advantage compared to plain Prolog.
Among these areas we have:

Logic and object-oriented programming teaching and researching

Logtalk smooth learning curve, combined with support for both prototype and class-based program-
ming, protocols, components or aspects via category-based composition, and other advanced object-
oriented features allow a smooth introduction to object-oriented programming to people with a back-
ground in Prolog programming. The distribution of Logtalk source code using an open-source license
provides a framework for people to learn and then modify to try out new ideas on object-oriented
programming research. In addition, the Logtalk distribution includes plenty of programming examples
that can be used in the classroom for teaching logic and object-oriented programming concepts.

Structured knowledge representations and knowledge-based systems
Logtalk objects, coupled with event-driven programming features, enable easy implementation of
frame-like systems and similar structured knowledge representations.

Blackboard systems, agent-based systems, and systems with complex object relationships
Logtalk support for event-driven programming can provide a basis for the dynamic and reactive nature
of blackboard type applications.

Highly portable applications
Logtalk is compatible with most modern Prolog systems that support official and de facto standards.
Used as a way to provide Prolog with namespaces, it avoids the porting problems of most Prolog
module systems. Platform, operating system, or compiler specific code can be isolated from the rest of
the code by encapsulating it in objects with well-defined interfaces.

Alternative to a Prolog module system
Logtalk can be used as an alternative to a Prolog compiler module system. Most Prolog applications that
use modules can be converted into Logtalk applications, improving portability across Prolog systems
and taking advantage of the stronger encapsulation and reuse framework provided by Logtalk object-
oriented features.

Integration with other programming languages
Logtalk support for most key object-oriented features helps users integrating Prolog with object-
oriented languages like C++, Java, or Smalltalk by facilitating a high-level mapping between the
two languages.

1.2. Main features 5

The Logtalk Handbook, Release v3.89.0

1.3 Nomenclature

Depending on your logic programming and object-oriented programming background (or lack of it), you may
find Logtalk nomenclature either familiar or at odds with the terms used in other languages. In addition,
being a superset of Prolog, terms such as predicate and method are often used interchangeably. Logtalk
inherits most of its nomenclature from Prolog and Smalltalk.

Note that the same terms can have different meanings in different languages. A good example is class. The
support for meta-classes in e.g. Smalltalk translates to a concept of class that is different in key aspects from
the concept of class in e.g. Java or C++. Other terms that can have different meanings are delegation and
forwarding. There are also cases where the same concept is found under different names in some languages
(e.g., self and this) but that can also mean different concepts in Logtalk and other languages. Always be
aware of these differences and be cautious with assumptions carried from other programming languages.

In this section, we map nomenclatures from Prolog and popular OOP languages such as Smalltalk, C+ +,
Java, and Python to the Logtalk nomenclature. The Logtalk distribution includes several examples of how
to implement common concepts found in other languages, complementing the information in this section.
This Handbook also features a Prolog interoperability section and an extensive glossary providing the exact
meaning of the names commonly used in Logtalk programming.

1.3.1 Prolog nomenclature

Being a superset of Prolog, Logtalk inherits its nomenclature. But Logtalk also aims to fix several Prolog
shortcomings, thus introducing new concepts and refining existing Prolog concepts. Logtalk object-oriented
nature also introduces names and concepts that are not common when discussing logic programming se-
mantics. We mention here the most relevant ones, notably those where semantics or common practice differ.
Further details can be found elsewhere in this Handbook.

arbitrary goals as directives
Although not ISO Prolog Core standard compliant, several Prolog systems accept using arbitrary goal
as directives. This is not supported in Logtalk source files. Always use an initialization/1 directive to
wrap those goals. This ensures that any initialization goals, which often have side-effects, are only
called if the source file is successfully compiled and loaded.

calling a predicate
Sending a message to an object is similar to calling a goal with the difference that the actual predicate
that is called is determined not just by the message term but also by the object receiving the message
and possibly its ancestors. This is also different from calling a Prolog module predicate: a message
may result e.g. in calling a predicate inherited by the object but calling a module predicate requires the
predicate to exist in (or be reexported by) the module.

closed-world assumption semantics
Logtalk provides clear closed-world assumption semantics: messages or calls for declared but unde-
fined predicates fail. Messages or calls for unknown (i.e., not declared) predicates throw an error.
Crucially, this semantics applies to both static and dynamic predicates. But in Prolog workarounds are
required to have a static predicate being known by the runtime without it being also defined (so that
calling it would fail instead of throwing a predicate existence error).

compiling and loading source files
Logtalk provides its own built-in predicates for compiling and loading source files. It also provides con-
venient top-level interpreter shorthands for these and other frequent operations. In general, the tra-
ditional Prolog built-in predicates and top-level interpreter shorthands cannot be used to load Logtalk
source files.

debugging
In most (if not all) Prolog systems, debugging support is a built-in feature made available using a

6 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

set of built-in predicates like trace/@ and spy/1. But in Logtalk the default debugger is a regular
application, implemented using a public reflection API. This means that the debugger must be explicitly
loaded (either automatically from a settings file at startup or from the top-level). It also means that the
debugger can be easily extended or replaced by an alternative application.

directive operators
Some Prolog systems declare directive names as operators (e.g., dynamic, multifile, ...). This is not
required by the ISO Prolog Core standard. It’s a practice that should be avoided as it makes code
non-portable.

encapsulation
Logtalk enforces encapsulation of object predicates, generating a permission error when a predicate is
not within the scope of the caller. In contrast, most Prolog module systems allow any module predicate
to be called by using explicit qualification, even if not exported. Worse, some Prolog systems also
allow defining clauses for a module predicate outside the module, without declaring the predicate as
multifile, by simply writing clauses with explicit module-qualified heads.

entity loading
When using Prolog modules, use_module/1-2 (or equivalent) directives both load the module files
and declare that the (implicitly or explicitly) imported predicates can be used with implicit module
qualification. But Logtalk separates entity (object, protocol, category, or module) predicate usage
declarations (via uses/1 and uses/2 or its own use_module/1 and use_module/2 directives) from loading
goals (using the logtalk load/1 and logtalk load/2 predicates), called using an explicit and disciplined
approach from loader files.

flags scope
The set_logtalk flag/2 directive is always local to the entity or source file that contains it. Only calls
to the set_logtalk flag/2 predicate set the global default value for a flag. This distinction is lacking in
Prolog (where directives usually have a global scope) and Prolog modules (where some flags are local
to modules in some systems and global in other systems).

meta-predicate call semantics
Logtalk provides consistent meta-predicate call semantics: meta-arguments are always called in the
meta-predicate calling context. This contrasts with Prolog module meta-predicates where the semantics
of implicitly qualified calls are different from explicitly qualified calls.

operators scope
Operators declared inside an entity (object, protocol, or category) are local to the entity. But operators
defined in a source file but outside an entity are global for compatibility with existing Prolog code.

predicates scope
In plain Prolog, all predicates are visible. In a Prolog module, a predicate can be exported or local. In
Logtalk, a predicate can be public, protected, private, or local.

predicate declaration
Logtalk provides a clear distinction between declaring a predicate and defining a predicate. This is a
fundamental requirement for the concept of protocol (aka interface) in Logtalk: we must be able to
declare a predicate without necessarily defining it. This clear distinction is missing in Prolog and Prolog
modules. Notably, it’s a compiler error for a module to try to export a predicate that it does not define.

predicate loading conflicts
Logtalk does not use predicate import/export semantics. Thus, there are never conflicts when loading
entities (objects, protocols, or categories) that declare the same public predicates. But attempting to
load two Prolog modules that export the same predicate results in a conflict, usually a compilation error
(this is especially problematic when the use_module/1 directive is used; e.g. adding a new exported
predicate can break applications that use the module but not the new predicate).

1.3. Nomenclature 7

The Logtalk Handbook, Release v3.89.0

1.3.2 Smalltalk nomenclature

The Logtalk name originates from a combination of the Prolog and Smalltalk names. Smalltalk had a signif-
icant influence on the design of Logtalk and thus inherits some of its ideas and nomenclature. The following
list relates the most commonly used Smalltalk terms with their Logtalk counterparts.

abstract class
Similar to Smalltalk, an abstract class is just a class not meant to be instantiated by not understanding
a message to create instances.

assignment statement
Logtalk, as a superset of Prolog, uses logic variables and unification and thus provides no equivalent to
the Smalltalk assignment statement.

block
Logtalk supports lambda expressions and meta-predicates, which can be used to provide similar func-
tionality to Smalltalk blocks.

class
In Logtalk, class is a just a role that an object can play. This is similar to Smalltalk, where classes are
also objects.

class method
Class methods in Logtalk are simply instance methods declared and defined in the class metaclass.

class variable
Logtalk objects, which can play the roles of class and instance, encapsulate predicates, not state. Class
variables, which in Smalltalk are really shared instance variables, can be emulated in a class by defining
a predicate locally instead of defining it in the class instances.

inheritance
While Smalltalk only supports single inheritance, Logtalk supports single inheritance, multiple inheri-
tance, and multiple instantiation.

instance
While in Smalltalk every object is an instance of some class, objects in Logtalk can play different roles,
including the role of a prototype where the concepts of instance and class don’t apply. Moreover,
instances can be either created dynamically or defined statically.

instance method
Instance methods in Logtalk are simply predicates declared and defined in a class and thus inherited
by the class instances.

instance variable
Logtalk being a declarative language, objects encapsulate a set of predicates instead of encapsulating
state. But different objects may provide different definitions of the same predicates. Mutable internal
state as in Smalltalk can be emulated by using dynamic predicates.

message
Similar to Smalltalk, a message is a request for an operation, which is interpreted in Logtalk as a logic
query, asking for the construction of a proof that something is true.

message selector
Logtalk uses the predicate template (i.e., the predicate callable term with all its arguments unbound)
as a message selector. The actual type of the message arguments is not considered. Like Smalltalk,
Logtalk uses single dispatch on the message receiver.

metaclass
Metaclasses are optional in Logtalk (except for a root class) and can be shared by several classes. When
metaclasses are used, infinite regression is simply avoided by making a class an instance of itself.

8 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

method
Same as in Smalltalk, a method is the actual code (i.e., predicate definition) that is run to answer a
message. Logtalk uses the words method and predicate interchangeably.

method categories
There is no support in Logtalk for partitioning the methods of an object into different categories. The
Logtalk concept of category (a first-class entity) was, however, partially inspired by Smalltalk method
categories.

object
Unlike Smalltalk, where everything is an object, Logtalk language constructs include both terms (as in
Prolog representing e.g. numbers and structures) and three first-class entities: objects, protocols, and
categories.

pool variables*
Logtalk, as a superset of Prolog, uses predicates with no distinction between variables and methods.
Categories can be used to share a set of predicate definitions between any number of objects.

protocol
In Smalltalk, an object protocol is the set of messages it understands. The same concept applies in
Logtalk. But Logtalk also supports protocols as first-class entities where a protocol can be implemented
by multiple objects and an object can implement multiple protocols.

self
Logtalk uses the same definition of self found in Smalltalk: the object that received the message being
processed. Note, however, that self is not a keyword in Logtalk but is implicit in the (::)/1 message to
self control construct.

subclass
Same definition in Logtalk.

super
As in Smalltalk, the idea of super is to allow calling an inherited predicate (that is usually being
redefined). Note, however, that super is not a keyword in Logtalk, which provides instead a (™ ™)/1
super call control construct.

superclass
Same definition in Logtalk. But while in Smalltalk a class can only have a single superclass, Logtalk
support for multiple inheritance allows a class to have multiple superclasses.

1.3.3 C++ nomenclature

There are several C+ + glossaries available on the Internet. The list that follows relates the most commonly
used C++ terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method
for creating new instances can be considered an abstract class. Moreover, Logtalk supports inter-
faces/protocols, which are often a better way to provide the functionality of C++ abstract classes.

base class
Logtalk uses the term superclass with the same meaning.

data member
Logtalk uses predicates for representing both behavior and data.

constructor function
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in

1.3. Nomenclature 9

The Logtalk Handbook, Release v3.89.0

predicate, create object/4, which can be used as a building block to define more sophisticated object
creation predicates.

derived class
Logtalk uses the term subclass with the same meaning.

destructor function
There are no special methods for deleting new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, abolish_object/1, which is often used to define more sophisticated object deletion predicates.

friend function
Not supported in Logtalk. Nevertheless, see the User Manual section on meta-predicates.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

member
Logtalk uses the term predicate.

member function
Logtalk uses predicates for representing both behavior and data.

namespace
Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the same
namespace (Logtalk entities are objects, categories, and protocols).

nested class
Logtalk does not support nested classes.

static member
Logtalk does not support a static keyword. But the equivalent of static members can be declared in a
class metaclass.

template
Logtalk supports parametric objects, which allows you to get the similar functionality of templates at
runtime.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C+ +.

virtual member function
There is no virtual keyword in Logtalk. Any inherited or imported predicate can be redefined (either
overridden or specialized). Logtalk can use static binding or dynamic binding for locating both method
declarations and method definitions. Moreover, methods that are declared but not defined simply fail
when called (as per the closed-world assumption).

10 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.3.4 Java nomenclature

There are several Java glossaries available on the Internet. The list that follows relates the most commonly
used Java terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for
creating new instances is an abstract class. I.e. there is no abstract keyword in Logtalk.

abstract method
In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its
definition to some descendant subclass.

assertion
There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation hooks
and developer tools.

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

extends
There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations.
Moreover, the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface
Logtalk uses the term protocol with a similar meaning. But note that Logtalk objects and categories
declared as implementing a protocol are not required to provide definitions for the declared predicates
(closed-world assumption).

callback method
Logtalk supports event-driven programming, the most common usage context of callback methods.
Callback methods can also be implemented using meta-predicates.

constructor
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, create_object/4, which is often used to define more sophisticated object creation predicates.

final
There is no final keyword in Logtalk. Predicates can always be redeclared and redefined in subclasses
(and instances!).

inner class
Inner classes are not supported in Logtalk.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

method
Logtalk uses the term predicate interchangeably with the term method.

method call
Logtalk usually uses the expression message-sending for method calls, true to its Smalltalk heritage.

method signature
Logtalk selects the method/predicate to execute in order to answer a method call based only on the
method name and number of arguments. Logtalk (and Prolog) are not typed languages in the same
sense as Java.

1.3. Nomenclature 11

The Logtalk Handbook, Release v3.89.0

package
There is no concept of packages in Logtalk. All Logtalk entities (objects, protocols, categories) share a
single namespace. But Logtalk does support a concept of library that allows grouping of entities whose
source files share a common path prefix.

reflection
Logtalk features a white box API supporting structural reflection about entity contents, a black box API
supporting behavioral reflection about object protocols, and an events API for reasoning about messages
exchanged at runtime.

static
There is no static keyword in Logtalk. See the entries below on static method and static variable.

static method
Static methods may be implemented in Logtalk by using a metaclass for the class and defining the static
methods in the metaclass. I.e. static methods are simply instance methods of the class metaclass.

static variable
Static variables are shared instance variables and can simply be both declared and defined in a class.
The built-in database methods can be used to implement destructive updates if necessary by accessing
and updating a single clause of a dynamic predicate stored in the class.

super
Instead of a super keyword, Logtalk provides a super operator and control construct, (™ *~)/1, for
calling overridden methods.

synchronized
Logtalk supports multi-threading programming in selected Prolog compilers, including a synchronized/ 1
predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-
predicate or per-predicate-set mutexes.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/I method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C+ +.

1.3.5 Python nomenclature

The list that follows relates the commonly used Python concepts with their Logtalk equivalents.

abstract class
Logtalk uses a different definition of abstract class: a class that does not inherit a method for creating
new instances. Notably, the presence of abstract methods (i.e., predicates that are declared but not
defined) does not make a class abstract.

abstract method
Logtalk uses the term predicate interchangeably with method. Predicates can be declared without also
being defined in an object (or category).

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

dictionary
There is no native, built-in associative data type. But the library provides several implementations of a
dictionary protocol.

12 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

function
The closest equivalent is a predicate defined in user, a pseudo-object for predicates not defined in
regular objects, and thus callable from anywhere without requiring a scope directive.

function object
Predicate calls (goals) can be passed or returned from other predicates and unified with other terms
(e.g., variables).

import path
Logtalk uses the term library to refer to a directory of source files and supports defining aliases (sym-
bolic names) to library paths to abstract the actual locations.

lambda
Logtalk natively supports lambda expressions.

list
Lists are compound terms with native syntax support.

list comprehensions
There is no native, built-in support for list comprehensions. But the standard findall/3 predicate can
be used to construct a list by calling a goal that generates the list elements.

loader
Logtalk uses the term loader to refer to source files whose main or sole purpose is to load other source
files.

loop
There are no native loop control constructs based on a counter. But the library provides implementa-
tions of several loop predicates.

metaclass
Logtalk objects play the role of metaclasses when instantiated by objects that play the role of classes.

method
Logtalk uses the terms method and predicate interchangeably. Predicates can be defined in objects (and
categories). The value of self is implicit, unlike in Python where it is the first parameter of any method.

method resolution order
Logtalk uses a depth-first algorithm to lookup method (predicate) declarations and definitions. It’s
possible to use predicate aliases to access predicate declarations and definitions other than the first
ones found by the lookup algorithm.

object
Objects are first-class entities that can play multiple roles, including prototype, class, instance, and
metaclass.

package
Logtalk uses the term library to refer to a directory of source files defining objects, categories, and
protocols.

set

There is no native, built-in set type. But the library provides set implementations.

string
The interpretation of text between double-quotes depends on the double_quotes flag. Depending on
this flag, double-quoted text can be interpreted as a list of characters, a list of character codes, or an
atom. Some backend Prolog compilers allow double-quoted text to be interpreted as a string in the
Python sense.

tuple
Compound terms can be used to represent tuples of any complexity.

1.3. Nomenclature 13

The Logtalk Handbook, Release v3.89.0

variable
Logtalk works with logical variables, which are close to the mathematical concept of variables and
distinct from variables in imperative or imperative-based OOP languages where they are symbolic
names for memory locations. Logical variables can be unified with any term, including other variables.

while loop
The built-in forall/2 predicate implements a generate-and-test loop.

1.4 Messages

Messages allow us to ask an object to prove a goal and must always match a declared predicate within the
scope of the sender object. Note that sending a message is fundamentally different from calling a predicate.
When calling a predicate, the caller decides implicitly which predicate definition will be executed. When
sending a message, it is the receiving object, not the sender, that decides which predicate definition (if any)
will be called to answer the message. The predicate definition that is used to answer a message depends on
the relations between the object and its imported categories and ancestor objects (if any). See the Inheritance
section for details on the predicate declaration and predicate definition lookup procedures.

When a message corresponds to a meta-predicate, the meta-arguments are always called in the context of the
object (or category) sending the message.

Logtalk uses nomenclature similar to other object-oriented programming languages such as Smalltalk. There-
fore, the terms query and message are used interchangeably when referring to a declared predicate that is
part of an object interface. Likewise, the terms predicate and method are used interchangeably when referring
to the predicate definition (inside an object or category) that is called to answer a message.

1.4.1 Operators used in message-sending

Logtalk declares the following operators for the message-sending control constructs:

;- op(600, xfy, ::).
;- op(600, fy, ::).
:= op(600, fy, **).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded)
until the end of the Prolog session (this is the usual behavior of most Prolog compilers). Note that these
operator definitions are compatible with the predefined operators in the Prolog ISO standard.

1.4.2 Sending a message to an object

Sending a message to an object is accomplished by using the (::)/2 control construct:

[..., Object: :Message, ...]

The message must match a public predicate declared for the receiving object. The message may also corre-
spond to a protected or private predicate if the sender matches the predicate scope container. If the predicate
is declared but not defined, the message simply fails (as per the closed-world assumption).

14 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.4.3 Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender and meta-call context
by using the []/1 delegation control construct:

[..., [Object: :Messagel,]

This control construct can only be used within objects and categories (at the top-level interpreter, the sender
is always the pseudo-object user so using this control construct would be equivalent to using the (::)/2
message-sending control construct).

1.4.4 Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has
received the original message. This is done in Logtalk through the (::)/1 control construct:

[..., : :Message,]

The message must match either a public or protected predicate declared for the receiving object or a private
predicate within the scope of the sender otherwise an error will be thrown. If the message is sent from inside
a category or if we are using private inheritance, then the message may also match a private predicate. Again,
if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

1.4.5 Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This
can be achieved by using the message-sending control construct described above. However, for convenience,
Logtalk implements an extended syntax for message-sending that may improve program readability in some
cases. This extended syntax uses the (,)/2, (;)/2, and (->)/2 control constructs (plus the (x->)/2 soft-cut
control construct when provided by the backend Prolog compiler). For example, if we wish to send several
messages to the same object, we can write:

[l ?- Object::(Messagel, Message2, ...). J

This is semantically equivalent to:

[l ?- Object::Messagel, Object::Message2, }

This extended syntax may also be used with the (::)/1 message-sending control construct.

1.4.6 Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This
functionality, introduced by the Smalltalk language through the super primitive, is available in Logtalk using
the (™ ©)/1 control construct:

[..., **Predicate,]

Most of the time we will use this control construct by instantiating the pattern:

1.4. Messages 15

The Logtalk Handbook, Release v3.89.0

Predicate :-
. % do something
**Predicate, % call inherited definition
% do something more

This control construct is generalized in Logtalk where it may be used to call any imported or inherited
predicate definition. This control construct may be used within objects and categories. When combined with
static binding, this control construct allows imported and inherited predicates to be called with the same
performance as local predicates. As with the message-sending control constructs, the (**)/1 call simply fails
when the predicate is declared but not defined (as per the closed-world assumption).

1.4.7 Message sending and event generation

Assuming the events flag is set to allow for the object (or category) sending a message using the (::)/2 control
construct, two events are generated, one before and one after the message execution. Messages that are sent
using the (::)/1 (message to self) control construct or the (™ ”)/1 super mechanism described above do not
generate any events. The rationale behind this distinction is that messages to self and super calls are only
used internally in the definition of methods or to execute additional messages with the same target object
(represented by self). In other words, events are only generated when using an object’s public interface; they
cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predicate :-
% get self reference
self(Self),
% send a message to self using (::)/2
Self: :Message,

If we also need the sender of the message to be other than the object containing the predicate definition, we
can write:

Predicate :-
% send a message to self using (::)/2
% sender will be the pseudo-object user
self(Self),
{Self: :Message},

When events are not used, it is possible to turn off event generation globally or on a per-entity basis by
using the events compiler flag to optimize message-sending performance (see the Event-driven programming
section for more details).

16 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.4.8 Sending a message from a module

Messages can be sent to objects from within Prolog modules. Depending on the backend support for goal-
expansion and on the optimize flag being turned on, the messages will use static binding when possible. This
optimization requires the object to be compiled and loaded before the module. Note that the module can
be user. This is usually the case when sending the message from the top-level interpreter. Thus, the same
conditions apply in this case. Note that loading Prolog modules using Prolog directives or built-in predicates
necessarily limits the range of possible optimizations for messages sent from the modules.

A\ Warning

If you want to benchmark the performance of a message-sending goal at the top-level interpreter, be care-
ful to check first if the goal is pre-compiled to use static binding; otherwise you will also be benchmarking
the Logtalk compiler itself.

1.4.9 Message sending performance

For a detailed discussion on message-sending performance, see the Performance section.

1.5 Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database
containing all your code, Logtalk objects provide separated namespaces or databases, allowing the partition-
ing of code into more manageable parts. Logtalk is a declarative programming language and does not aim to
bring some sort of new dynamic state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and logtalk, which are described at the end of this section.

1.5.1 Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk
uses the term object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and
instance always designate an object. Different names are used to emphasize the role played by an object in a
particular context. I.e. we use a term other than object when we want to make the relationship with other
objects explicit. For example, an object with an instantiation relation with another object plays the role of an
instance, while the instantiated object plays the role of a class; an object with a specialization relation with
another object plays the role of a subclass, while the specialized object plays the role of a superclass; an object
with an extension relation with another object plays the role of a prototype, the same for the extended object.
A stand-alone object, i.e. an object with no relations with other objects, is always interpreted as a prototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity is compiled according to the
roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-
based. You may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs,
use parametric objects, and take advantage of protocols and categories (think components).

1.5. Objects 17

../../docs/user_0.html#user-0
../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.89.0

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they
share common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually
represent concrete objects in the application domain. When linking prototypes using extension relations,
Logtalk uses the term prototype hierarchies although most authors prefer to use the term hierarchy only with
class generalization/specialization relations. In the context of logic programming, prototypes are often the
ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes often provide an
ideal structuring solution when you want to express hierarchies of abstractions or work with many similar
objects. Classes are used indirectly through instantiation. Contrary to most object-oriented programming
languages, instances can be created both dynamically at runtime or defined in a source file like other objects.
Using classes requires defining at least one metaclass, as explained below.

1.5.2 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the object. By default, all Logtalk source files use
the extension .1gt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _1gt suffix and a .pl extension. Again, this can be
set to match the needs of a particular Prolog compiler in the corresponding adapter file. For instance, we
may define an object named vehicle and save it in a vehicle.lgt source file, which will be compiled to a
vehicle_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects,
categories, and protocols share the same name space: we cannot have an object with the same name as a
protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/1-5
and end_object/0. The simplest object will be one that is self-contained, not depending on any other Logtalk
entity:

:- object(Object).

:— end_object.

If an object implements one or more protocols then the opening directive will be:

:— object(Object,
implements([Protocoll, Protocol2, ...1)).

:- end_object.

An object can import one or more categories:

:— object(Object,
imports([Categoryl, Category2, ...])).
(continues on next page)

18 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

:— end_object.

If an object both implements protocols and imports categories, then we will write:

:— object(Object,
implements([Protocoll, Protocol2, ...1),
imports([Categoryl, Category2, ...]1)).
:- end_object.

In object-oriented programming, objects are usually organized in hierarchies that enable interface and code
sharing by inheritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:— object(Prototype,
extends(Parent)).

:- end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between ob-
jects. To define an object as a class instance we will write:

:— object(Object,
instantiates(Class)).

:— end_object.

A class may specialize another class, its superclass:

:- object(Class,
specializes(Superclass)).

:- end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the
following pattern:

:— object(Class,
instantiates(Metaclass),
specializes(Superclass)).

:— end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be
prototype-based (defined by extending other objects) or class-based (with instantiation and specialization
relations). An object may also implement one or more protocols or import one or more categories.

A stand-alone object (i.e., an object with no extension, instantiation, or specialization relations with other
objects) always plays the role of a prototype, that is, a self-describing object. If we want to use classes and
instances, then we will need to specify at least one instantiation or specialization relation. The best way to
do this is to define a set of objects that provide the basis of a reflective system [Cointe87], [Moura94]. For
example:

1.5. Objects 19

The Logtalk Handbook, Release v3.89.0

% avoid the inevitable unknown entity warnings as in a
% reflective system there will always be references to
% an entity that will be defined after the reference
.- set_logtalk_flag(unknown_entities, silent).

% default root of the inheritance graph

% providing predicates common to all objects

:- object(object,
instantiates(class)).

:- end_object.
% default metaclass for all classes providing
% predicates common to all instantiable classes
:- object(class,
instantiates(class),
specializes(abstract_class)).
:— end_object.
% default metaclass for all abstract classes
% providing predicates common to all classes
:- object(abstract_class,
instantiates(class),

specializes(object)).

:— end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at
the same time, classes and instances of some class. In addition, each object inherits its own predicates and
the predicates of the other two objects without any inheritance loop.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making
an object an instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,
instantiates(class)).

:- end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange mes-
sages between all objects). We cannot, however, mix the two types of hierarchies by, e.g., specializing an
object that extends another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See the inheritance section for details.

20 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.5.3 Parametric objects

Parametric objects have a compound term as identifier where all the arguments of the compound term are
variables. These variables can be bound when sending a message or become bound when a message to the
object succeeds, thus acting as object parameters. The object predicates can be coded to depend on those
parameters, which are logical variables shared by all object predicates. When an object state is set at object
creation and never changed, parameters provide a better solution than using the object’s database via asserts.
Parametric objects can also be used to associate a set of predicates to terms that share a common functor
and arity.

Accessing object parameters

Object parameters can be accessed using parameter variables or built-in execution context methods. Param-
eter variables is the recommended solution to access object parameters. Although they introduce a concept
of entity global variables, their unique syntax (_ParameterName_) avoids conflicts, makes them easily recog-
nizable, and distinguishes them from other named anonymous variables. For example:

:- object(foo(Bar_, _Baz_, ...)).

bar(_Bar_).

baz :-
baz(_Baz_),

Note that using parameter variables doesn’t change the fact that entity parameters are logical variables.
Parameter variables simplify code maintenance by allowing parameters to be added, reordered, or removed
without having to specify or update parameter indexes.

Logtalk provides also a parameter,/2 built-in local method to access individual parameters:

:- object(foo(_Bar, _Baz, ...)).

bar(Bar) :-
parameter(1, Bar).

baz :-
parameter (2, Baz),
baz(Baz),

An alternative solution is to use the built-in local method this/1, which allows access to all parameters with
a single call. For example:

:— object(foo(_Bar, _Baz, ...)).
baz :-
this(foo(_, Baz, ...)),
baz(Baz),

1.5. Objects 21

The Logtalk Handbook, Release v3.89.0

Both solutions are equally efficient as calls to the methods this/1 and parameter/2 are usually compiled
inline into a clause head unification. The drawback of this second solution is that we must check all calls
of this/1 if we change the object name. Note that we can’t use these method with the message-sending
operators ((::)/2, (::)/1,or (™ 7)/1).

When storing a parametric object in its own source file, the convention is to name the file after the object,
with the object arity appended. For instance, when defining an object named sort(Type), we may save it in
a sort_1.1gt text file. This way it is easy to avoid file name clashes when saving Logtalk entities that have
the same functor but different arity.

Parametric object proxies

Compound terms with the same functor and with the same number of arguments as a parametric object
identifier may act as proxies to a parametric object. Proxies may be stored on the database as Prolog facts
and be used to represent different instantiations of a parametric object identifier. For example:

:— object(circle(_Id_, _Radius_, _Color.)).

;- public(area/1).

:— end_object.

% parametric object proxies:
circle('#1", 1.23, blue).

circle('#2', 3.71, yellow).
circle('#3", 0.39, green).
circle('#4', 5.74, black).
circle('#5", 8.32, cyan).

Logtalk provides a convenient notation for accessing proxies represented as Prolog facts when sending a
message:

[..., {Proxy}: :Message, ...]

For example, using the circle/3 parametric object above, we can compute a list with the areas of all circles
using the following goal:

| ?- findall(Area, {circle(_, _, _)}::area(Area), Areas).

Areas = [4.75291, 43.2412, 0.477836, 103.508, 217.468].

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to
the corresponding parametric object. Typically, the proof allows retrieval of parameter instantiations. This
construct can either be used with a proxy argument that is sufficiently instantiated in order to unify with a
single Prolog fact or with a proxy argument that unifies with several facts on backtracking.

22 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.5.4 Finding defined objects

We can find, by backtracking, all defined objects by calling the current object/1 built-in predicate with an
unbound argument:

| ?- current_object(Object).
Object = logtalk ;
Object = user ;

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an
atom or a compound term).

1.5.5 Creating a new object in runtime

An object can be dynamically created at runtime by using the create object/4 built-in predicate:

[I ?- create_object(Object, Relations, Directives, Clauses).]

The first argument should be either a variable or the name of the new object (a Prolog atom or compound
term, which must not match any existing entity name). The remaining three arguments correspond to the
relations described in the opening object directive and to the object code contents (directives and clauses).

For example, the call:

| ?- create_object(
foo,
[extends(bar)],
[public(foo/1)1],
[foo(1), foo(2)]
).

is equivalent to compiling and loading the object:

:- object(foo,
extends(bar)).

:— dynamic.
:= public(foo/1).

foo(1).
foo(2).

:- end_object.

If we need to create a lot of (dynamic) objects at runtime, then it is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate to make new objects. This predicate may provide
automatic object name generation, name checking, and accept object initialization options.

1.5. Objects 23

The Logtalk Handbook, Release v3.89.0

1.5.6 Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1 built-in predicate:

[| 7- abolish_object(Object).]

The argument must be an identifier of a defined dynamic object; otherwise an error will be thrown.

1.5.7 Object directives

Object directives are used to set initialization goals, define object properties, document an object dependen-
cies on other Logtalk entities, and load the contents of files into an object.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the
initialization/1 directive:

[:— initialization(Goal).]

The argument can be any valid Logtalk goal. For example, a call to a local predicate:

;- object(foo).

;- initialization(init).
;- private(init/0).

init :-

:— end_object.

Or a message to another object:

:— object(assembler).

:— initialization(control::start).

:— end_object.

Another common initialization goal is a message to self in order to call an inherited or imported predicate.
For example, assuming that we have a monitor category defining a reset/0 predicate, we could write:

:— object(profiler,
imports(monitor)).

;- initialization(::reset).

:— end_object.

24 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes
the object that contains the directive. Also note that object initialization does not necessarily mean setting
an object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution
of a program is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects
are declared by using the dynamic/0 directive in the object source code:

[:— dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic objects when these
need to be abolished during program execution. In addition, note that we can declare and define dynamic
predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into an object

The include/1 directive can be used to load the contents of a file into an object. A typical usage scenario is to
load a plain Prolog file into an object, thus providing a simple way to encapsulate its contents. For example,
assume a cities.pl file defining facts for a city/4 predicate. We could define a wrapper for this database
by writing:

:- object(cities).
;= public(city/4).
:= include(dbs('cities.pl')).

:- end_object.

The include/1 directive can also be used when creating an object dynamically. For example:

[l ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))]1, [1).

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive include short-
ening long object names, working consistently with specific parameterizations of parametric objects, and
simplifying experimenting with different object implementations of the same protocol when using explicit
message-sending.

1.5. Objects 25

The Logtalk Handbook, Release v3.89.0

1.5.8 Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the relationships that
an object has with other entities.

The instantiates class/2-3 built-in predicates can be used to query all instantiation relations:

[l ?- instantiates_class(Instance, Class).]

or, if we also want to know the instantiation scope:

[l ?- instantiates_class(Instance, Class, Scope).]

Specialization relations can be found by using the specializes class/2-3 built-in predicates:

[I ?- specializes_class(Class, Superclass).]

or, if we also want to know the specialization scope:

[I ?7- specializes_class(Class, Superclass, Scope).]

For prototypes, we can query extension relations using the extends_object/2-3 built-in predicates:

[I ?- extends_object(Object, Parent).]

or, if we also want to know the extension scope:

[I ?- extends_object(Object, Parent, Scope). }

In order to find which objects import which categories, we can use the imports_category,/2-3 built-in predi-
cates:

[I ?- imports_category(Object, Category).]

or, if we also want to know the importation scope:

[I ?- imports_category(Object, Category, Scope). J

To find which objects implements which protocols, we can use the implements protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

[I ?- implements_protocol (Object, Protocol, Scope).]

or, if we also want to consider inherited protocols:

[I ?- conforms_to_protocol(Object, Protocol, Scope).]

Note that, if we use an unbound first argument, we will need to use the current object/1 built-in predicate
to ensure that the entity returned is an object and not a category.

To find which objects are explicitly complemented by categories, we can use the complements_object/2 built-
in predicate:

[I ?- complements_object(Category, Object).]

Note that more than one category may explicitly complement a single object, and a single category can
complement several objects.

26 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.5.9 Object properties

We can find the properties of defined objects by calling the built-in predicate object property/2:

[I ?- object_property(Object, Property).

The following object properties are supported:

static
The object is static

dynamic
The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/1 built-in
predicate)

built_in
The object is a built-in object (and thus always available)

threaded
The object supports/makes multi-threading calls

file(Path)
Absolute path of the source file defining the object (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the object (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the object definition (if applicable)

directive(BeginLine, EndLine)
Source file begin and end lines of the object opening directive (if applicable)

context_switching_calls
The object supports context-switching calls (i.e., can be used with the (<<)/2 debugging control
construct)

dynamic_declarations
The object supports dynamic declarations of predicates

events
Messages sent from the object generate events

source_data
Source data available for the object

complements(Permission)
The object supports complementing categories with the specified permission (allow or restrict)

complements
The object supports complementing categories

public(Resources)
List of public predicates and operators declared by the object

protected(Resources)
List of protected predicates and operators declared by the object

private(Resources)
List of private predicates and operators declared by the object

1.5. Objects 27

The Logtalk Handbook, Release v3.89.0

declares(Predicate, Properties)
List of properties for a predicate declared by the object

defines(Predicate, Properties)
List of properties for a predicate defined by the object

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the
properties include number_of_clauses(Number), number_of_rules(Number), lines(Start,End), and
line_count(Start) with Start being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicates that are defined in the object (the prop-
erties include number_of_clauses(Number), number_of_rules(Number), and lines(Start,End), and
line_count(Start) with Start being the begin line of the first multifile predicate clause)

alias(Entity, Properties)
List of properties for an entity alias declared by the object (the properties include object in
case of an object alias, module in case of a module alias, for(Original), lines(Start,End), and
line_count(Start) with Start being the begin line of the uses/1 or use_module/1 directive)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the object (the properties include
predicate, for(Original), from(Entity), non_terminal(NonTerminal), lines(Start,End), and
line_count(Start) with Start being the begin line of the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the object (Call is either a predicate indicator or a control
construct such as (::)/1-2 or (**)/1 with a predicate indicator as argument; note that Call may not
be ground in case of a call to a control construct where its argument is only known at runtime; the
properties include caller(Caller), alias(Alias), non_terminal(NonTerminal), lines(Start,End),
line_count(Start) with Caller, Alias, and NonTerminal being predicate indicators and Start being
the begin line of the predicate clause or directive making the call)

updates(Predicate, Properties)

List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control
construct argument only known at runtime; the properties include updater(Updater), alias(Alias),
non_terminal (NonTerminal), lines(Start,End), and line_count(Start) with Updater being a (pos-
sibly multifile) predicate indicator, Alias and NonTerminal being predicate indicators, and Start being
the begin line of the predicate clause or directive updating the predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the object at compilation time (includes both user-defined
clauses and auxiliary clauses generated by the compiler or by the expansion hooks but does not in-
clude clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the object at compilation time (includes both user-defined
rules and auxiliary rules generated by the compiler or by the expansion hooks but does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the object at compilation time (does not
include clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

28 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the object at compilation time (does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

debugging
The object is compiled in debug mode

module
The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is

;) /1.

Some properties such as line numbers are only available when the object is defined in a source file compiled
with the source_data flag turned on. Moreover, line numbers are only supported in backend Prolog compilers
that provide access to the start line of a read term. When such support is not available, the value -1 is
returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.5.10 Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

The built-in user pseudo-object virtually contains all user predicate definitions not encapsulated in a Logtalk
entity (or a Prolog module for backends supporting a module system). These predicates are assumed to
be implicitly declared public. Messages sent from this pseudo-object, which includes messages sent from
the top-level interpreter, generate events when the default value of the events flag is set to allow. Defining
complementing categories for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk
(compiler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-
object user virtually contains all user predicate definitions defined in the module where Logtalk was loaded.

The built-in object logtalk

The built-in logtalk object provides message printing predicates, question asking predicates, debug and trace
event predicates, predicates for accessing the internal database of loaded files and their properties, and also a
set of low-level utility predicates normally used when defining hook objects. Consult its API documentation
for details.

1.5. Objects 29

../../docs/user_0.html#user-0
../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.89.0

1.6 Protocols

Protocols enable the separation between interface and implementation: several objects can implement the
same protocol, and an object can implement several protocols. Protocols may contain only predicate dec-
larations. In some languages the term interface is used with a similar meaning. Logtalk allows predicate
declarations of any scope within protocols, contrary to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the
end of this section.

1.6.1 Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the protocol. By default, all Logtalk source files
use the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _1gt suffix and a .pl extension. Again, this can
be set to match the needs of a particular Prolog compiler in the corresponding adapter file. For example,
we may define a protocol named listp and save it in a listp.lgt source file that will be compiled to a
listp_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Protocol names must be atoms. Objects, categories, and protocols share the same namespace: we cannot
have a protocol with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/1-2 and
end_protocol/0. The most simple protocol will be one that is self-contained, not depending on any other
Logtalk entity:

:- protocol(Protocol).

:- end_protocol.

If a protocol extends one or more protocols, then the opening directive will be:

;= protocol(Protocol,
extends([Protocol1, Protocol2, ...1]1)).

:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same function-
ality. Therefore, the only recommended use of protocol extension is when you need both a minimal protocol
and an extended version of the same protocol with additional, convenient predicates.

30 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0
../../docs/expanding_0.html#expanding-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.89.0

1.6.2 Finding defined protocols

We can find, by backtracking, all defined protocols by using the current protocol/1 built-in predicate with a
unbound argument:

[I ?- current_protocol (Protocol).]

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an
atom).

1.6.3 Creating a new protocol in runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk built-in predicate cre-
ate_protocol/3:

[l ?- create_protocol (Protocol, Relations, Directives). J

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must
not match an existing entity name). The remaining two arguments correspond to the relations described in
the opening protocol directive and to the protocol directives.

For instance, the call:

[I ?- create_protocol (ppp, [extends(gqq)], [public([foo/1, bar/11)1).]

is equivalent to compiling and loading the protocol:

;= protocol (ppp,
extends(qqq)) .

:- dynamic.

:= public([foo/1, bar/1]).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then it is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.6.4 Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/1 built-in predicate:

[I ?- abolish_protocol (Protocol).]

The argument must be an identifier of a defined dynamic protocol; otherwise an error will be thrown.

1.6. Protocols 31

The Logtalk Handbook, Release v3.89.0

1.6.5 Protocol directives

Protocol directives are used to define protocol properties and documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during
the execution of a program is always dynamic. A protocol defined in a file can be either dynamic or static.
Dynamic protocols are declared by using the dynamic/0 directive in the protocol source code:

[: - dynamic.]

The directive must precede any predicate directives. Please be aware that using dynamic code results in a
performance hit when compared to static code. We should only use dynamic protocols when these need to
be abolished during program execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a protocol

The include/1 directive can be used to load the contents of a file into a protocol. See the Objects section for
an example of using this directive.

1.6.6 Protocol relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the relationships
that a protocol has with other entities.

The extends_protocol/2-3 built-in predicates return all pairs of protocols so that the first one extends the
second:

[I ?- extends_protocol (Protocoll, Protocol2). J

or, if we also want to know the extension scope:

[I ?- extends_protocol (Protocoll, Protocol2, Scope).]

To find which objects or categories implement which protocols, we can call the implements_protocol/2-3
built-in predicates:

[I ?- implements_protocol (ObjectOrCategory, Protocol).]

or, if we also want to know the implementation scope:

[I ?- implements_protocol (ObjectOrCategory, Protocol, Scope).]

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1
or current_category/1 built-in predicates to identify the kind of entity returned.

32 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.6.7 Protocol properties

We can find the properties of defined protocols by calling the protocol property/2 built-in predicate:

[I ?- protocol_property(Protocol, Property).]

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in
runtime by calling the abolish_protocol/1 built-in predicate. Depending on the backend Prolog compiler, a
protocol may have additional properties related to the source file where it is defined.

The following protocol properties are supported:

static
The protocol is static

dynamic
The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category,/1 built-in
predicate)

built_in
The protocol is a built-in protocol (and thus always available)

source_data
Source data available for the protocol

file(Path)
Absolute path of the source file defining the protocol (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the protocol (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the protocol definition (if applicable)

directive(BeginLine, EndLine)
Source file begin and end lines of the protocol opening directive (if applicable)

public(Resources)
List of public predicates and operators declared by the protocol

protected(Resources)
List of protected predicates and operators declared by the protocol

private(Resources)
List of private predicates and operators declared by the protocol

declares(Predicate, Properties)
List of properties for a predicate declared by the protocol

alias(Predicate, Properties)
List of properties for a predicate alias declared by the protocol (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

Some of the properties, such as line numbers, are only available when the protocol is defined in a source file
compiled with the source_data flag turned on.

1.6. Protocols 33

The Logtalk Handbook, Release v3.89.0

1.6.8 Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:— object(Object,
implements(Protocol)).

:- end_object.

or, in the case of a category:

.- category(Object,
implements(Protocol)).

:— end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and
protected predicates private we prefix the protocol’s name with the corresponding keyword. For instance:

:— object(Object,
implements(private: :Protocol)).

:- end_object.

or:

:- object(Object,
implements(protected: :Protocol)).

:— end_object.

Omitting the scope keyword is equivalent to writing:

:— object(Object,
implements(public: :Protocol)).

:- end_object.

The same rules apply to protocols implemented by categories.

34 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.6.9 Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

The built-in expanding protocol declares the term_expansion/2 and goal expansion/2 predicates. See the
description of the hook compiler flag for more details.

The built-in protocol monitoring

The built-in monitoring protocol declares the before/3 and after,/3 public event handler predicates. See the
Event-driven programming section for more details.

The built-in protocol forwarding

The built-in forwarding protocol declares the forward/1 user-defined message forwarding handler, which is
automatically called (if defined) by the runtime for any message that the receiving object does not under-
stand. See also the []/1 control construct.

1.7 Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories
provide a way to encapsulate a set of related predicate declarations and definitions that do not represent a
complete object and that only make sense when composed with other predicates. Categories may also be
used to break a complex object into functional units. A category can be imported by several objects (without
code duplication), including objects participating in prototype or class-based hierarchies. This concept of cat-
egories shares some ideas with Smalltalk-80 functional categories [Goldberg83], Flavors mix-ins [Moon86]
(without necessarily implying multi-inheritance), and Objective-C categories [Cox86]. Categories may also
complement existing objects, thus providing a hot patching mechanism inspired by the Objective-C categories
functionality.

Logtalk defines a built-in category, core messages, which is described at the end of this section.

1.7.1 Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the category. By default, all Logtalk source files
use the extension . 1gt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _1gt suffix and a . pl extension. Again, this can be set
to match the needs of a particular Prolog compiler in the corresponding adapter file. For example, we may
define a category named documenting and save it in a documenting.lgt source file that will be compiled to a
documenting_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog
files may include a directory hash and a process identifier to prevent file name clashes when embedding
Logtalk applications or running parallel Logtalk processes).

Category names can be atoms or compound terms (when defining parametric categories). Objects, cate-
gories, and protocols share the same name space: we cannot have a category with the same name as an
object or a protocol.

1.7. Categories 35

../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0
../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.89.0

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives:
category/1-4 and end_category,/0. The most simple category will be one that is self-contained, not depending
on any other Logtalk entity:

.- category(Category).

:- end_category.

If a category implements one or more protocols, then the opening directive will be:

;- category(Category,
implements([Protocoll, Protocol2, ...1)).

:- end_category.

A category may be defined as a composition of other categories by writing:

.- category(Category,
extends([Categoryl, Category2, ...1)).

:— end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for
example, when a modified version of a category is needed for importing on several unrelated objects).
The preferred way of composing several categories is by importing them into an object. When a category
overrides a predicate defined in an extended category, the overridden definition can still be called by using
the (™ 7)/1 control construct.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates.
This restriction applies because a category can be imported by several objects and because we cannot use the
database handling built-in methods with categories (messages can only be sent to objects). A consequence of
this restriction is that a category cannot declare a predicate (or non-terminal) as both multifile and dynamic.
However, categories may contain declarations for dynamic predicates, and they can contain predicates that
handle dynamic predicates. For example:

.- category(attributes).

public(attribute/2).
.- public(set_attribute/2).
public(del_attribute/2).

private(attribute_/2).
dynamic(attribute_/2).

attribute(Attribute, Value) :-
% called in the context of "self”
::attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "self"
::retractall(attribute_(Attribute, _)),
% assert new clause in "self”
::assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
(continues on next page)

36 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

% retract clause in "self”
::retract(attribute_(Attribute, Value)).

.- end_category.

Each object importing this category will have its own attribute_/2 private and dynamic predicate. The
predicates attribute/2, set_attribute/2, and del_attribute/2 always access and modify the dynamic
predicate contained in the object receiving the corresponding messages (i.e., self). But it’s also possible to
define predicates that handle dynamic predicates in the context of this instead of self. For example:

;- category(attributes).

.- public(attribute/2).
public(set_attribute/2).
public(del_attribute/2).

private(attribute_/2).
:— dynamic(attribute_/2).

attribute(Attribute, Value) :-
% call in the context of "this"”
attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "this"
retractall(attribute_(Attribute, _)),
% asserts clause in "this”
assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
% retract clause in "this"

retract(attribute_(Attribute, Value)).

:— end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties
those dynamic predicates to the object importing the category, while working in the context of self allows
each object inheriting from the object that imports the category to have its own set of clauses for those
dynamic predicates.

1.7.2 Hot patching

A category may also explicitly complement one or more existing objects, thus providing hot patching func-
tionality inspired by Objective-C categories:

;- category(Category,
complements([Objectl, Object2,1)).

:- end_category.

This allows us to add missing directives (e.g., to define aliases for complemented object predicates), re-
place broken predicate definitions, add new predicates, and add protocols and categories to existing objects

1.7. Categories 37

The Logtalk Handbook, Release v3.89.0

without requiring access or modifications to their source code. Common scenarios are adding logging or
debugging predicates to a set of objects. Complemented objects need to be compiled with the complements
compiler flag set allow (to allow both patching and adding functionality) or restrict (to allow only adding
new functionality). A complementing category takes preference over a previously loaded complementing
category for the same object, thus allowing patching a previous patch if necessary.

When replacing a predicate definition, it is possible to call the overridden definition in the object from the
new definition in the category by using the (@)1 control construct. This construct is only meaningful when
used within categories and requires a compile-time bound goal argument, which is called in this (i.e., in
the context of the complemented object or the object importing a category). As an example, consider the
following object:

;- object(bird).
:— set_logtalk_flag(complements, allow).
;- public(make_sound/0).
make_sound : -

write('Chirp, chirp!'), nl.

:- end_object.

We can use the (@)/1 control construct to wrap the original make_sound/@ predicate definition by writing:

.- category(logging,
complements(bird)).

make_sound : -
write('Started making sound...'), nl,
@make_sound,
write('... finished making sound.'), nl.

.- end_category.

After loading the object and the category, calling the make_sound/@ predicate will result in the following
output:

| ?- bird::make_sound.

Started making sound...
Chirp, chirp!

. finished making sound.
yes

Note that super calls from predicates defined in complementing categories lookup inherited definitions as
if the calls were made from the complemented object instead of the category ancestors. This allows more
comprehensive object patching. But it also means that, if you want to patch an object so that it imports a
category that extends another category and uses super calls to access the extended category predicates, you
will need to define a (possibly empty) complementing category that extends the category that you want to
add.

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category
is that it disables the use of static binding optimizations for messages sent to the complemented object, as it
can always be later patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local

38 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

callers of the replaced predicate will still call the non-patched version of the predicate. This is a consequence
of the lack of a portable solution at the backend Prolog compiler level for replacing static predicate definitions.

1.7.3 Finding defined categories

We can find, by backtracking, all defined categories by using the current category/1 built-in predicate with

an unbound argument:

[| ?- current_category(Category).

)

This predicate can also be used to test if a category is defined by calling it with a valid category identifier

(an atom or a compound term).

1.7.4 Creating a new category in runtime

A category can be dynamically created at runtime by using the create category/4 built-in predicate:

[l ?- create_category(Category, Relations, Directives, Clauses). J

The first argument should be either a variable or the name of the new category (a Prolog atom, which
must not match with an existing entity name). The remaining three arguments correspond to the relations
described in the opening category directive and to the category code contents (directives and clauses).

For example, the call:

| ?- create_category(
ccc,
[implements(ppp)],
[private(bar/1)1],
[(foo(X):-bar(X)), bar(1), bar(2)]

).

is equivalent to compiling and loading the category:

:— category(ccc,
implements (ppp)) .

:- dynamic.
.- private(bar/1).

foo(X) :-
bar(X).

bar(1).
bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then it is best to define a metaclass or a proto-
type with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.7. Categories

39

The Logtalk Handbook, Release v3.89.0

1.7.5 Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/1 built-in predicate:

[I ?- abolish_category(Category).]

The argument must be an identifier of a defined dynamic category; otherwise, an error will be thrown.

1.7.6 Category directives

Category directives are used to define category properties, document category dependencies on other Logtalk
entities, and load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during
the execution of a program is always dynamic. A category defined in a file can be either dynamic or static.
Dynamic categories are declared by using the dynamic/0 directive in the category source code:

[:— dynamic. J

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic categories when
these need to be abolished during program execution.

Category documentation

A category can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a category

The include/1 directive can be used to load the contents of a file into a category. See the Objects section for
an example of using this directive.

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive are to shorten
long object names and to simplify experimenting with different object implementations of the same protocol
when using explicit message-sending.

40 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.7.7 Category relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the relationships
that a category has with other entities.

The built-in predicates implements protocol/2-3 and conforms_to_protocol/2-3 allow us to find which cate-
gories implement which protocols:

[l ?- implements_protocol (Category, Protocol, Scope).]

or, if we also want to consider inherited protocols:

[l ?- conforms_to_protocol(Category, Protocol, Scope).]

Note that, if we use an unbound first argument, we will need to use the current category,/1 built-in predicate
to ensure that the returned entity is a category and not an object.

To find which objects import which categories, we can use the imports_category/2-3 built-in predicates:

[I ?- imports_category(Object, Category). J

or, if we also want to know the importation scope:

[l ?- imports_category(Object, Category, Scope).]

Note that a category may be imported by several objects.

To find which categories extend other categories, we can use the extends_category/2-3 built-in predicates:

[I ?- extends_category(Categoryl, Category?2).]

or, if we also want to know the extension scope:

[I ?- extends_category(Categoryl, Category2, Scope).]

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in
predicate:

[I ?- complements_object(Category, Object).]

Note that a category may explicitly complement several objects.

1.7.8 Category properties

We can find the properties of defined categories by calling the built-in predicate category property/2:

[I ?- category_property(Category, Property).]

The following category properties are supported:

static
The category is static

dynamic
The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-
in predicate)

1.7. Categories 41

The Logtalk Handbook, Release v3.89.0

built_in
The category is a built-in category (and thus always available)

file(Path)
Absolute path of the source file defining the category (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the category (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the category definition (if applicable)

directive(BeginLine, EndLine)
Source file begin and end lines of the category opening directive (if applicable)

events
Messages sent from the category generate events

source_data
Source data available for the category

public(Resources)
List of public predicates and operators declared by the category

protected(Resources)
List of protected predicates and operators declared by the category

private(Resources)
List of private predicates and operators declared by the category

declares(Predicate, Properties)
List of properties for a predicate declared by the category

defines(Predicate, Properties)
List of properties for a predicate defined by the category

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the
properties include number_of_clauses(Number), number_of_rules(Number), lines(Start,End), and
line_count(Start) with Start being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the category (the
properties include number_of_clauses(Number), number_of_rules(Number), lines(Start,End), and
line_count(Start) with Start being the begin line of the first multifile predicate clause)

alias(Entity, Properties)
List of properties for an entity alias declared by the object (the properties include object in
case of an object alias, module in case of a module alias, for(Original), lines(Start,End), and
line_count(Start) with Start being the begin line of the uses/1 or use_module/1 directive)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the category (the properties include
predicate, for(Original), from(Entity), non_terminal(NonTerminal), lines(Start,End), and
line_count(Start) with Start being the begin line of the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the category (Call is either a predicate indicator or a con-
trol construct such as (::)/1-2 or (**)/1 with a predicate indicator as argument; note that Call may
not be ground in case of a call to a control construct where its argument is only know at runtime; the
properties include caller(Caller), alias(Alias), non_terminal(NonTerminal), lines(Start,End),

42 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

and line_count(Start) with Caller, Alias, and NonTerminal being predicate indicators and Start
being the begin line of the predicate clause or directive making the call)

updates(Predicate, Properties)

List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control
construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
non_terminal(NonTerminal), lines(Start,End), and line_count(Start) with Updater being a (pos-
sibly multifile) predicate indicator, Alias and NonTerminal being predicate indicators, and Start being
the begin line of the predicate clause or directive updating the predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the category (includes both user-defined clauses and
auxiliary clauses generated by the compiler or by the expansion hooks but does not include clauses
for multifile predicates defined for other entities or clauses for the category own multifile predicates
contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the category (includes both user-defined rules and auxiliary
rules generated by the compiler or by the expansion hooks but does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the category (does not include clauses for
multifile predicates defined for other entities or clauses for the category own multifile predicates con-
tributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the category (does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

Some properties, such as line numbers, are only available when the category is defined in a source file
compiled with the source_data flag turned on. Moreover, line numbers are only supported in backend Prolog
compilers that provide access to the start line of a read term. When such support is not available, the value
-1 is returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.7.9 Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories.
The syntax is very simple:

:— object(Object,
imports([Categoryl, Category2, ...])).

:- end_object.

To make all public predicates imported via a category protected, or to make all public and protected predi-
cates private, we prefix the category’s name with the corresponding keyword:

1.7. Categories 43

The Logtalk Handbook, Release v3.89.0

:— object(Object,
imports(private::Category)).

:- end_object.

or:

:— object(Object,
imports(protected: :Category)).

:— end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
imports(public::Category)).

:- end_object.

1.7.10 Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call.
Consider the following category:

.- category(output).
:= public(out/1).

out(X) :-
write(X), nl.

:- end_category.

The predicate out/1 can be called from within an object importing the category by simply sending a message
to self. For example:

:- object(worker,
imports(output)).

do(Task) :-
execute(Task, Result),
::out(Result).

:- end_object.

This is the recommended way of calling a category predicate that can be specialized/overridden in a descen-
dant object, as the predicate definition lookup will start from self.

A direct call to a predicate definition found in an imported category can be made using the (™ ™)/ control
construct. For example:

44 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

:- object(worker,
imports(output)).

do(Task) :-
execute(Task, Result),
**out (Result).

:- end_object.

This alternative should only be used when the user knows a priori that the category predicates will not
be specialized or redefined by descendant objects of the object importing the category. Its advantage is
that, when the optimize flag is turned on, the Logtalk compiler will try to optimize the calls by using static
binding. When dynamic binding is used due to e.g. the lack of sufficient information at compilation time, the
performance is similar to calling the category predicate using a message to self (in both cases, a predicate
lookup caching mechanism is used).

1.7.11 Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term
as the category identifier where all the arguments of the compound term are variables. These variables,
the category parameters, can be accessed by calling the parameter/2 or this/1 built-in local methods in the
category predicate clauses or by using parameter variables.

Category parameter values can be defined by the importing objects. For example:

:- object(speech(Season, Event),
imports([dress(Season), speech(Event)])).

:— end_object.

Note that access to category parameters is only possible from within the category. In particular, calls to the
this/1 built-in local method from category predicates always access the importing object identifier (and thus
object parameters, not category parameters).

1.7.12 Built-in categories

Logtalk defines a built-in category that is always available for any application.

The built-in category core_messages

The built-in core_messages category provides default translations for all compiler and runtime printed mes-
sages, such as warnings and errors. It does not define any public predicates.

1.7. Categories 45

../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.89.0

1.8 Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain
predicate directives. From the point of view of a traditional imperative object-oriented language, predicates
allow both object state and object behavior to be represented. Mutable object state can be represented using
dynamic object predicates but should only be used when strictly necessary, as it breaks declarative semantics.

1.8.1 Reserved predicate names

For practical and performance reasons, some predicate names have a fixed interpretation. These predicates
are declared in the built-in protocols. They are: goal expansion/2 and term_expansion/2, declared in the
expanding protocol; before/3 and after/3, declared in the monitoring protocol; and forward/1, declared
in the forwarding protocol. By default, the compiler prints a warning when a definition for one of these
predicates is found but the reference to the corresponding built-in protocol is missing.

1.8.2 Declaring predicates

Logtalk provides a clear distinction between declaring a predicate and defining a predicate and thus clear
closed-world assumption semantics. Messages or calls for declared but undefined predicates fail. Messages or
calls for unknown (i.e., non-declared) predicates throw an error. Note that this is a fundamental requirement
for supporting protocols: we must be able to declare a predicate without necessarily defining it.

All object (or category) predicates that we want to access from other objects (or categories) must be explicitly
declared. A predicate declaration must contain, at least, a scope directive. Other directives may be used to
document the predicate or to ensure proper compilation of the predicate clauses.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can
be public, protected, private, or local. Public predicates can be called from any object. Protected predicates
can only be called from the container object or from a container descendant. Private predicates can only
be called from the container object. Predicates are local when they are not declared in a scope directive.
Local predicates, like private predicates, can only be called from the container object (or category), but
they are invisible to the reflection built-in methods (current predicate/1 and predicate property/2) and to the
message error handling mechanisms (i.e., sending a message corresponding to a local predicate results in a
predicate_declaration existence error instead of a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/1. For example:

;= public(init/1).
:— protected(valid_init_option/1).

.- private(process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration, it is assumed that the predicate is
local. Note that we do not need to write scope declarations for all defined predicates. One exception is
local dynamic predicates: declaring them as private predicates may allow the Logtalk compiler to generate
optimized code for asserting and retracting clauses.

Note that a predicate scope directive doesn’t specify where a predicate is, or can be, defined. For example,
a private predicate can only be called from an object holding its scope directive. But it can be defined in
descendant objects. A typical example is an object playing the role of a class defining a private (possibly

46 Chapter 1. User Manual

../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.89.0

dynamic) predicate for its descendant instances. Only the class can call (and possibly assert/retract clauses
for) the predicate, but its clauses can be found/defined in the instances themselves.

Scope directives may also be used to declare grammar rule non-terminals and operators. For example:

;= public(url//1).

;- public(op(800, fx, tag)).

Note that, in the case of operators, the operator definitions don’t become global when the entity containing
the directives is compiled and loaded. This prevents an application from breaking when, for example,
an updated third-party library adds new operators. It also allows loading entities that provide conflicting
operator definitions. Here the usual programming idiom is to copy the operator definitions to a uses/2
directive. For example, the [gtunit tool makes available a (=~=)/2 predicate (for approximate float equality)
that is intended to be used as an infix operator:

.- uses(lgtunit, [
op(700, xfx, =), (FF)/2
D.

Thus, in practice, the solution to use library entity operators in client entities is the same for using library
entity predicates with implicit message-sending.

Mode directive

Often predicates can only be called using specific argument patterns. The valid arguments and instantiation
modes of those arguments can be documented using the mode/2 directive. For example:

[:— mode (member (?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum information will be the instanti-
ation mode of each argument. The first four possible values are described in the ISO Prolog Core standard
[ISO95] (but with the meaning of the - instantiation mode redefined here). The remaining two can also be
found in use in some Prolog systems.

+
Argument must be instantiated (but not necessarily ground).

Argument should be a free (non-instantiated) variable. When bound, the call will unify the computed
term with the given argument.

?
Argument can either be instantiated or free.
@
Argument will not be further instantiated (modified).
++

Argument must be ground.

Argument must be unbound. Used mainly when returning an opaque term (e.g., a stream handle).

Note that the + and @ instantiation modes have the same meaning for atomic arguments. E.g. you can write
either +atom or @atom but the first alternative is preferred.

1.8. Predicates 47

The Logtalk Handbook, Release v3.89.0

The ISO - instantiation mode is equivalent to the Logtalk -- mode, allowing the use - to document predicates
with output arguments that don’t require those arguments to be unbound at call time and also accept bound
arguments without throwing an exception.

These six mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to
include type information for each argument as in the example above. Some possible type values are: event,
object, category, protocol, callable, term, nonvar, var, atomic, atom, number, integer, float, compound,
and list. The first four are Logtalk specific. The remaining are common Prolog types. We can also use our
own types that can be either atoms or ground compound terms. See the types library documentation for an
extensive list of pre-defined types that cover most common use cases.

The second directive argument documents the number of proofs, but not necessarily distinct solutions, for
the specified mode. As an example, the member (X, [1,1,1,1]) goal has only one distinct solution but four
proofs for that solution. Note that different modes for the same predicate often have different determinism.
The possible values are:

zero
Predicate always fails (e.g., the false/0 standard predicate).

one
Predicate always succeeds once (e.g., the flush_output/0 standard predicate).

zero_or_one
Predicate either fails or succeeds (e.g., the atom/1 standard predicate).

zero_or_more
Predicate has zero or more proofs (e.g., the current_predicate/1 standard predicate).

one_or_more
Predicate has one or more proofs (e.g., the repeat/0 standard predicate).

zero_or_error
Predicate either fails or throws an error.

one_or_error
Predicate either succeeds once or throws an error (e.g., the open/3 standard predicate).

zero_or_one_or_error
Predicate succeeds once or fails or throws an error (e.g., the get_char/1 standard predicate).

zero_or_more_or_error
Predicate may fail or succeed multiple times or throw an error (e.g., the retract/1 standard predicate).

one_or_more_or_error
Predicate may succeed one or more times or throw an error.

error
Predicate will throw an error (e.g., the type_error/2 built-in method).

The last six values support documenting that some call modes may throw an error or will throw an error
despite the call arguments complying with the expected types and instantiation modes. As an example,
consider the open/3 standard predicate:

[:— mode (open(@source_sink, @io_mode, --stream), one_or_error). J

In this case, the mode directive tells the user that a valid call can still throw an error (there may be e.g. a
permission error opening the specified source or sink).

Notice that using the zero, one, zero_or_one, zero_or_more, or one_or_more modes is not only for predicates
that never throw an exception; they can also be used for any predicate that doesn’t throw an exception when
the arguments are valid. For example, the current_predicate/1 standard predicate throws an exception if

48 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

the argument is neither a variable nor a predicate indicator, but it succeeds zero or more times when its
argument is valid:

[: - mode(current_predicate(?predicate_indicator), zero_or_more). J

Some predicates have more than one valid mode, thus implying several mode directives. For example, to
document the possible use modes of the standard atom_concat/3 predicate, we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
.- mode (atom_concat(+atom, +atom, -atom), one).

The first mode/2 directive specifies that the atom_concat/3 predicate can be used to split an atom into a
prefix and a suffix. The second mode/2 directive specifies that concatenating two atoms results in a new
atom. There are often several alternative mode/2 directives that can be used to specify a predicate. For
example, an alternative to the second mode/2 directive above would be:

[:— mode (atom_concat(+atom, +atom, ?atom), zero_or_one).]

In this case, the same information is provided by both alternatives. But the first alternative is simpler and
thus preferred.

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of
my knowledge, there is no modern Prolog compiler supporting this kind of directive for that purpose. The
current Logtalk version simply parses this directive for collecting its information for use in the reflection API
(assuming the source_data flag is turned on). In any case, the use of mode directives is a good starting point
for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals, interpreted as closures that will be used
for constructing goals, or passing meta-arguments to calls to other meta-predicates. To ensure that these
goals will be executed in the correct context (i.e., in the calling context, not in the meta-predicate definition
context), we need to use the meta_predicate/1 directive (in the case of meta non-terminals, there’s also a
meta_non_terminal/1 directive). For example:

;- meta_predicate(findall(x, 0, *)).
.- meta_predicate(map(2, *, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0
Meta-argument that will be called as a goal.

N
Meta-argument that will be a closure used to construct a call by extending it with N arguments. The
value of N must be a positive integer.
Argument that is context-aware but that will not be called as a goal or a closure. It can contain,
however, sub-terms that will be called as goals or closures.

A
Goal that may be existentially quantified (Vars*Goal).

*

Normal argument.

1.8. Predicates 49

The Logtalk Handbook, Release v3.89.0

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to
deal with proprietary built-in meta-predicates and meta-directives:

/

//

[e]

[N]

[/1

[//1

Predicate indicator (Name/Arity), list of predicate indicators, or conjunction of predicate indicators.

Non-terminal indicator (Name//Arity), list of predicate indicators, or conjunction of predicate indica-
tors.

List of goals.

List of closures.

List of predicate indicators.

List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures was first introduced on
Quintus Prolog for providing information for predicate cross-reference tools.

Note that Logtalk meta-predicate semantics are different from Prolog meta-predicate semantics (assuming a
predicate-based module system as common):

Meta-arguments are always called in the meta-predicate calling context, independent of using explicit
or implicit message-sending (to the object defining the meta-predicate when not local). Most Prolog
systems have different semantics for explicit versus implicit module qualification.

Logtalk is not based on a predicate prefixing mechanism. Therefore, the meta-predicate directive is
required for any predicate with meta-arguments (including when simply passing the meta-arguments
to a call to another meta-predicate). This is usually not required in Prolog systems due to the module
prefixing of meta-arguments.

Sending a message from a meta-predicate definition to call a meta-predicate defined in another object
resets the calling context for any passed meta-argument to the object sending the message (includ-
ing for messages to self). Meta-arguments behave differently in Prolog systems due to their module
prefixing.

Logtalk protects from common scenarios where specially crafted meta-predicate definitions are used to
break object (and category) encapsulation by changing the meta-arguments passed by client code or
trying to subvert the implicit calling context to call client predicates other than the predicates passed
as meta-arguments.

As each Logtalk entity is independently compiled, this directive must be included in every object or cat-
egory that contains a definition for the described meta-predicate, even if the meta-predicate declaration
is inherited from another entity, to ensure proper compilation of meta-arguments.

Warning

50

Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the
predicate discontiguous by using the discontiguous/1 directive:

[:- discontiguous(foo/1).]

This is a directive that we should avoid using: it makes your code harder to read, and it is not supported by
some Prolog backends.

A Warning

As each Logtalk entity is compiled independently of other entities, this directive must be included in every
object or category that contains a definition for the described predicate (even if the predicate declaration
is inherited from another entity).

Dynamic directive

An object predicate can be static or dynamic. By default, all predicates (and non-terminals) of static objects
defined in source files are static. To declare a dynamic predicate (or non-terminal), we use the dynamic/1
directive. For example:

[:— dynamic(foo/1). J

Predicates of objects dynamically created at runtime (using the create_object/4 built-in predicate) and pred-
icates of dynamic objects defined in source files (using the dynamic/0 directive) are implicitly dynamic.

Dynamic predicates can be used to represent persistent mutable object state. Note that static objects may
declare and define dynamic predicates. Categories can only declare dynamic predicates (with the importing
objects holding the predicate definitions).

A Warning

As each Logtalk entity is compiled independently from other entities, this directive must be included in
every object that contains a definition for the described predicate (even if the predicate declaration is
inherited from another object or imported from a category). If we omit the dynamic declaration then the
predicate definition will be compiled static.

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

[:— op(Priority, Specifier, Operator).]

Operators are local to the object (or category) where they are declared. This means that, if you declare a
public predicate as an operator, you cannot use operator notation when sending to an object (where the
predicate is visible) the respective message (as this would imply visibility of the operator declaration in the
context of the sender of the message). If you want to declare global operators and, at the same time, use
them inside an entity, just write the corresponding directives at the top of your source file, before the entity
opening directive.

1.8. Predicates 51

The Logtalk Handbook, Release v3.89.0

Note that operators can also be declared using a scope directive. Only these operators are visible to the
current_op/3 reflection method.

When the same operators are used on several entities within the same source file, the corresponding direc-
tives must either be repeated in each entity or appear before any entity that uses them. But in the later case,
this results in a global scope for the operators. If you prefer the operators to be local to the source file, just
undefine them at the end of the file. For example:

% before any entity that uses the operator
;- op(400, xfx, results).

% after all entities that used the operator
;- op(0, xfx, results).

Global operators can be declared in the application loader file.

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose
due to all the necessary message-sending goals. Consider the following example:

foo :-

findall(X, list::member(X, L), A),
list::append(A, B, C),
list::select(Y, C, R),

Logtalk provides a directive, uses/2, which allows us to simplify the code above. One of the usage templates
for this directive is:

:— uses(Object, [
Namel/Arity1, Name2/Arity2,
n.

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

:— uses(list, [
append/3, member/2, select/3
D.

foo :-
findall(X, member(X, L), A),

append(A, B, ©),
select(Y, C, R),

Logtalk also supports an extended version of this directive that allows the declaration of predicate aliases
using the notation Predicate as Alias (or the alternative notation Predicate: :Alias). For example:

52 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

:— uses(btrees, [new/1 as new_btree/1]).
.- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 direc-
tives or just for giving new names to the predicates that will be more meaningful on their using context.

Predicate aliases can also be used to define predicate shorthands, simplifying code maintenance. For example:

.- uses(pretty_printer, [
indent(4, Term) as indent(Term)

.

Assuming multiple calls to the shorthand, a change to the indent value will require a change to a single line
instead of changing every call.

Another common use of predicate aliases is changing the order of the predicate arguments without using
lambda expressions. For example:

;- uses(meta, [
fold_left(Closure, Result®, List, Result) as foldl(Closure, List, Result@, Result)
D.

See the directive documentation for details and other examples.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predi-
cates declared in the directive and the predicates defined in the object (or category) containing the directive.
A predicate (or its alias if defined) cannot be listed in more than one uses/2 directive. In addition, a uses/2
directive cannot list a predicate (or its alias if defined) that is defined in the object (or category) containing
the directive. Any conflicts are reported by Logtalk as compilation errors.

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the messages are sent.
This feature simplifies experimenting with multiple implementations of the same protocol (for example, to
evaluate the performance of each implementation for a particular case). It also simplifies writing tests that
check multiple implementations of the same protocol.

An object (or category) can make a predicate listed in a uses/2 (or use_module/2) directive part of its
protocol by simply adding a scope directive for the predicate. For example, in the statistics library we
have:

;= public(modes/?2).
:— uses(numberlist, [modes/2]).

Therefore, a goal such as sample::modes(Sample, Modes) implicitly calls numberlist::modes(Sample,
Modes) without requiring an explicit local definition for the modes/2 predicate (which would trigger a com-
pilation error).

1.8. Predicates 53

The Logtalk Handbook, Release v3.89.0

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inher-
ited or imported grammar rule non-terminal) through the use of the alias/2 directive:

:— alias(Entity, [
Predicatel as Aliasl,
Predicate2 as Alias2,

D.

This directive can be used in objects, protocols, or categories. The first argument, Entity, must be an entity
referenced in the opening directive of the entity containing the alias/2 directive. It can be an extended or
implemented protocol, an imported category, an extended prototype, an instantiated class, or a specialized
class. The second argument is a list of pairs of predicate indicators (or grammar rule non-terminal indicators)
using the as infix operator.

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to
improve readability. For example:

:— object(square,
extends(rectangle)).

:— alias(rectangle, [width/1 as side/11]).

:- end_object.

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this
directive, there is no need to explicitly declare and define a “new” side/1 predicate. Note that the alias/2
directive does not rename a predicate, it only provides an alternative, additional name; the original name
continues to be available (although it may be masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same
name and arity. We may want to call the predicate that is masked out by the Logtalk lookup algorithm (see
the Inheritance section) or we may need to call both predicates. This is simply accomplished by using the
alias/2 directive to give alternative names to masked-out or conflicting predicates. Consider the following
example:

:- object(my_data_structure,
extends(list, set)).

:— alias(list, [member/2 as list_member/2]).
.- alias(set, [member/2 as set_member/2]).

:- end_object.

Assuming that both list and set objects define a member/2 predicate, without the alias/2 directives, only
the definition of member/2 predicate in the object 1ist would be visible on the object my_data_structure, as
a result of the application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the
following messages would be valid (assuming a public scope for the predicates):

54 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

% uses list member/2
| ?- my_data_structure::list_member(X, L).

% uses set member/2
| ?- my_data_structure::set_member(X, L).

% uses list member/2
| ?- my_data_structure::member(X, L).

When used this way, the alias/2 directive provides functionality similar to programming constructs of other
object-oriented languages that support multi-inheritance (the most notable example probably being the re-
naming of inherited features in Eiffel).

Note that the alias/2 directive never hides a predicate that is visible on the entity containing the directive as
a result of the Logtalk lookup algorithm. However, it may be used to make visible a predicate that otherwise
would be masked by another predicate, as illustrated in the above example.

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be
masked by another inherited predicate, while keeping the original name as follows:

;- object(my_data_structure,
extends(list, set)).

.- alias(list, [member/2 as list_member/2]).
.- alias(set, [member/2 as set_member/2]).

member (X, L) :-
" set_member (X, L).

:- end_object.

Thus, when sending the message member/2 to my_data_structure, the predicate definition in set will be
used instead of the one contained in list.

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

[:— info(Name/Arity, List).

The second argument is a list of Key is Value terms. See the Documenting section for details.

1.8. Predicates 55

The Logtalk Handbook, Release v3.89.0

Multifile directive

A predicate can be declared multifile by using the multifile/1 directive:

[:— multifile(Name/Arity).

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that
should be used with care. It's commonly used in the definition of hook predicates. Multifile predicates (and
non-terminals) may also be declared dynamic using the same predicate (or non-terminal) notation (multifile
predicates are static by default).

Logtalk precludes using a multifile predicate for breaking object encapsulation by checking that the object
(or category) declaring the predicate (using a scope directive) defines it also as multifile. This entity is said
to contain the primary declaration for the multifile predicate. Entities containing primary multifile predicate
declarations must always be compiled before entities defining clauses for those multifile predicates. The
Logtalk compiler will print a warning if the scope directive is missing. Note also that the multifile/1
directive is mandatory when defining multifile predicates.

Consider the following simple example:

:— object(main).
;- public(a/1).
;- multifile(a/1).
a(l).

:— end_object.

After compiling and loading the main object, we can define other objects (or categories) that contribute with
clauses for the multifile predicate. For example:

:— object(other).

;- multifile(main::a/1).
main::a(2).
main::a(X) :-

b(X).

b(3).
b(4).

:— end_object.

After compiling and loading the above objects, you can use queries such as:

| ?- main::a(X).

1
A w N =

Note that the order of multifile predicate clauses depends on several factors, including loading order and
compiler implementation details. Therefore, your code should never assume or rely on a specific order of
the multifile predicate clauses.

56 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or
category defining the clause. This allows clauses for multifile predicates to call local object or category
predicates. But the values of the sender, this, and self in the implicit execution context are passed from the
clause head to the clause body. This is necessary to ensure that these values are always valid and to allow
multifile predicate clauses to be defined in categories. A call to the parameter/2 execution context methods,
however, retrieves parameters of the entity defining the clause, not from the entity for which the clause is
defined. The parameters of the entity for which the clause is defined can be accessed by simple unification
at the clause head.

Multifile predicate rules should not contain cuts, as these may prevent other clauses for the predicate from
being used by callers. The compiler prints by default a warning when a cut is found in a multifile predicate
definition.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the ob-
ject’s own database instead of the database of the entity holding the multifile predicate primary declaration.
Similarly, local calls to the expand_term/2 and expand_goal/2 methods from a multifile predicate clause look
for clauses of the term_expansion/2 and goal_expansion/2 hook predicates starting from the entity defin-
ing the clause instead of the entity holding the multifile predicate primary declaration. Local calls to the
current_predicate/1, predicate_property/2, and current_op/3 methods from multifile predicate clauses
defined in an object also lookup predicates and their properties in the object’s own database instead of the
database of the entity holding the multifile predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the coinductive/1 directive. For example:

[:— coinductive(comember/2). J

Logtalk support for coinductive predicates is experimental and requires a backend Prolog compiler with min-
imal support for cyclic terms. The value of the read-only coinduction flag is set to supported for the backend
Prolog compilers providing that support.

Synchronized directive

A predicate can be declared synchronized by using the synchronized/1 directive. For example:

:= synchronized(write_log_entry/2).
:- synchronized([produce/1, consume/11]).

See the section on synchronized predicates for details.

1.8.3 Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference being that we
have four more control structures (the three message-sending operators plus the external call operator) to
play with. For example, if we wish to define an object containing common utility list predicates like append/2
or member/2 we could write something like:

;- object(list).

(continues on next page)

1.8. Predicates 57

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
;= public(append/3).
append([], L, L).
append([H| T1, L, [H] T21) :-
append(T, L, T2).

:= public(member/2).

member (H, [H] _1).

member(H, [_| T1) :-
member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have
written is also valid Prolog code. Calls in a predicate definition body default to the local predicates unless
we use the message-sending operators or the external call operator. This simplifies conversion from plain
Prolog code to Logtalk objects: often we just need to add the necessary encapsulation and scope directives
to the old code.

Category predicates

A category can only contain clauses for static predicates. But there are no restrictions in declaring and calling
dynamic predicates from inside a category. Because a category can be imported by multiple objects, dynamic
predicates must be called either in the context of self, using the message to self control structure, (::)/1, or
in the context of this (i.e., in the context of the object importing the category). For example, if we want to
define a category implementing attributes using the dynamic database of self we could write:

;- category(attributes).

public(get/2).
;- public(set/2).

;- private(attribute_/2).
dynamic(attribute_/2).

get(Var, Value) :-
::attribute_(Var, Value).

set(Var, Value) :-
::retractall(attribute_(Var, _)),

::asserta(attribute_(Var, Value).

:- end_category.

In this case, the get/2 and set/2 predicates will always access/update the correct definition, contained in
the object receiving the messages.

In alternative, if we want a category implementing attributes using the dynamic database of this, we would
write instead:

;- category(attributes).

;- public(get/2).

(continues on next page)

58 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
;= public(set/2).

;- private(attribute_/2).
;- dynamic(attribute_/2).

get(Var, Value) :-
attribute_(Var, Value).

set(Var, Value) :-
retractall(attribute_(Var, _)),

asserta(attribute_(Var, Value).

:— end_category.

In this case, each object importing the category will have its own clauses for the attribute_/2 private
dynamic predicate.

Meta-predicates

Meta-predicates may be defined inside objects and categories as any other predicate. A meta-predicate is
declared using the meta predicate/1 directive as described earlier in this section. When defining a meta-
predicate, the arguments in the clause heads corresponding to the meta-arguments must be variables. All
meta-arguments are called in the context of the object or category calling the meta-predicate. In particular,
when sending a message that corresponds to a meta-predicate, the meta-arguments are called in the context
of the object or category sending the message.

The most simple example is a meta-predicate with a meta-argument that is called as a goal. E.g. the ignore/1
built-in predicate could be defined as:

;= public(ignore/1).
.- meta_predicate(ignore(2)).

ignore(Goal) :-
(Goal -> true; true).

The 0 in the meta-predicate template tells us that the meta-argument is a goal that will be called by the
meta-predicate.

Some meta-predicates have meta-arguments that are not goals but closures. Logtalk supports the definition
of meta-predicates that are called with closures instead of goals as long as the definition uses the call/1-N
built-in predicate to call the closure with the additional arguments. A classical example is a list mapping
predicate:

;= public(map/2).
:- meta_predicate(map(1, *)).

map(_, [1).

map(Closure, [Arg| Args]) :-
call(Closure, Arg),
map(Closure, Args).

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly one
additional argument. When calling a meta-predicate, a closure can correspond to a user-defined predicate,
a built-in predicate, a lambda expression, or a control construct.

1.8. Predicates 59

The Logtalk Handbook, Release v3.89.0

In some cases, it is not a meta-argument but one of its sub-terms that is called as a goal or used as a closure.
For example:

;= public(call_all/T).
.- meta_predicate(call_all(::)).

call_all([D).

call_all([Goal| Goals]) :-
call(Goal),
call_all(Goals).

The :: mode indicator in the meta-predicate template allows the corresponding argument in the meta-
predicate definition to be a non-variable term and instructs the compiler to look into the argument sub-terms
for goal and closure meta-variables.

When a meta-predicate calls another meta-predicate, both predicates require meta_predicate/1 directives.
For example, the map/2 meta-predicate defined above is usually implemented by exchanging the argument
order to take advantage of first-argument indexing:

:- meta_predicate(map(1, *)).
map(Closure, List) :-
map_(List, Closure).

:- meta_predicate(map_(*, 1)).

map_([1,).

map_([Head| Tail], Closure) :-
call(Closure, Head),
map_(Tail, Closure).

Note that Logtalk, unlike most Prolog module systems, is not based on a predicate prefixing mechanism.
Thus, the meta-argument calling context is not part of the meta-argument itself.

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary
predicates for the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map([X,YI>>(Y is 2%X), [1,2,3], Ys).
Ys = [2,4,6]
yes

In this example, a lambda expression, [X,Y]>>(Y is 2xX), is used as an argument to the map/3 list mapping
predicate, defined in the library object meta, in order to double the elements of a list of integers. Using a
lambda expression avoids writing an auxiliary predicate for the sole purpose of doubling the list elements.
The lambda parameters are represented by the list [X, Y], which is connected to the lambda goal, (Y is 2*X),
by the (>>)/2 operator. The map/3 predicate calls the lambda goal with fresh/unique variables, represented
by the X and Y parameters, for each pair of elements of the second and third list arguments.

Currying is supported. Le. it is possible to write a lambda expression whose goal is another lambda expres-
sion. The above example can be rewritten as:

| ?- meta::map([XI>>(LYI>>(Y is 2xX)), [1,2,3]1, Ys).
Ys = [2,4,6]
yes

60 Chapter 1. User Manual

https://en.wikipedia.org/wiki/Lambda_calculus

The Logtalk Handbook, Release v3.89.0

Lambda expressions may also contain lambda-free variables. 1.e. variables that are global to the lambda
expression and shared with the surrounding meta-call context. Consider the following variant of the previous
example:

?7- between(1, 3, N), meta::map({N}/[X,YI>>(Y is N*X), [1,2,3]1, L).

I
N=1,L=1[1,2,3];
N=2, L =I[246];
N=3, L =1[3,6,9]
yes

In this case, the lambda-free variable, N, bound by the between/3 goal, is fixed across all implicit calls made
by the map/3 goal.

A second example of free variables in a lambda expression using GNU Prolog as the backend compiler:

| ?- meta::map({Z}/[X,YI>>(Z#=X+Y), [1,2,3], Zs).

Z = _#22(3..268435455)

Zs = [_#3(2..268435454), _#66(1..268435453),_#110(0..268435452)]
yes

The ISO Prolog construct {}/1 is used for representing the lambda-free variables as this representation is
often associated with set representation. Note that the order of the free variables is of no consequence (on
the other hand, a list is used for the lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example
by Markus Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic queries, as in the following example
using SWI-Prolog as the backend compiler and Markus Triska’s CLP(FD) library:

| ?- meta::map({Z}/[X,YI>>(clpfd: (Z#=X+Y)), Xs, Ys).

Xs = [],
Ys = [1 ;
Xs = [_G1369],
Ys = [_G1378],

_G1369+_G1378#=Z ;
Xs = [_G1579, _G1582],

Ys = [_G1591, _G1594],
_G1582+_G1594#=2,
_G1579+_G1591#=Z ;

Xs = [_G1789, _G1792, _G1795],
Ys = [_G1804, _G1807, _G1810],
_G1795+_G1810#=Z,
_G1792+_G1807#=Z,
_G1789+_G1804#=Z ;

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct {}/1 and
the standard operators (/)/2 and (>>)/2, thus avoiding defining new operators, which is always tricky for
a portable system such as Logtalk. The operator (>>)/2 was chosen as it suggests an arrow, similar to the
syntax used in other languages such as OCaml and Haskell to connect lambda parameters with lambda
functions. This syntax was also chosen in order to simplify parsing, error checking, and compilation of

1.8. Predicates 61

The Logtalk Handbook, Release v3.89.0

lambda expressions. The full specification of the lambda expression syntax can be found in the language
grammar.

The compiler checks whenever possible that all variables in a lambda expression are either classified as free
variables or as lambda parameters. Non-classified variables in a lambda goal (including any anonymous vari-
ables) should be regarded as a programming error. The compiler also checks whenever possible if a variable
is classified as both a free variable and a lambda parameter. There are a few cases where a variable playing
a dual role is intended, but, in general, this also results from a programming error. A third check verifies
that no lambda parameter variable is used elsewhere in a clause. Such cases are either programming errors,
when the variable appears before the lambda expression, or bad programming style, when the variable is
used after the lambda expression. These linter warnings are controlled by the lambda_variables flag. Note
that the dynamic features of the language and lack of sufficient information at compile-time may prevent
the compiler from checking all uses of lambda expressions. To improve linter coverage, compile code using
lambda expressions with the optimize flag turned on, as that will result in additional cases of meta-arguments
being evaluated for possible optimizations.

A\ Warning

Variables listed in lambda parameters must not be shared with other goals in a clause.

An optimizing meta-predicate and lambda expression compiler, based on the term-expansion mechanism, is
provided as a standard library for practical performance.

A common use of lambda expressions as closure meta-arguments is to workaround closures always being
extended by appending additional arguments to construct a goal. For example, assume that we want to filter
a list of atoms by a given length. We can use the standard atom_length/2 predicate despite the argument
order by writing:

filter(Length, Atoms, Filtered) :-
meta: :include({Length}/[Atom]>>atom_length(Atom,Length), Atoms, Filtered).

But Logtalk supports a faster alternative by using predicate aliases to change the argument order when
calling library or built-in predicates:

.- uses(user, [
atom_length(Atom, Length) as length_atom(Length, Atom)

D.

filter(Length, Atoms, Filtered) :-
meta: :include(length_atom(Length), Atoms, Filtered).

In this case, the performance is no longer dependent on compiling away lambda expressions. The resulting
code is also easier to read (and thus debug and maintain). But the uses/2 directive is implicitly defining an
auxiliary predicate, which is exactly what we wanted to avoid in the first place by using a lambda expression.

62 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Redefining built-in predicates

Logtalk built-in predicates and Prolog built-in predicates can be redefined inside objects and categories.
Although the redefinition of Logtalk built-in predicates should be avoided, the support for redefining Pro-
log built-in predicates is a practical requirement given the different sets of proprietary built-in predicates
provided by backend Prolog systems.

The compiler supports a redefined_built_ins flag, whose default value is silent, that can be set to warning to
alert the user of any redefined Logtalk or Prolog built-in predicate.

The redefinition of Prolog built-in predicates can be combined with the conditional compilation directives
when writing portable applications where some of the supported backends don’t provide a built-in predicate
found in the other backends. As an example, consider the de facto standard msort/2 predicate (which sorts a
list while keeping duplicates). This predicate is provided as a built-in predicate in most but not all backends.
The 1ist library object includes the code:

:— if(predicate_property(msort(_, _), built_in)).

msort(List, Sorted) :-
{msort(List, Sorted)}.

.- else.

length(List, Length) :-

;- endif.

I.e. the object will use the built-in predicate when available. Otherwise, it will use the predicate definition
provided by the list object.

The redefinition of built-in predicates can also be accomplished using predicate shorthands. This can be
useful when porting code while minimizing the changes. For example, assume that existing code uses the
format/2 de facto standard predicate for writing messages. To convert the code to use the message printing
mechanism, we could write:

:- uses(logtalk, [
print_message(comment, core, Format+Arguments) as format(Format, Arguments)

1)

process(Crate, Contents) :-
format('Processing crate ~w...', [Cratel),
format('Filing with ~w..."', [Contents]),

The predicate shorthand instructs the compiler to rewrite all format/2 goals as logtalk: :print_message/3
goals, thus allowing us to reuse the code without changes.

1.8. Predicates 63

The Logtalk Handbook, Release v3.89.0

1.8.4 Definite clause grammar rules

Definite clause grammar rules (DCGs) provide a convenient notation to represent the parsing and rewrite
rules common of most grammars in Prolog. In Logtalk, definite clause grammar rules can be encapsulated
in objects and categories. Currently, the ISO/IEC WG17 group is working on a draft specification for a
definite clause grammars Prolog standard. Therefore, in the meantime, Logtalk follows the common practice
of Prolog compilers supporting definite clause grammars, extending it to support calling grammar rules
contained in categories and objects. A common example of a definite clause grammar is the definition of a
set of rules for parsing simple arithmetic expressions:

:- object(calculator).
;= public(parse/2).

parse(Expression, Value) :-
phrase(expr(Value), Expression).

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "x", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number (7).

number(C) --> "+" | number(C).
number(C) --> "-", number(X), {C is -X3}.
number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:- end_object.

After compiling and loading this object, we can test the grammar rules using the parse/2 message:

| ?- calculator::parse("1+2-3%4", Result).

Result = -9
yes

The non-terminals can be called from predicates using the private built-in methods phrase/2 and phrase/3
as shown in the example above. When we want to use the built-in methods phrase/2 and phrase/3, the
non-terminal used as in the first argument must be within the scope of the sender. For the above example,
assuming that we want the predicate corresponding to the expr//1 non-terminal to be public, the corre-
sponding scope directive would be:

[:— public(expr//1).]

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule
non-terminal, not to a predicate. The idea is that the predicate corresponding to the translation of the expr/
/1 non-terminal will have a number of arguments equal to one plus the number of additional arguments
necessary for processing the implicit difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from
categories, or contained in other objects. This is accomplished by using non-terminals as messages. Using a
non-terminal as a message to self allows us to call grammar rules in categories and ancestor objects. To call
grammar rules encapsulated in other objects, we use a non-terminal as a message to those objects. Consider

64 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

the following example, containing grammar rules for parsing natural language sentences:

:— object(sentence,
imports(determiners, nouns, verbs)).

;= public(parse/2).
parse(List, true) :-

phrase(sentence, List).
parse(_, false).

sentence --> noun_phrase, verb_phrase.

noun_phrase --> ::determiner, ::noun.
noun_phrase --> ::noun.

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

:— end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners,
nouns, and verbs. For example:

:— category(determiners).
:— private(determiner//0).

determiner --> [the].
determiner --> [a].

:- end_category.

Along with the message-sending operators ((::)/1, (::)/2, and (**)/1), we may also use other control
constructs such as (<<)/2, (\+)/1, /0, (;)/2, (->)/2, {3/1, call//1-N, and catch/3 in the body of a
grammar rule. When using a backend Prolog compiler that supports modules, we may also use the (:)/2
control construct.

A Warning

The semantics of (\+)/1 and (->)/2 control constructs in grammar rules with a terminal or a non-
terminal in the first argument are problematic due to unrestricted lookahead that may or may not be
valid depending on the grammar rule implicit arguments. By default, the linter will print warnings
for such calls (controlled by the grammar rules flag). Preferably restrict the use of the (\+)/1 control
construct to {}/1 arguments and the use of the (->)/2 control construct to {}/1 test arguments.

In addition, grammar rules may contain meta-calls (a variable taking the place of a non-terminal), which
are translated to calls of the built-in method phrase//1. The meta non_terminal/1 directive allows the
declaration of non-terminals that have arguments that are meta-called from grammar rules. For example:

;- meta_non_terminal(zero_or_more(1, *)).

zero_or_more(Closure, [Terminal| Terminals]) -->
(continues on next page)

1.8. Predicates 65

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

call(Closure, Terminal), !, zero_or_more(Closure, Terminals).
zero_or_more(_, [1) -->
[1.

You may have noticed that Logtalk defines {}/1 as a control construct for bypassing the compiler when
compiling a clause body goal. As exemplified above, this is the same control construct that is used in
grammar rules for bypassing the expansion of rule body goals when a rule is converted into a clause. Both
control constructs can be combined in order to call a goal from a grammar rule body, while bypassing at the
same time the Logtalk compiler. Consider the following example:

bar :-

write('bar predicate called'), nl.
:- object(bypass).

:— public(foo//0).

foo --> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called
yes

This is the expected result, as the expansion of the grammar rule into a clause leaves the {bar} goal un-
touched, which, in turn, is converted into the goal bar when the clause is compiled. Note that we tested the
bypass: : foo//@ non-terminal by calling the phrase/3 built-in method in the context of the logtalk built-in
object. This workaround is necessary due to the Prolog backend implementation of the phrase/3 predicate
not being aware of the Logtalk (::)/2 message-sending control construct semantics.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using
the same Name//Arity notation illustrated above for the scope directives. In addition, grammar rule non-
terminals can be documented using the info/2 directive, as in the following example:

.- public(sentence//0).

:- info(sentence//0, [
comment is 'Rewrites sentence into noun and verb phrases.'

D.

O Note

Future Logtalk versions may compile grammar rules differently from Prolog traditional compilation to
prevent name clashes between non-terminals and predicates. Therefore, you should always call non-
terminals from predicates using the phrase/2-3 built-in methods and always call predicates from gram-
mar rules using the call//1 built-in method. This recommended practice, besides making your code
forward compatible with future Logtalk versions, also makes the code more clear. The linter prints warn-

66 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

ings when these guidelines are not followed (notably, when a predicate is called as a non-terminal or a
non-terminal is called as a predicate).

1.8.5 Built-in methods

Built-in methods are built-in object and category predicates. These include methods to access message
execution context, to find sets of solutions, to inspect objects, for database handling, for term and goal
expansion, and for printing messages. Some of them are counterparts to standard Prolog built-in predicates
that take into account Logtalk semantics. Similar to Prolog built-in predicates, built-in methods cannot be
redefined.

Logic and control methods

The !/0, true/0, fail/0, false/0, and repeat/0 standard control constructs and logic predicates are interpreted
as built-in public methods and thus can be used as messages to any object. In practice, they are only used as
messages when sending multiple messages to the same object (see the section on message broadcasting).

Execution context methods

Logtalk defines five built-in private methods to access an object execution context. These methods are in
the common usage scenarios translated to a single unification performed at compile-time with a clause
head context argument. Therefore, they can be freely used without worrying about performance penalties.
When called from inside a category, these methods refer to the execution context of the object importing the
category. These methods are private and cannot be used as messages to objects.

To find the object that received the message under execution, we may use the self/1 method. We may also
retrieve the object that has sent the message under execution using the sender,/1 method.

The method this/1 enables us to retrieve the name of the object for which the predicate clause whose body
is being executed is defined instead of using the name directly. This helps to avoid breaking the code if we
decide to change the object name and forget to change the name references. This method may also be used
from within a category. In this case, the method returns the object importing the category on whose behalf
the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:- object(test).
;- public(test/0).

test :-
this(This),
write('Calling predicate definition in '),
writeq(This), nl,
self(Self),
write('to answer a message received by '),
writeq(Self), nl,
sender (Sender),
write('that was sent by '),
writeq(Sender), nl, nl.

(continues on next page)

1.8. Predicates 67

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
:- end_object.

:- object(descendant,
extends(test)).

:— end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling predicate definition in test

to answer a message received by descendant
that was sent by user

yes

Note that the goals self(Self), sender(Sender), and this(This), being translated to unifications with the
clause head context arguments at compile-time, are effectively removed from the clause body. Therefore, a
clause such as:

predicate(Arg) :-
self(Self),
atom(Arg),

is compiled with the goal atom(Arg) as the first condition on the clause body. As such, the use of these
context execution methods does not interfere with the optimizations that some Prolog compilers perform
when the first clause body condition is a call to a built-in type-test predicate or a comparison operator.

For parametric objects and categories, the method parameter/2 enables us to retrieve current parameter
values (see the section on parametric objects for a detailed description). For example:

;= object(block(_Color)).
:— public(test/0).
test :-
parameter (1, Color),
write('Color parameter value is '),

writeq(Color), nl.

:— end_object.

An alternative to the parameter/2 predicate is to use parameter variables:

:- object(block(_Color_)).
;- public(test/0).

test :-
write('Color parameter value is '),
writeq(_Color_), nl.

(continues on next page)

68 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

:— end_object.

After compiling and loading either version of the object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile-time unification when the second argument is
a variable. When the second argument is bound, the calls are translated to a call to the built-in predicate
arg/3.

When type-checking predicate arguments, it is often useful to include the predicate execution context when
reporting an argument error. The context/1 method provides access to that context. For example, assume
a predicate foo/2 that takes an atom and an integer as arguments. We could type-check the arguments by
writing (using the library type object):

foo(A, N) :-
% type-check arguments
context(Context),
type: :check(atom, A, Context),
type: :check(integer, N, Context),
% arguments are fine; go ahead

Error handling and throwing methods

Besides the catch/3 and throw/1 methods inherited from Prolog, Logtalk also provides a set of
convenience methods to throw standard error/2 exception terms: instantiation error/0, uninstantia-
tion_error/1, type_error/2, domain_error/2, existence error/2, permission_error/3, representation_error/1,
evaluation_error/1, resource_error/1, syntax_error/1, and system_error/0. When using these methods, the
second argument of the error/2 exception term is bound to the execution context (as it would be provided
by the context/1 method).

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog
predicates: abolish/1, asserta/1, assertz/1, clause/2, retract/1, and retractall/1. These methods always oper-
ate on the database of the object receiving the corresponding message. When called locally, these predicates
take into account any uses/2 or use_module/2 directives that refer to the dynamic predicate being handled.
For example, in the following object, the clauses for the data/1 predicate are retracted and asserted in user
due to the uses/2 directive:

:- object(an_object).
:— uses(user, [data/1]).
;- public(some_predicate/1).

some_predicate(Arg) :-

(continues on next page)

1.8. Predicates 69

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

retractall(data()),
assertz(data(Arg)).

:- end_object.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand term/2
convert a grammar rule into a clause that can then be used with the database methods.

Logtalk also supports asserta/2, assertz/2, clause/3, and erase/1 built-in methods when run with a back-
end that supports the corresponding legacy built-in predicates that work with clause references.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This built-in private meta-predicate must be used
in the implementation of meta-predicates that work with closures instead of goals. In addition, Logtalk
supports the built-in private meta-predicates ignore/1, once/1, and (\+)/1. These methods cannot be used
as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4,
and setof/3. There is also a forall/2 method that implements generate-and-test loops. These methods cannot
be used as messages to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities
and predicates. Some of the information, however, requires that the source files are compiled with the
source_data flag turned on.

The reflection API supports two different views on entities and their contents, which we may call the trans-
parent box view and the black box view. In the transparent box view, we look into an entity disregarding how
it will be used and returning all information available on it, including predicate declarations and predicate
definitions. This view is supported by the entity property built-in predicates. In the black box view, we
look into an entity from a usage point of view using built-in methods for inspecting object operators and
predicates that are within scope from where we are making the call: current op/3, which returns operator
specifications; predicate_property/2, which returns predicate properties; and current predicate/1, which en-
ables us to query about user-defined predicate definitions. See below for a more detailed description of these
methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with
definitions similar to the predicates with the same name found on most Prolog compilers that support definite
clause grammars. These methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and eos//0 built-in non-terminals. The call//1-N non-terminals
take a closure (which can be a lambda expression) plus zero or more additional arguments and are processed
by appending the input list of tokens and the list of remaining tokens to the arguments.

70 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.8.6 Predicate properties

We can find the properties of visible predicates by calling the predicate property/2 built-in method. For
example:

[I ?- bar::predicate_property(foo(_), Property).

Note that this method takes into account the predicate’s scope declarations. In the above example, the call
will only return properties for public predicates.

An object’s set of visible predicates is the union of all the predicates declared for the object with all the
built-in methods and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope)
The predicate scope (useful for finding the predicate scope with a single call to predicate_property/2)

public, protected, private
The predicate scope (useful for testing if a predicate has a specific scope)

static, dynamic
All predicates are either static or dynamic (note, however, that a dynamic predicate can only be abol-
ished if it was dynamically declared)

logtalk, prolog, foreign
A predicate can be defined in Logtalk source code, Prolog code, or in foreign code (e.g., in C)

built_in
The predicate is a built-in predicate

multifile
The predicate is declared multifile (i.e., it can have clauses defined in multiple files or entities)

meta_predicate(Template)
The predicate is declared as a meta-predicate with the specified template

coinductive(Template)
The predicate is declared as a coinductive predicate with the specified template

declared_in(Entity)
The predicate is declared (using a scope directive) in the specified entity

defined_in(Entity)
The predicate definition is looked up in the specified entity (note that this property does not necessarily
imply that clauses for the predicate exist in Entity; the predicate can simply be false as per the closed-
world assumption)

redefined_from(Entity)
The predicate is a redefinition of a predicate definition inherited from the specified entity

non_terminal (NonTerminal//Arity)
The predicate resulted from the compilation of the specified grammar rule non-terminal

alias_of (Predicate)
The predicate (name) is an alias for the specified predicate

alias_declared_in(Entity)
The predicate alias is declared in the specified entity

synchronized
The predicate is declared as synchronized (i.e., it’s a deterministic predicate synchronized using a mu-
tex when using a backend Prolog compiler supporting a compatible multi-threading implementation)

1.8. Predicates 71

The Logtalk Handbook, Release v3.89.0

Some properties are only available when the entities are defined in source files and when those source files
are compiled with the source_data flag turned on:

recursive

The predicate definition includes at least one recursive rule
inline

The predicate definition is inlined
auxiliary

The predicate is not user-defined but rather automatically generated by the compiler or the term-
expansion mechanism

mode(Mode, Solutions)
Instantiation, type, and determinism mode for the predicate (which can have multiple modes)

info(ListOfPairs)
Documentation key-value pairs as specified in the user-defined info/2 directive

number_of_clauses(N)
The number of clauses for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules(N)
The number of rules for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

declared_in(Entity, Line)
The predicate is declared (using a scope directive) in the specified entity in a source file at the specified
line (if applicable)

defined_in(Entity, Line)
The predicate is defined in the specified entity in a source file at the specified line (if applicable)

redefined_from(Entity, Line)
The predicate is a redefinition of a predicate definition inherited from the specified entity, which is
defined in a source file at the specified line (if applicable)

alias_declared_in(Entity, Line)
The predicate alias is declared in the specified entity in a source file at the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by
the object, it will be the category name — not the object name — that will be returned by the property
declared_in/1. The same is true for protocol declared predicates.

Some properties, such as line numbers, are only available when the entity holding the predicates is defined
in a source file compiled with the source_data flag turned on. Moreover, line numbers are only supported
in backend Prolog compilers that provide access to the start line of a read term. When such support is not
available, the value -1 is returned for the start and end lines.

72 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.8.7 Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current predicate/1 built-in method.
This method takes into account predicate scope declarations. For example, the following call will only return
user predicates that are declared public:

[I ?- some_object::current_predicate(Name/Arity).]

The predicate property non_terminal/1 may be used to retrieve all grammar rule non-terminals declared for
an object. For example:

current_non_terminal (Object, Name//Args) :-
Object: :current_predicate(Name/Arity),
functor(Predicate, Functor, Arity),
Object: :predicate_property(Predicate, non_terminal(Name//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor, but users should not rely
on this always being true.

1.8.8 Calling Prolog predicates

Logtalk is designed for both robustness and portability. In the context of calling Prolog predicates, robustness
requires that the compilation of Logtalk source code must not have accidental dependencies on Prolog code
that happens to be loaded at the time of the compilation. One immediate consequence is that only Prolog
built-in predicates are visible from within objects and categories. But Prolog systems provide a widely di-
verse set of built-in predicates, easily raising portability issues. Relying on non-standard predicates is often
unavoidable, however, due to the narrow scope of Prolog standards. Logtalk applications may also require
calling user-defined Prolog predicates, either in user or in Prolog modules.

Calling Prolog built-in predicates

In predicate clauses and object initialization/1 directives, predicate calls that are not prefixed with a
message-sending, super call, or module qualification operator (::, **, or :), are compiled to either calls to
local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is compiled as a call to a
local predicate if the object (or category) contains a scope directive, a multifile directive, a dynamic directive,
or a definition for the called predicate. When that is not the case, the compiler checks if the call corresponds
to a Logtalk or Prolog built-in predicate. Consider the following example:

foo :-

)

write(bar),

The call to the write/1 predicate will be compiled as a call to the corresponding Prolog standard built-in
predicate unless the object (or category) containing the above definition also contains a predicate named
write/1 or a directive for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, we
may run into portability problems while trying your applications with different backend Prolog compilers. We
can use the compiler portability flag to generate warnings for calls to non-standard predicates and arithmetic
functions. We can also help document those calls using the uses/2 directive. For example, a few Prolog
systems provide an atom_string/2 non-standard predicate. We can write (in the object or category calling
the predicate):

1.8. Predicates 73

The Logtalk Handbook, Release v3.89.0

[:— uses(user, [atom_string/21) J

This directive is based on the fact that built-in predicates are visible in plain Prolog (i.e., in user). Besides
helping to document the dependency on a non-standard built-in predicate, this directive will also silence the
compiler portability warning.

Calling Prolog non-standard built-in meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be
used as messages. Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however,
as there is no standard way of checking if a built-in predicate is also a meta-predicate and finding out which
are its meta-arguments. But Logtalk supports overriding the original meta-predicate template when not
programmatically available or usable. For example, assume a det_call/1 Prolog built-in meta-predicate that
takes a goal as argument. We can add to the object (or category) calling it the directive:

[:— meta_predicate(user: :det_call(2)). }

Another solution is to explicitly declare non-standard built-in Prolog meta-predicates in the corresponding
adapter file using the internal predicate '$1gt_prolog_meta_predicate'/3. For example:

['$1gt_prolog_meta_predicate'(det_call(_), det_call (@), predicate). J

The third argument can be either the atom predicate or the atom control_construct, a distinction that is
useful when compiling in debug mode.

Calling Prolog foreign predicates

Prolog systems often support defining foreign predicates, i.e. predicates defined using languages other than
Prolog using a foreign language interface. There isn’t, however, any standard for defining, making available,
and recognizing foreign predicates. From a Logtalk perspective, the two most common scenarios are calling
a foreign predicate (from within an object or a category) and making a set of foreign predicates available as
part of an object (or category) protocol. Assuming, as this is the most common case, that foreign predicates
are globally visible once made available (using a Prolog system-specific loading or linking procedure), we can
simply call them as user-defined plain predicates, as explained in the next section. When defining an object
(or category) that makes available foreign predicates, the advisable solution is to name the predicates after
the object (or category) and then define object (or category) predicates that call the foreign predicates. Most
backend adapter files include support for recognizing foreign predicates that allows the Logtalk compiler to
inline calls to the predicates (thus avoiding call indirection overheads).

Calling Prolog user-defined plain predicates

User-defined Prolog plain predicates (i.e., predicates that are not defined in a Prolog module) can be called
from within objects or categories by sending the corresponding message to user. For example:

foo :-

)

user: :bar,

In alternative, we can use the uses/2 directive and write:

74 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

:— uses(user, [bar/0]).

foo :-

“ ey

bar,

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated
(either in a Logtalk entity or a Prolog module).

When the Prolog predicate is not a meta-predicate, we can also use the {}/1 compiler bypass control con-
struct. For example:

foo :-

(bar,

But note that in this case the reflection API will not record the dependency of the foo/0 predicate on the
Prolog bar/0 predicate as we are effectively bypassing the compiler.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by using explicit qualification. For
example:

foo :-

“ ey

module:bar,

You can also use the use module/2 directive to call the module predicates using implicit qualification:

.- use_module(module, [bar/0]).

foo :-

.« .y

bar,

Note that the first argument of the use_module/2 directive, when used within an object or a category, is a
module name, not a file specification (also be aware that Prolog modules are sometimes defined in files with
names that differ from the module names).

As loading a Prolog module varies between Prolog systems, the actual loading directive or goal is preferably
done from the application loader file. An advantage of this approach is that it contributes to a clean separation
between loading and using a resource, with the loader file being the central point that loads all application
resources (complex applications often use a hierarchy of loader files, but the main idea remains the same).

As an example, assume that we need to call predicates defined in a CLP(FD) Prolog library, which can be
loaded using library(clpfd) as the file specification. In the loader file, we would add:

[: - use_module(library(clpfd), [1).

1.8. Predicates 75

The Logtalk Handbook, Release v3.89.0

Specifying an empty import list is often used to avoid adding the module-exported predicates to plain Prolog.
In the objects and categories we can then call the library predicates, using implicit or explicit qualification,
as explained. For example:

:— object(puzzle).
;= public(puzzle/1).

;- use_module(clpfd, [
all_different/1, ins/2, label/T1,
H=)/2, (E\=)/2,
op(700, xfx, #=), op(700, xfx, {#\=)

1.

puzzle([S,E,N,D] + [M,0,R,E] = [M,0,N,E,Y]) :-

vars = [S,E,N,D,M,0,R,Y],

Vars ins 0..9,

all_different(Vars),
S*1000 + Ex100 + N*x10 + D +
Mx1000 + 0x100 + Rx10 + E fi=

M*x10000 + 0%1000 + N*x100 + Ex10 + Y,

M E\=0, S Hi\= o,

label([M,0,N,E,Y]).

:- end_object.

A Warning

The actual module code must be loaded prior to the compilation of Logtalk source code that uses it.
In particular, programmers should not expect that the module be auto-loaded (including when using a
backend Prolog compiler that supports an auto-loading mechanism).

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the calls are made.

Logtalk supports the declaration of predicate aliases and predicate shorthands in use_module/2 directives
used within objects and categories. For example, the ECLiPSe IC Constraint Solvers define a (::)/2 variable
domain operator that clashes with the Logtalk (::)/2 message-sending operator. We can solve the conflict
by writing:

[:- use_module(ic, [(::)/2 as ins/2]).]

With this directive, calls to the ins/2 predicate alias will be automatically compiled by Logtalk to calls to the
(::)/2 predicate in the ic module.

76 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Calling Prolog module meta-predicates

The Logtalk library provides implementations of common meta-predicates, which can be used in place of
module meta-predicates (e.g., list mapping meta-predicates). If that is not the case, the Logtalk compiler
may need help to understand the module meta-predicate templates. Despite some recent progress in stan-
dardization of the syntax of meta_predicate/1 directives and of the meta_predicate/1 property returned by
the predicate_property/2 reflection predicate, portability is still a major problem. Thus, Logtalk allows the
original meta_predicate/1 directive to be overridden with a local directive that Logtalk can make sense of.
It also allows providing a meta_predicate/1 directive when it’s missing from the module defining the meta-
predicate. Note that Logtalk is not based on a predicate prefixing mechanism as found in module systems.
This fundamental difference precludes an automated solution at the Logtalk compiler level.

As an example, assume that you want to call from an object (or a category) a module meta-predicate with
the following meta-predicate directive:

;- module(foo, [bar/2]).

.- meta_predicate(bar(*, :)).

The : meta-argument specifier is ambiguous. It tell us that the second argument of the meta-predicate is
module sensitive, but it does not tell us how. Some legacy module libraries and some Prolog systems use : to
mean @ (i.e., a meta-argument that will be meta-called). Some others use : for meta-arguments that are not
meta-called but that still need to be augmented with module information. Whichever the case, the Logtalk
compiler doesn’t have enough information to unambiguously parse the directive and correctly compile the
meta-arguments in the meta-predicate call. Therefore, the Logtalk compiler will generate an error stating
that : is not a valid meta-argument specifier when trying to compile a foo:bar/2 goal. There are two
alternative solutions for this problem. The advised solution is to override the meta-predicate directive by
writing, inside the object (or category) where the meta-predicate is called:

[:— meta_predicate(foo:bar(x, *)). J

or:

[:— meta_predicate(foo:bar(*x, 0)). J

depending on the true meaning of the second meta-argument. The second alternative, only usable when
the meta-argument can be handled as a normal argument, is to simply use the {}/1 compiler bypass control
construct to call the meta-predicate as-is:

[:= {foo:bar(..., ...)}, ... J

The downside of this alternative is that it hides the dependency on the module library from the reflection
API and thus from the developer tools.

1.8.9 Defining Prolog multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be
defined in other modules. This is accomplished by declaring the library predicate multifile and by explicitly
prefixing predicate clause heads with the library module identifier. For example:

;- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

1.8. Predicates 77

The Logtalk Handbook, Release v3.89.0

Logtalk supports the definition of Prolog module multifile predicates in objects and categories. While the
clause head is compiled as-is, the clause body is compiled in the same way as a regular object or category
predicate, thus allowing calls to local object or category predicates. For example:

:— object(...).
;- multifile(clpfd:run_propagator/2).

clpfd:run_propagator(..., ...) :-
% calls to local object predicates

:- end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates
may also be declared dynamic using the same Module:Name/Arity notation.

1.8.10 Asserting and retracting Prolog predicates

To assert and retract clauses for Prolog dynamic predicates, we can use an explicitly qualified module argu-
ment. For example:

:— object(...).
;= dynamic(m:bar/1).
foo(X) :-

retractall(m:bar()),
assertz(m:bar (X)),

:- end_object.

In alternative, we can use use_module/2 directives to declare the module predicates. For example:

:- object(...).

:- use_module(m, [bar/11]).
:— dynamic(m:bar/1).

foo(X) :-
% retract and assert bar/1 clauses in module m
retractall(bar()),
assertz(bar(X)),

:- end_object.

When the Prolog dynamic predicates are defined in user, the recommended and most portable practice (as
not all backends support a module system) is to use a uses/2 directive:

:- object(...).

.- uses(user, [bar/1]).
(continues on next page)

78 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

;= dynamic(user::bar/1).

foo(X) :-
% retract and assert bar/1 clauses in user
retractall(bar()),
assertz(bar(X)),

:- end_object.

Note that in the alternatives using uses/2 or use_module/2 directives, the argument of the database handling
predicates must be known at compile-time. If that is not the case, you must use either an explicitly-qualified
argument or the {}/1 control construct instead. For example:

:- object(...).

add(X) :-
% assert clause X in module m
assertz(m:X),

remove(Y) :-
% retract all clauses in user whose head unifies with Y
{retractall(Y)},

:- end_object.

1.9 Inheritance

The inheritance mechanisms found in object-oriented programming languages allow the specialization of
previously defined objects, avoiding the unnecessary repetition of code and allowing the definition of com-
mon functionality for sets of objects. In the context of logic programming, we can interpret inheritance as
a form of theory extension: an object will virtually contain, besides its own predicates, all the predicates
inherited from other objects that are not redefined locally. Inheritance is not, however, the only mechanism
for theory extension. Logtalk also supports composition using categories.

Logtalk uses a depth-first lookup procedure for finding predicate declarations and predicate definitions, as
explained below, when a message is sent to an object. The lookup procedures locate the entity holding the
predicate declaration and the entity holding the predicate definition using the predicate name and arity. The
alias/2 predicate directive may be used for defining alternative names for inherited predicates, for solving
inheritance conflicts, and for giving access to all inherited definitions (thus overriding the default lookup
procedure).

The lookup procedures are used when sending a message (using the (::)/2, (::)/1, and []/1 control con-
structs) and when making super calls (using the (™ ™)/1 control construct). The exact details of the lookup
procedures depend on the role played by the object receiving the message or making the super call, as
explained next. The lookup procedures are also used by the current predicate/1 and predicate property,/2
reflection predicates.

1.9. Inheritance 79

The Logtalk Handbook, Release v3.89.0

1.9.1 Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be con-
tained in objects, protocols, or categories. Logtalk supports single and multi-inheritance of protocols: an
object or a category may implement several protocols, and a protocol may extend several protocols.

Lookup order for prototype hierarchies

The lookup order for predicate declarations is first the object, second the implemented protocols (and the
protocols that these may extend), third the imported categories (and the protocols that they may implement),
and finally the objects that the object extends (following their declaration order). This lookup is performed
in depth-first order. When an object inherits two different declarations for the same predicate, by default,
only the first one will be considered.

Lookup order for class hierarchies

The lookup order for predicate declarations is first the object classes (following their declaration order), sec-
ond the classes implemented protocols (and the protocols that these may extend), third the classes imported
categories (and the protocols that they may implement), and finally the superclasses of the object classes.
This lookup is performed in depth-first order. If the object inherits two different declarations for the same
predicate, by default, only the first one will be considered.

1.9.2 Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in
objects or in categories. Logtalk supports multi-inheritance of implementation: an object may import several
categories or extend, specialize, or instantiate several objects.

Lookup order for prototype hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations, except that
implemented protocols are ignored (as they can only contain predicate directives).

Lookup order for class hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations, except that
implemented protocols are ignored (as they can only contain predicate directives) and that the lookup starts
at the instance itself (that received the message) before proceeding, if no predicate definition is found there,
to the instance classes imported categories and then to the class superclasses.

80 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Redefining inherited predicate definitions

When we define a predicate that is already inherited from an ancestor object or an imported category, the
inherited definition is hidden by the new definition. This is called inheritance overriding: a local definition
overrides any inherited definitions. For example, assume that we have the following two objects:

:- object(root).

;= public(bar/1).
bar(root).

;= public(foo/1).
foo(root).

:— end_object.

object(descendant,
extends(root)).

foo(descendant) .

end_object.

After compiling and loading these objects, we can check the overriding behavior by trying the following
queries:

| ?- root::(bar(Bar), foo(Foo0)).

Bar = root
Foo = root
yes

| ?- descendant::(bar(Bar), foo(Foo)).

Bar = root
Foo = descendant
yes

However, we can explicitly code other behaviors. Some examples follow.

Specializing inherited predicate definitions

Specialization of inherited definitions: the new definition calls the inherited definition and makes additional
calls. This is accomplished by calling the (™ ™)/1 super call operator in the new definition. For example,
assume a init/@ predicate that must account for object specific initializations along the inheritance chain:

;- object(root).
;= public(init/0).

init :-

(continues on next page)

1.9. Inheritance 81

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

write('root init'), nl.
:— end_object.
:- object(descendant,
extends(root)).
init :-
write('descendant init'), nl,
Ainit.

:— end_object.

| ?- descendant::init.

descendant init
root init
yes

Union of inherited and local predicate definitions

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order
being defined by the inheritance mechanisms. This can be accomplished by writing a clause that just calls,
using the (™ 7)/1 super call operator, the inherited definitions. The relative position of this clause among
the other definition clauses sets the calling order for the local and inherited definitions. For example:

;- object(root).
;= public(foo/1).

foo(1).
foo(2).

:- end_object.

:— object(descendant,
extends(root)).
foo(3).
foo(Foo) :-

**foo(Foo).

:- end_object.

| ?- descendant::foo(Foo).

Foo
Foo

3
15

(continues on next page)

82 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

Foo = 2 ;
no

Selective inheritance of predicate definitions

Selective inheritance of predicate definitions (also known as differential inheritance) is normally used in the
representation of exceptions to inherited default definitions. We can use the (™ ™)/1 super call operator to
test and possibly reject some of the inherited definitions. A common example is representing flightless birds:

:- object(bird).
:— public(mode/1).

mode (walks) .
mode(flies).

:— end_object.

.- object(penguin,
extends(bird)).
mode (swims).
mode (Mode) :-

*“mode (Mode),

Mode \== flies.

:— end_object.

| ?- penguin::mode(Mode).

Mode = swims ;
Mode = walks ;
no

1.9.3 Public, protected, and private inheritance

To make all public predicates declared via implemented protocols, imported categories, or ancestor objects
protected predicates or to make all public and protected predicates private predicates, we prefix the entity’s
name with the corresponding keyword. For example:

:- object(Object,
implements(private: :Protocol)).

% all the Protocol public and protected
% predicates become private predicates
% for the Object clients

(continues on next page)

1.9. Inheritance 83

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

:— end_object.
or:
:— object(Class,
specializes(protected: :Superclass)).
% all the Superclass public predicates become
% protected predicates for the Class clients
:- end_object.

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

:— object(Object,
imports(public::Category)).

:— end_object.

This is the same as:

:— object(Object,
imports(Category)).

:— end_object.

This way we ensure backward compatibility with older Logtalk versions and a simplified syntax when pro-
tected or private inheritance is not used.

1.9.4 Multiple inheritance

Logtalk supports multiple inheritance by enabling an object to extend, instantiate, or specialize more than
one object. Likewise, a protocol may extend multiple protocols, and a category may extend multiple cate-
gories. In this case, the depth-first lookup algorithms described above traverse the list of entities per relation
from left to right. Consider as an example the following object opening directive:

:— object(foo,
extends((bar, baz))).

The lookup procedure will look first into the parent object bar and its related entities before looking into the
parent object baz. The alias/2 predicate directive can always be used to solve multiple inheritance conflicts.
It should also be noted that the multi-inheritance support does not affect performance when we use single
inheritance.

84 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.9.5 Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless de-
bate on single versus multiple inheritance. The single inheritance mechanism can be implemented efficiently,
but it imposes several limitations on reusing, even if the multiple characteristics we intend to inherit are or-
thogonal. On the other hand, the multiple inheritance mechanisms are attractive in their apparent capability
of modeling complex situations. However, they include a potential for conflict between inherited definitions
whose variety does not allow a single and satisfactory solution for all the cases.

No solution that we might consider satisfactory for all the problems presented by the multiple inheritance
mechanisms has been found. From the simplicity of some extensions that use the Prolog search strategy,
such as [McCabe92] or [Moss94], to the sophisticated algorithms of CLOS [Bobrow et al 88], there is no
adequate solution for all the situations. Besides, the use of multiple inheritance carries some complex prob-
lems in the domain of software engineering, particularly in the reuse and maintenance of the applications.
All these problems are substantially reduced if we preferably use in our software development composition
mechanisms instead of specialization mechanisms [Taenzer89]. Multiple inheritance is best used as an anal-
ysis and project abstraction, rather than as an implementation technique [Shan_et al 93]. Note that Logtalk
provides first-class support for composition using categories.

1.10 Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura94] is based on a simple
but powerful idea:

The computations must result not only from message-sending but also from the observation of
message-sending.

The need to associate computations to the occurrence of events was very early recognized in knowl-
edge representation languages, programming languages [Stefik et al 86], [Moon86], operative systems
[Tanenbaum87], and graphical user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the fol-
lowing goals:

* Minimize the coupling between objects. An object should only contain what is intrinsic to it. If an
object observes another object, that means that it should depend only on the public protocol of the
object observed and not on the implementation of that protocol.

* Provide a mechanism for building reflexive systems in Logtalk based on the dynamic behavior of objects
in complement to the reflective information on object predicates and relations.

* Provide a mechanism for easily defining method pre- and post-conditions that can be toggled using the
events compiler flag. The pre- and post-conditions may be defined in the same object containing the
methods or distributed between several objects acting as method monitors.

* Provide a publish-subscribe mechanism where public messages play the role of events.

1.10. Event-driven programming 85

The Logtalk Handbook, Release v3.89.0

1.10.1 Definitions

The words event and monitor have multiple meanings in computer science. To avoid misunderstandings, we
start by defining them in the Logtalk context.

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural
to declare that the only event that can occur in this kind of system is precisely the sending of a message. An
event can thus be represented by the ordered tuple (Object, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the
return of the control to the object that has sent the message as two distinct events. This distinction allows
us to have more precise control over a system’s dynamic behavior. In Logtalk, these two types of events have
been named before and after, respectively for sending a message and for returning control to the sender.
Therefore, we refine our event representation using the ordered tuple (Event, Object, Message, Sender).

The implementation of events in Logtalk enjoys the following properties:

Independence between the two types of events
We can choose to watch only one event type or to process each one of the events associated with a
message-sending goal in an independent way.

All events are automatically generated by the message-sending mechanism
The task of generating events is transparently accomplished by the message-sending mechanism. The
user only needs to define the events that will be monitored.

The events watched at any moment can be dynamically changed during program execution
The notion of event allows the user not only to have the possibility of observing but also of controlling
and modifying an application behavior, namely by dynamically changing the observed events during
program execution. It is our goal to provide the user with the possibility of modeling the largest
number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically
notified by the message-sending mechanism whenever a registered event occurs. Any object that defines the
event-handling predicates can play the role of a monitor.

The implementation of monitors in Logtalk enjoys the following properties:

Any object can act as a monitor
The monitor status is a role that any object can perform during its existence. The minimum protocol
necessary is declared in the built-in monitoring protocol. Strictly speaking, the reference to this proto-
col is only needed when specializing event handlers. Nevertheless, it is considered good programming
practice to always refer to the protocol when defining event handlers.

Unlimited number of monitors for each event
Several monitors can observe the same event for distinct reasons. Therefore, the number of monitors
per event is bounded only by the available computing resources.

The monitor status of an object can be dynamically changed at runtime
This property does not imply that an object must be dynamic to act as a monitor (the monitor status of
an object is not stored in the object).

Event handlers cannot modify the event arguments
Notably, if the message contains unbound variables, these cannot be bound by the calls to the monitor
event handlers.

86 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.89.0

1.10.2 Event generation

Assuming that the events flag is set to allow for the object (or category) sending the messages we want to
observe, for each message that is sent using the (::)/2 control construct, the runtime system automatically
generates two events. The first — before event — is generated when the message is sent. The second — after
event — is generated after the message has successfully been executed.

Note that self messages (using the (::)/1 control construct) and super calls (using the (™ ™)/1 control
construct) don’t generate events.

1.10.3 Communicating events to monitors

Whenever a spied event occurs, the message-sending mechanism calls the corresponding event handlers
directly for all registered monitors. These calls are internally made, thus bypassing the message-sending
primitives in order to avoid potential endless loops. The event handlers consist of user definitions for the
public predicates declared in the built-in monitoring protocol (see below for more details).

1.10.4 Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages.
On the other hand, for each message that has been sent, the system must verify if its respective event is
monitored. Whenever possible, this verification should be performed in constant time and independently
of the number of monitored events. The representation of events takes advantage of the first argument
indexing performed by most Prolog compilers, which ensure — in the general case — access in constant
time.

Event support can be turned off on a per-object (or per-category) basis using the events compiler flag. With
event support turned off, Logtalk uses optimized code for processing message-sending calls that skips the
checking of monitored events, resulting in a small but measurable performance improvement.

1.10.5 Monitor semantics

The established semantics for monitor actions consists of considering its success as a necessary condition so
that a message can succeed:

* All actions associated with events of type before must succeed so that the message processing can
start.

* All actions associated with events of type after also have to succeed so that the message itself succeeds.
The failure of any action associated with an event of type after forces backtracking over the message
execution (the failure of a monitor never causes backtracking over the preceding monitor actions).

Note that this is the most general choice. If we require a transparent presence of monitors in a message
processing, we just have to define the monitor actions in such a way that they never fail (which is very
simple to accomplish).

1.10. Event-driven programming 87

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.89.0

1.10.6 Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not interfere
with the result. However, this is not always possible. In the case of an event of type before, the failure
of a monitor prevents a message from being sent and prevents the execution of the remaining monitors.
In the case of an event of type after, a monitor failure will force backtracking over message execution.
Different orders of monitor activation can therefore lead to different results if the monitor actions imply
object modifications unrecoverable in case of backtracking. Therefore, the order for monitor activation
should be assumed as arbitrary. In effect, to assume or to try to impose a specific sequence requires a global
knowledge of an application dynamics, which is not always possible. Furthermore, that knowledge can reveal
itself as incorrect if there is any change in the execution conditions. Note that, given the independence
between monitors, it does not make sense that a failure forces backtracking over the actions previously
executed.

1.10.7 Event handling
Logtalk provides three built-in predicates for event handling. These predicates support defining, enumerat-

ing, and abolishing events. Applications that use events extensively usually define a set of objects that use
these built-in predicates to implement more sophisticated and higher-level behavior.

Defining new events

New events can be defined using the define_events/5 built-in predicate:

[I ?- define_events(Event, Object, Message, Sender, Monitor).]

Note that if any of the Event, Object, Message, and Sender arguments is a free variable or contains free
variables, this call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abolish_events/5 built-in predicate:

[I ?- abolish_events(Event, Object, Message, Sender, Monitor).]

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the current_event/5 built-in predicate:

[l ?- current_event(Event, Object, Message, Sender, Monitor). }

Note that this predicate will return sets of matching events if some of the returned arguments are free
variables or contain free variables.

88 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Defining event handlers

The monitoring built-in protocol declares two public predicates, before/3 and after/3, that are automatically
called to handle before and after events. Any object that plays the role of monitor must define one or both
of these event handler methods:

before(Object, Message, Sender) :-

after(Object, Message, Sender) :-

The arguments in both methods are instantiated by the message-sending mechanism when a monitored event
occurs. For example, assume that we want to define a monitor called tracer that will track any message
sent to an object by printing a descriptive text to the standard output. Its definition could be something like:

:- object(tracer,
% built-in protocol for event handler methods
implements(monitoring)).

before(Object, Message, Sender) :-
write('call: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

after(Object, Message, Sender) :-
write('exit: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

:— end_object.

Assume that we also have the following object:

:— object(any).

:= public(bar/1).
bar(bar).

:= public(foo/1).
foo(foo).

:- end_object.

After compiling and loading both objects and setting the events flag to allow, we can start tracing every
message sent to any object by calling the define_events/5 built-in predicate:

| ?- set_logtalk_flag(events, allow).
yes

| ?- define_events(_, _, _, _, tracer).
yes

1.10. Event-driven programming 89

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.89.0

From now on, every message sent from user to any object will be traced to the standard output stream:

| ?- any::bar(X).
call: any <-- bar(X) from user
exit: any <-- bar(bar) from user

X = bar

yes

To stop tracing, we can use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event handlers as public predicates. If necessary, protected or private
implementation of the protocol may be used in order to change the scope of the event handler predicates.
Note that the message-sending processing mechanism is able to call the event handlers irrespective of their
scope. Nevertheless, the scope of the event handlers may be restricted in order to prevent other objects from
calling them.

The pseudo-object user can also act as a monitor. This object expects the before/3 and after/3 predicates to
be defined in the plain Prolog database. To avoid predicate existence errors when setting user as a monitor,
this object declares the predicates multifile. Thus, any plain Prolog code defining the predicates should
include the directives:

;- multifile(before/3).
;- multifile(after/3).

1.11 Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers.
Logtalk makes use of the low-level Prolog built-in predicates that implement message queues and interface
with POSIX threads and mutexes (or a suitable emulation), providing a small set of high-level predicates and
directives that allows programmers to easily take advantage of modern multi-processor and multi-core com-
puters without worrying about the tricky details of creating, synchronizing, or communicating with threads,
mutexes, and message queues. Logtalk multi-threading programming integrates with object-oriented pro-
gramming by providing a threaded engines API, enabling objects and categories to prove goals concurrently,
and supporting synchronous and asynchronous messages.

1.11.1 Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of sup-
ported compilers by setting the read-only threads compiler flag to supported.

90 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.89.0

1.11.2 Enabling objects to make multi-threading calls

The threaded/0 object directive is used to enable an object to make multi-threading calls:

[: - threaded.

1.11.3 Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where
you simply want to prove a set of goals, each one in its own thread, Logtalk provides a threaded/1 built-in
predicate. The remaining predicates allow for fine-grained control, including postponing retrieval of thread
goal results at a later time, supporting non-deterministic thread goals, and making one-way asynchronous
calls. Together, these predicates provide high-level support for multi-threading programming, covering most
common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate threaded/1. Each goal in
the set runs in its own thread.

When the threaded/1 predicate argument is a conjunction of goals, the predicate call is akin to and-
parallelism. For example, assume that we want to find all the prime numbers in a given interval, [N, M].
We can split the interval into two parts and then span two threads to compute the prime numbers in each
sub-interval:

prime_numbers(N, M, Primes) :-
M >N,
N1 is N+ (M - N) // 2,
N2 is N1 + 1,
threaded((
prime_numbers(N2, M, [], Acc),
prime_numbers(N, N1, Acc, Primes)

).

prime_numbers(N, M, Acc, Primes) :-

The threaded/1 call terminates when the two implicit threads terminate. In a computer with two or more
processors (or with a processor with two or more cores), the code above can be expected to provide better
computation times when compared with single-threaded code for sufficiently large intervals.

When the threaded/1 predicate argument is a disjunction of goals, the predicate call is akin to or-parallelism,
here reinterpreted as a set of goals competing to find a solution. For example, consider the different methods
that we can use to find the roots of real functions. Depending on the function, some methods will be faster
than others. Some methods will converge to the solution while others may diverge and never find it. We can
try all the methods simultaneously by writing:

find_root(Function, A, B, Error, Zero) :-
threaded((
bisection: :find_root(Function, A, B, Error, Zero)
; newton: : find_root(Function, A, B, Error, Zero)
; muller::find_root(Function, A, B, Error, Zero)

).

1.11. Multi-threading programming 91

The Logtalk Handbook, Release v3.89.0

The above threaded/1 goal succeeds when one of the implicit threads succeeds in finding the function root,
leading to the termination of all the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy, independent, deterministic computations where
the computational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the threaded call/1-2 built-in predicate
. Calls to this predicate are always true and return immediately (assuming a callable argument). The term
representing the goal is copied, not shared with the thread. The thread computes the first solution to the
goal, posts it to the implicit message queue of the object from where the threaded_call/1 predicate was
called, and suspends waiting for either a request for an alternative solution or for the program to commit to
the current solution.

The results of proving a goal asynchronously in a new thread may be later retrieved by calling the
threaded exit/1-2 built-in predicate within the same object where the call to the threaded_call/1 predi-
cate was made. The threaded_exit/1 calls suspend execution until the results of the threaded_call/1 calls
are sent back to the object message queue.

The threaded_exit/1 predicate allows us to retrieve alternative solutions through backtracking (if you want
to commit to the first solution, you may use the threaded once/1-2 predicate instead of the threaded_call/1
predicate). For example, assuming a lists object implementing the usual member/2 predicate, we could
write:

| ?- threaded_call(lists::member(X, [1,2,3])).

X = _G189
yes

| ?- threaded_exit(lists::member(X, [1,2,3])).

> X X
I
N

no

In this case, the threaded_call/1 and the threaded_exit/1 calls are made within the pseudo-object user.
The implicit thread running the lists: :member/2 goal suspends itself after providing a solution, waiting for
a request for an alternative solution; the thread is automatically terminated when the runtime engine detects
that backtracking to the threaded_exit/1 call is no longer possible.

Calls to the threaded_exit/1 predicate block the caller until the object message queue receives the reply to
the asynchronous call. The predicate threaded peek/1-2 may be used to check if a reply is already available
without removing it from the thread queue. The threaded_peek/1 predicate call succeeds or fails immedi-
ately without blocking the caller. However, keep in mind that repeated use of this predicate is equivalent to
polling a message queue, which may hurt performance.

Be careful when using the threaded_exit/1 predicate inside failure-driven loops. When all the solutions
have been found (and the thread generating them is therefore terminated), re-calling the predicate will
generate an exception. Note that failing instead of throwing an exception is not an acceptable solution, as it
could be misinterpreted as a failure of the threaded_call/1 argument.

The example in the previous section with prime numbers could be rewritten using the threaded_call/1 and
threaded_exit/1 predicates:

92 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

prime_numbers(N, M, Primes) :-

M > N,
N1 is N+ (M - N) // 2,
N2 is N1 + 1,

threaded_call (prime_numbers(N2, M, [], Acc)),
threaded_call(prime_numbers(N, N1, Acc, Primes)),
threaded_exit(prime_numbers(N2, M, [], Acc)),
threaded_exit(prime_numbers(N, N1, Acc, Primes)).

prime_numbers(N, M, Acc, Primes) :-

When using asynchronous calls, the link between a threaded_exit/1 call and the corresponding
threaded_call/1 call is established using unification. If there are multiple threaded_call/1 calls for a
matching threaded_exit/1 call, the connection can potentially be established with any of them (this is
akin to what happens with tabling). Nevertheless, you can easily use a call tag by using the alternative
threaded call/2, threaded once/2, and threaded _exit/2 built-in predicates. For example:

?- threaded_call(member(X, [1,2,31), Tag).

Tag = 1
yes

?- threaded_call(member(X, [1,2,31), Tag).

Tag = 2
yes

?- threaded_exit(member(X, [1,2,31), 2).

>x< X< X
1
N

yes

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on its type.
Tagged asynchronous calls can be canceled by using the threaded cancel/1 predicate.

1.11.4 One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the results. This may be accom-
plished by using the built-in predicate threaded ignore/1. For example, assume that we are developing a
multi-agent application where an agent may send a “happy birthday” message to another agent. We could
write:

[. .., threaded_ignore(agent: :happy_birthday), ... J

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the
object making the call. Note that this predicate implicitly performs a deterministic call of its argument.

1.11. Multi-threading programming 93

The Logtalk Handbook, Release v3.89.0

1.11.5 Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side
effects such as input/output operations or modifications to an object database. For example, if a new thread
is started with the same goal before the first one finished its job, we may end up with mixed output, a
corrupted database, or unexpected goal failures. In order to solve this problem, predicates (and grammar
rule non-terminals) with side effects can be declared as synchronized by using the synchronized/1 predicate
directive. Proving a query to a synchronized predicate (or synchronized non-terminal) is internally protected
by a mutex, thus allowing for easy thread synchronization. For example:

.- synchronized(db_update/1).

db_update(Update) :-

A second example: assume an object defining two predicates for writing, respectively, even and odd numbers
in a given interval to the standard output. Given a large interval, a goal such as:

| ?- threaded_call(obj::odd_numbers(1,100)),
threaded_call(obj::even_numbers(1,100)).

1324685710 ...

will most likely result in a mixed-up output. By declaring the odd_numbers/2 and even_numbers/2 predicates
synchronized:

:- synchronized([
odd_numbers/2,
even_numbers/2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_numbers(1,99)),
threaded_ignore(obj: :even_numbers(1,99)).

13579M

24681012 ...

Note that, in a more realistic scenario, the two threaded_ignore/1 calls would be made concurrently from
different objects. Using the same synchronized directive for a set of predicates implies that they all use the
same mutex, as required for this example.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described predicate, even if the predicate declaration is inherited from
another entity, in order to ensure proper compilation. Note that a synchronized predicate cannot be declared
dynamic. To ensure atomic updates of a dynamic predicate, declare as synchronized the predicate performing
the update.

Synchronized predicates may be used as wrappers for messages sent to objects that are not multi-threading
aware. For example, assume a log object defining a write_log_entry/2 predicate that writes log en-

94 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

tries to a file, thus using side effects on its implementation. We can specify and define, for example, a
sync_write_log_entry/2 predicate as follows:

;= synchronized(sync_write_log_entry/2).

sync_write_log_entry(File, Entry) :-
log::write_log_entry(File, Entry).

and then call the sync_write_log_entry/2 predicate instead of the write_log_entry/2 predicate from multi-
threaded code.

The synchronization directive may be used when defining objects that may be reused in both single-threaded
and multi-threaded Logtalk applications. The directive simply makes calls to the synchronized predicates
deterministic when the objects are used in a single-threaded application.

1.11.6 Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time
by different threads. Sometimes we need to suspend a thread not on a synchronization lock but on some
condition that must hold true for a thread goal to proceed. I.e. we want a thread goal to be suspended
until a condition becomes true instead of simply failing. The built-in predicate threaded wait/1 allows us
to suspend a predicate execution (running in its own thread) until a notification is received. Notifications
are posted using the built-in predicate threaded notify,/1. A notification is a Prolog term that a programmer
chooses to represent some condition becoming true. Any Prolog term can be used as a notification argument
for these predicates. Related calls to the threaded_wait/1 and threaded_notify/1 must be made within the
same object, this, as the object message queue is used internally for posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1 predicate is consumed by a single
threaded_wait/1 predicate call (i.e., these predicates implement a peer-to-peer mechanism). Care should
be taken to avoid deadlocks when two (or more) threads both wait and post notifications to each other.

1.11.7 Threaded engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections.
An engine is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine
also supports a term queue that allows passing arbitrary terms to the engine.

An engine is created by calling the threaded engine create/3 built-in predicate. For example:

| ?- threaded_engine_create(X, member(X, [1,2,3]), worker).
yes

The first argument is an answer template to be used for retrieving solution bindings. The user can name
the engine, as in this example where the atom worker is used, or have the runtime generate a name, which
should be treated as an opaque term.

Engines are scoped by the object within which the threaded_engine_create/3 call takes place. Thus, differ-
ent objects can create engines with the same names with no conflicts. Moreover, engines share the visible
predicates of the object creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved.
Solutions can be retrieved one at a time using the threaded engine next/2 built-in predicate:

1.11. Multi-threading programming 95

The Logtalk Handbook, Release v3.89.0

| ?- threaded_engine_next(worker, X).

The call blocks until a solution is available and fails if there are no solutions left. After returning a solution,
this predicate signals the engine to start computing the next one. Note that this predicate is deterministic.
In contrast with the threaded_exit/1-2 built-in predicates, retrieving the next solution requires calling the
predicate again instead of backtracking into its call. For example:

collect_all(Engine, [Answer| Answers]) :-
threaded_engine_next(Engine, Answer),
]
collect_all(Engine, Answers).
collect_all(, [1).

There is also a reified alternative version of the predicate, threaded engine next reified/2, which returns
the(Answer), no, and exception(Error) terms as answers. Using this predicate, collecting all solutions to an
engine uses a different programming pattern:

threaded_engine_next_reified(Engine, Reified),
collect_all _reified(Reified, Engine, Answers),

collect_all_reified(no, _, [1).
collect_all_reified(the(Answer), Engine, [Answer| Answers]) :-
threaded_engine_next_reified(Engine, Reified),
collect_all _reified(Reified, Engine, Answers).

Engines must be explicitly terminated using the threaded engine destroy/1 built-in predicate:

| ?- threaded_engine_destroy(worker).
yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to
retrieve a task to be performed. For example, assume we define the following predicate:

loop :-
threaded_engine_fetch(Task),
handle(Task),
loop.

The threaded engine_fetch/1 built-in predicate fetches a task for the engine term queue. The engine clients
would use the threaded engine_ post/2 built-in predicate to post tasks into the engine term queue. The engine
would be created using the call:

| ?- threaded_engine_create(none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the threaded engine yield/1 built-in pred-
icate to make the task results available for consumption using the threaded_engine_next/2 and
threaded_engine_next_reified/2 built-in predicates. Blocking semantics are used by these two predi-

96 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

cates: the threaded_engine_yield/1 predicate blocks until the returned solution is consumed, while the
threaded_engine_next/2 predicate blocks until a solution becomes available.

1.11.8 Multi-threading performance

The performance of multi-threading applications is highly dependent on the backend Prolog compiler, the
operating-system, and the use of dynamic binding and dynamic predicates. All compatible backend Prolog
compilers that support multi-threading features make use of POSIX threads or pthreads. The performance of
the underlying pthreads implementation can exhibit significant differences between operating systems. An
important point is synchronized access to dynamic predicates. As different threads may try to simultaneously
access and update dynamic predicates, these operations may use a lock-free algorithm or be protected by a
lock, usually implemented using a mutex. In the latter case, poor mutex lock operating-system performance,
combined with a large number of collisions by several threads trying to acquire the same lock, can result
in severe performance penalties. Thus, whenever possible, avoid using dynamic predicates and dynamic
binding.

1.12 Error handling

Error handling is accomplished in Logtalk by using the standard catch/3 and throw/1 predicates [ISO95]
together with a set of built-in methods that simplify generating errors decorated with expected context.

Errors thrown by Logtalk have, whenever possible, the following format:

[error(Error, logtalk(Goal, ExecutionContext))]

In this exception term, Goal is the goal that triggered the error Error and ExecutionContext is the context
in which Goal is called. For example:

error(
permission_error(modify,private_predicate,p/0),
logtalk(foo: :abolish(p/0), _)

)

Note, however, that Goal and ExecutionContext can be unbound or only partially instantiated when the cor-
responding information is not available (e.g., due to compiler optimizations that throw away the necessary
error context information). The ExecutionContext argument is an opaque term that can be decoded using
the logtalk::execution context/7 predicate.

1.12.1 Raising Exceptions

The error handling section in the reference manual lists a set of convenient built-in methods that generate
error/2 exception terms with the expected context argument. For example, instead of manually constructing
a type error as in:

context(Context),
throw(error(type_error(atom, 42), Context)).

we can simply write:

*

type_error(atom, 42).

1.12. Error handling 97

../../docs/logtalk_0.html#logtalk-0-execution-context-7

The Logtalk Handbook, Release v3.89.0

The provided error built-in methods cover all standard error types found in the ISO Prolog Core standard.

1.12.2 Type-checking

One of the most common cases where errors may be generated is when type-checking predicate arguments
and input data before processing it. The standard library includes a type object that defines an extensive set
of types, together with predicates for validating and checking terms. The set of types is user extensible. New
types can be defined by adding clauses for the type/1 and check/2 multifile predicates. For example, assume
that we want to be able to check temperatures expressed in Celsius, Fahrenheit, or Kelvin scales. We start by
declaring (in an object or category) the new type:

;- multifile(type: :type/1).
type: :type(temperature(_Unit)).

Next, we need to define the actual code that would verify that a temperature is valid. As the different scales
use a different value for absolute zero, we can write:

:— multifile(type: :check/2).
type: :check(temperature(Unit), Term) :-
check_temperature(Unit, Term).

% given that temperature has only a lower bound, we make use of the library
% property/2 type to define the necessary test expression for each unit
check_temperature(celsius, Term) :-

type: :check(property(float, [Temperature]>>(Temperature >= -273.15)), Term).
check_temperature(fahrenheit, Term) :-

type: :check(property(float, [Temperaturel>>(Temperature >= -459.67)), Term).
check_temperature(kelvin, Term) :-

type: :check(property(float, [Temperature]>>(Temperature >= 0.0)), Term).

With this definition, a term is first checked that it is a float value before checking that it is in the expected
open interval. But how do we use this new type? If we just want to test if a temperature is valid, we can
write:

[. .., type::valid(temperature(celsius), 42.0), ...]

The type::valid/2 predicate succeeds or fails depending on the second argument being of the type specified
in the first argument. If instead of success or failure we want to generate an error for invalid values, we can
use the type::check/2 predicate instead:

[. .., type::check(temperature(celsius), 42.0), ... }

If we require an error/2 exception term with the error context, we can use instead the type::check/3 predi-
cate:

context(Context),
type: :check(temperature(celsius), 42.0, Context),

Note that context/1 calls are inlined and messages to the library type object use static binding when com-
piling with the optimize flag turned on, thus enabling efficient type-checking.

98 Chapter 1. User Manual

../../docs/type_0.html#type-0
../../docs/type_0.html#type-0-valid-2
../../docs/type_0.html#type-0-check-2
../../docs/type_0.html#type-0-check-3

The Logtalk Handbook, Release v3.89.0

1.12.3 Expected terms

Support for representing and handling expected terms is provided by the expecteds library. Expected terms
allow deferring errors to later stages of an application in lieu to raising an exception as soon as an error is
detected.

1.12.4 Compiler warnings and errors

The current Logtalk compiler uses the standard read_term/3 built-in predicate to read and compile a Logtalk
source file. This improves the compatibility with backend Prolog compilers and their proprietary syntax
extensions and standard compliance quirks. But one consequence of this design choice is that invalid Prolog
terms or syntax errors may abort the compilation process with limited information given to the user (due to
the inherent limitations of the read_term/3 predicate).

Assuming that all the terms in a source file are valid, there is a set of errors and potential errors, described
below, that the compiler will try to detect and report, depending on the used compiler flags (see the Compiler
flags section of this manual on lint flags for details).

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may reveal
a misspelled entity name or just an entity that will be loaded later. Out-of-order loading should be avoided
when possible as it prevents some code optimizations, such as static binding of messages to methods.

Singleton variables

Singleton variables in a clause are often misspelled variables and, as such, are one of the most common
errors when programming in Prolog. Assuming that the backend Prolog compiler implementation of the
read_term/3 predicate supports the standard singletons/1 option, the compiler warns about any singleton
variable found while compiling a source file.

Redefinition of Prolog built-in predicates

The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or
category. Sometimes the redefinition is intended. In other cases, the user may not be aware that a particular
backend Prolog compiler may already provide the predicate as a built-in predicate or may want to ensure
code portability among several Prolog compilers with different sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn us if we try to redefine
a Logtalk built-in. But the redefinition will probably be an error in most (if not all) cases.

1.12. Error handling 99

The Logtalk Handbook, Release v3.89.0

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default
behavior is to report the error and abort the compilation of the offending entity.

Misspell calls of local predicates
A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to a local predicate

that is not defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are
simple misspell errors.

Portability warnings
A warning will be reported if a predicate clause contains a call to a non-standard built-in predicate or

arithmetic function. Portability warnings are also reported for non-standard flags or flag values. These
warnings often cannot be avoided due to the limited scope of the ISO Prolog standard.

Deprecated elements
A warning will be reported if a deprecated directive, control construct, or predicate is used. These warnings

should be fixed as soon as possible, as support for any deprecated features will likely be discontinued in
future versions.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate
directive.

Duplicated directives
A warning will be reported for any duplicated scope, multifile, dynamic, discontiguous, meta-predicate, and

meta-non-terminal directives. Note that conflicting directives for the same predicate are handled as errors,
not as duplicated directive warnings.

Duplicated clauses

A warning will be reported for any duplicated entity clauses. This check is computationally heavy, however,
and usually turned off by default.

Goals that are always true or false

A warning will be reported for any goal that is always true or false. This is usually caused by typos in the
code. For example, writing X == y instead of X == V.

100 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Trivial fails

A warning will be reported for any call to a local static predicate with no matching clause.

Suspicious calls
A warning will be reported for calls that are syntactically correct but most likely a semantic error. An example

is (::)/1 calls in clauses that apparently are meant to implement recursive predicate definitions where the
user intention is to call the local predicate definition.

Lambda variables
A warning will be reported for lambda expressions with unclassified variables (not listed as either lambda free

or lambda parameter variables), for variables playing a dual role (as both lambda free and lambda parameter
variables), and for lambda parameters used elsewhere in a clause.

Redefinition of predicates declared in uses/2 or use_module/2 directives

A error will be reported for any attempt to define locally a predicate that is already declared in an uses/2 or
use_module/2 directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed.
The default behavior is to report the error and abort the compilation.

1.12.5 Runtime errors
This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in

methods, or from message-sending. For a complete and detailed description of runtime errors, please consult
the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates check the type and mode of the calling arguments, throwing an exception
in case of misuse.

Logtalk built-in methods

Most Logtalk built-in method check the type and mode of the calling arguments, throwing an exception in
case of misuse.

1.12. Error handling 101

The Logtalk Handbook, Release v3.89.0

Message sending

The message-sending mechanisms always check if the receiver of a message is a defined object and if the
message corresponds to a declared predicate within the scope of the sender. The built-in protocol forwarding
declares a predicate, forward/1, which is automatically called (if defined) by the runtime for any message
that the receiving object does not understand. The usual definition for this error handler is to delegate or
forward the message to another object that might be able to answer it:

forward(Message) :-
% forward the message while preserving the sender
[Object: :Message].

If preserving the original sender is not required, this definition can be simplified to:

forward(Message) :-
Object: :Message.

More sophisticated definitions are, of course, possible.

1.13 Reflection

Logtalk provides support for both structural and behavioral reflection. Structural reflection supports compu-
tations over an application structure. Behavioral reflection supports computations over what an application
does while running. The structural and behavioral reflection APIs are used by all the developer tools, which
are regular applications.

1.13.1 Structural reflection

Structural reflection allows querying the properties of objects, categories, protocols, and predicates. This API
provides two views on the structure of an application: a transparent-box view and a black-box view, described
next.

Transparent-box view

The transparent-box view provides a structural view of the contents and properties of entities, predicates,
and source files akin to accessing the corresponding source code. IL.e. this is the view we use when asking
questions such as: What predicates are declared in this protocol? Which predicates are called by this predicate?
Where are clauses for this multifile predicate defined?

For entities, built-in predicates are provided for enumerating entities, enumerating entity properties (includ-
ing entity declared, defined, called, and updated predicates; i.e. full predicate cross-referencing data), and
enumerating entity relations (for full entity cross-referencing data). For a detailed description of the sup-
ported entity properties, see the sections on object properties, protocol properties, and category properties. For
examples of querying entity relations, see the sections on object relations, protocol relations, and category
relations.

O Note

Some entity and predicate properties are only available when the source files are compiled with the
source_data flag turned on.

102 Chapter 1. User Manual

../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.89.0

The logtalk built-in object provides predicates for querying loaded source files and their properties.

Black-box view

The black-box view provides a view that takes into account entity encapsulation and thus only allows query-
ing about predicates and operators that are within the scope of the entity calling the reflection methods. This
is the view we use when asking questions such as: What messages can be sent to this object?

Built-in methods are provided for querying the predicates that are declared and can be called or used as
messages and for querying the predicate properties. It is also possible to enumerate entity operators. See the
sections on finding declared predicates and on predicate properties for more details.

1.13.2 Behavioral reflection

Behavioral reflection provides insight on what an application does when running. Specifically, by observing
and acting on the messages being exchanged between objects. See the section on event-driven programming
for details. There is also a dependents library that provides an implementation of Smalltalk dependents
mechanism.

For use in debugging tools, there is also a small reflection API providing trace and debug event predicates
provided by the logtalk built-in object.

1.14 Writing and running applications

For successful programming in Logtalk, you need a good working knowledge of Prolog and an understanding
of the principles of object-oriented programming. Most guidelines for writing good Prolog code apply as well
to Logtalk programming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enables us to use the currently available object-
oriented methodologies, tools, and metrics [Champaux92] in logic programming. That said, writing appli-
cations in Logtalk is similar to writing applications in Prolog: we define new predicates describing what is
true about our domain objects, about our problem solution. We encapsulate our predicate directives and
definitions inside new objects, categories, and protocols that we create by hand with a text editor or by using
the Logtalk built-in predicates. Some of the information collected during the analysis and design phases
can be integrated into the objects, categories, and protocols that we define by using the available entity and
predicate documenting directives.

1.14.1 Starting Logtalk

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does
not modify your Prolog compiler. We can freely mix Prolog queries with the sending of messages, and our
applications can be made of both normal Prolog clauses and object definitions.

Depending on your Logtalk installation, you may use a script or a shortcut to start Logtalk with your chosen
Prolog compiler. On POSIX operating-systems, Bash shell integration scripts should be available from the
command-line. On Windows, PowerShell integration scripts should be available from the command-line and
integration shortcuts should be available from the Start Menu. Scripts are named upon the used backend
Prolog compilers.

For example, assuming a POSIX operating-system and GNU Prolog as the backend:

1.14. Writing and running applications 103

../../docs/logtalk_0.html#logtalk-0
../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.89.0

‘$ gplgt

Depending on your Logtalk installation, you may need to type instead gplgt.sh. On Windows, using Power-
Shell 7.2 or a later version and ECLiPSe as the backend:

‘ PS> eclipselgt.psi

1.14.2 Running parallel Logtalk processes

Running parallel Logtalk processes is enabled by setting the clean flag to on. This is the default flag value
in the backend adapter files. With this setting, the intermediate Prolog files generated by the Logtalk com-
piler include the process identifier in the names, thus preventing file name clashes when running parallel
processes. When the flag is turned off, the generated intermediate Prolog file names don’t include the pro-
cess identifier and are kept between runs. This is usually done to avoid repeated recompilation of stable
code when developing large applications or when running multiple test sets for performance (by avoiding
repeated recompilation of the [gtunit tool).

To run parallel Logtalk processes with the clean flag turned off, each process must use its own scratch
directory. This is accomplished by defining the scratch_directory library alias to a per-process location
before loading the compiler/runtime. For example, assuming we’re using GNU Prolog as the backend, a
possible definition could be:

;- multifile(logtalk_library_path/2).
;- dynamic(logtalk_library_path/2).

logtalk_library_path(scratch_directory, Directory) :-
temporary_name (1gtXXXXXX, Name),
decompose_file_name(Name, _, Prefix, _),
atom_concat('/tmp/', Prefix, Directory),
(file_exists(Directory) ->
true
; make_directory(Directory)

).

Assuming the code above is saved in a parallel_logtalk_processes_setup.pl file, we would then start
Logtalk using:

[$ gplgt --init-goal "consult('parallel_logtalk_processes_setup.pl')” J

The details on how to define and load the definition of the scratch_directory library alias are,
however, backend specific (due to the lack of Prolog standardization) and possibly also operating-
system specific (different locations for the temporary directory). The Logtalk library includes a
parallel_logtalk_processes_setup.pl file with support for selected backends and usage instructions.

104 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.14.3 Source files

Logtalk source files may define any number of entities (objects, categories, or protocols). Source files may
also contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is usually copied
as-is to the corresponding Prolog output file (except, of course, if subject to the term-expansion mechanism).
Prolog modules are compiled as objects. The following Prolog directives are processed when read (thus
affecting the compilation of the source code that follows): ensure_loaded/1, use_module/1-2, op/3, and
set_prolog_flag/2. The initialization/1 directive may be used for defining an initialization goal to be exe-
cuted when loading a source file.

Logtalk source files can include the text of other files by using the include/1 directive. Although there is also
a standard Prolog include/1 directive, any occurrences of this directive in a Logtalk source file is handled by
the Logtalk compiler, not by the backend Prolog compiler, to improve portability.

When writing a Logtalk source file, the following advice applies:
* When practical and when performance is critical, define each entity on its own source file.

* Source file loading order can impact performance (e.g., if an object imports a category defined in a
source file loaded after the object source file, no static binding optimizations will be possible).

* Initialization directives that result in the compilation and loading of other source files (e.g., libraries)
should preferably be written in the application loader file to ensure the availability of the entities they
define when compiling the application source files (thus enabling static binding optimizations).

Naming conventions

When defining each entity in its own source file, it is recommended that the source file be named after the
entity identifier. For parametric objects, the identifier arity can be appended to the identifier functor. By
default, all Logtalk source files use the extension .1gt but this is optional and can be set in the adapter files.
For example, we may define an object named vehicle and save it in a vehicle.lgt source file. A sort(_)
parametric object would be saved it on a sort_1.1gt source file.

Source file text encoding

The text encoding used in a source file may be declared using the encoding/1 directive when running Logtalk
with backend Prolog compilers that support multiple encodings (check the encoding directive flag in the
adapter file of your Prolog compiler).

1.14.4 Multi-pass compiler

Logtalk is implemented using a multi-pass compiler. In comparison, some Prolog systems use a multi-pass
compiler while others use a single-pass compiler. While there are pros and cons with each solution, the most
relevant consequence in this context is for the content of source files. In Logtalk, entities and predicates only
become available (for the runtime system) after the source file is successfully compiled and loaded. This may
prevent some compiler optimizations, notably static binding, if some of the referred entities are defined in the
same source file. On the other hand, the order of predicate directives and predicate definitions is irrelevant.
In contrast, in a system implemented using a single-pass compiler, the order of the source file terms can and
often is significant for proper and successful compilation. In these systems, predicates may become available
for calling as soon as they are compiled, even if the rest of the source file is yet to be compiled.

The Logtalk compiler reads source files using the Prolog standard read_term/3 predicate. This ensures com-
patibility with any syntax extensions that the used backend may implement. In the first compiler stage, all
source file terms are read, and data about all defined entities, directives, predicates, and grammar rules is
collected. Any defined term-expansion rules are applied to the read terms. Grammar rules are expanded into

1.14. Writing and running applications 105

The Logtalk Handbook, Release v3.89.0

predicate clauses unless expanded by user-defined term-expansion rules. The second stage compiles all ini-
tialization goals and clause bodies, taking advantage of the data collected in the first stage and applying any
defined goal-expansion rules. Depending on the compilation mode, the generated code can be instrumented
for debugging tools or optimized for performance. Linter checks are performed during these two first stages.
The final step in the second stage is to write the generated intermediate Prolog code into a temporary file.
In the third and final stage, this intermediate Prolog file is compiled and loaded by the used backend. These
intermediate files are deleted by default after loading (see the clean flag description for details).

1.14.5 Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source
files can be compiled to disk by calling the logtalk compile/1 built-in predicate:

[I ?- logtalk_compile([source_filel, source_file2, ...]).]

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that
can then be consulted or compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files, we can use the logtalk load/1 built-in predi-
cate:

[l ?- logtalk_load([source_filel, source_file2, ...1). J

This predicate works in the same way as the predicate logtalk_compile/1 but also loads the compiled files
into memory.

Both predicates expect a source file name or a list of source file names as an argument. The Logtalk source
file name extension, as defined in the adapter file (by default, .1gt), can be omitted.

If you have more than a few source files, then you may want to use a loader file helper file containing the
calls to the logtalk_load/1-2 predicates. Consulting or compiling the loader file will then compile and load
all your Logtalk entities into memory (see below for details).

With most backend Prolog compilers, you can use the shorthand {File} for logtalk_load(File) and {File1,
File2, ...} for logtalk_load([Filel, File2, ...]). The use these shorthands should be restricted to
the Logtalk/Prolog top-level interpreter, as they are not part of the language specification and may be com-
mented out in case of conflicts with backend Prolog compiler features.

The built-in predicate logtalk make/0 can be used to reload all modified source files. With most backend
Prolog compilers, you can also use the {*} top-level shortcut. Files are also reloaded when the compilation
mode changes. An extended version of this predicate, logtalk _make/1, accepts multiple targets, including
all, clean, check, circular, documentation, caches, debug, normal, and optimal. For example, assume
that you have loaded your application files and found a bug. You can easily recompile the files in debug
mode by using the logtalk_make(debug) goal. After debugging and fixing the bug, you can reload the files
in normal mode using the logtalk_make(normal) or in optimized mode using the logtalk_make(optimal)
goal. See the predicates documentation for a complete list of targets and top-level shortcuts. In particular,
the logtalk_make(clean) goal can be specially useful before switching backend Prolog compilers, as the
generated intermediate files may not be compatible. The logtalk_make(caches) goal is usually used when
benchmarking compiler performance improvements.

106 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.14.6 Compiler errors, warnings, and comments

Following a Prolog tradition inherited from Quintus Prolog, the compiler prefixes (by default) errors with a
! and warnings with a *. For example:

! Existence error: directive object/1 does not exist
! in directive end_object/0
! in file /home/jdoe/logtalk/examples/errors/unmatched_directive.lgt at or above line.

27

* No matching clause for goal: baz(a)

* while compiling object main_include_compiler_warning

* in file /home/jdoe/logtalk/examples/errors/include_compiler_warning.lgt between_

—lines 38-39

Compiler comments are prefixed by %. For example:

?- {ack(loader)}.

% [/home/jdoe/logtalk/examples/ack/ack.lgt loaded 1]

% [/home/jdoe/logtalk/examples/ack/loader.lgt loaded]
% (@ warnings)

true.

1.14.7 Loader files

If you look into the Logtalk distribution, you will notice that most source code directories (e.g., of tools,
libraries, and examples) contain a driver file that can be used to load all included source files and any
required libraries. These loader files are usually named loader.lgt or contain the word loader in their
name. Loader files are ordinary source files and thus compiled and loaded like any source file. By also
defining a loader file for your project, you can then load it by simply typing:

[I ?- {loader}.]

Another driver file, usually named tester.1lgt (or containing the word tester in its name) is commonly used
to load and run tests. By also defining a tester file for your project, you can then run its tests by simply

typing:
[I ?- {tester}.]

Usually these driver files contain calls to the built-in predicates set logtalk flag/2 (e.g., for setting global,
project-specific, flag values) and logtalk load/1 or logtalk load/2 (for loading project files), wrapped inside
a Prolog initialization/1 directive for portability. For instance, if your code is split into three source files
named sourcel.1gt, source2.1gt, and source3.1lgt, then the contents of your loader file could be:

;- initialization((
% set project-specific global flags
set_logtalk_flag(events, allow),
% load the project source files
logtalk_load([sourcel, source2, source3])

).

Another example of directives that are often used in a loader file would be op/3 directives declaring global
operators needed by your project. Loader files are also often used for setting source file-specific compiler

1.14. Writing and running applications 107

The Logtalk Handbook, Release v3.89.0

flags (this is useful even when you only have a single source file if you always load it with the same set of
compiler flags). For example:

;- initialization((
% set project-specific global flags
set_logtalk_flag(source_data, off),
% load the project source files
logtalk_load(
[sourcel, source2, source3],
% source file-specific flags
[portability(warning)1),
logtalk_load(
[source4, source5],
% source file-specific flags
[portability(silent)])
).

To take the best advantage of loader and tester files, define a clause for the multifile and dynamic
logtalk_library_path/2 predicate for the directory containing your source files as explained in the next
section.

When your project also uses Prolog module resources, the loader file is also the advised place to load them,
preferably without any exports. For example:

:— use_module(library(clpfd), []).

:— initialization((

).

Complex projects often use a main loader file that loads the loader files of each of the project components.
Thus, loader files provide a central point to understand a project organization and dependencies.

It is worth mentioning a common mistake when writing the first loader files. New users sometimes try to set
compiler flags using logtalk_load/2 when loading a loader file. For example, by writing:

[I ?- logtalk_load(loader, [optimize(on)]). J

This will not work as you might expect, as the compiler flags will only be used in the compilation of the
loader.1gt file itself and will not affect the compilation of files loaded through the initialization/1 direc-
tive contained on the loader file.

1.14.8 Libraries of source files

Logtalk defines a library simply as a directory containing source files. Library locations can be specified by
defining or asserting clauses for the dynamic and multifile predicate logtalk library path/2. For example:

;- multifile(logtalk_library_path/2).
:— dynamic(logtalk_library_path/2).

logtalk_library_path(shapes, '$LOGTALKUSER/examples/shapes/"').

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases
may also be used on the second argument. For example:

108 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

;- multifile(logtalk_library_path/2).
:— dynamic(logtalk_library_path/2).

logtalk_library_path(lgtuser, '$LOGTALKUSER/').
logtalk_library_path(examples, lgtuser('examples/')).
logtalk_library_path(viewpoints, examples('viewpoints/')).

This allows us to load a library source file without the need to first change the current working directory to
the library directory and then back to the original directory. For example, in order to load a loader.1lgt file,
contained in a library named viewpoints, we just need to type:

[I ?- logtalk_load(viewpoints(loader)).]

The best way to take advantage of this feature is to load at startup a source file containing clauses for
the logtalk_library_path/2 predicate needed for all available libraries (typically, using a settings file, as
discussed below). This allows us to load library source files or entire libraries without worrying about library
paths, improving code portability. The directory paths on the second argument should always end with the
path directory separator character. Most backend Prolog compilers allow the use of environment variables
in the second argument of the logtalk_library_path/2 predicate. Use of POSIX relative paths (e.g., '../'
or './") for top-level library directories (e.g., lgtuser in the example above) is not advised, as different
backend Prolog compilers may start with different initial working directories, which may result in portability
problems of your loader files.

This library notation provides functionality inspired by the file_search_path/2 mechanism introduced by
Quintus Prolog and later adopted by some other Prolog compilers but with a key difference: there is no
fragile search mechanism, and the Logtalk make can be used to check for duplicated library aliases. Multiple
definitions for the same alias are problematic when using external dependencies, as any third-party update
to those dependencies can introduce file name clashes. Note that the potential for these clashes cannot
be reliably minimized by a careful ordering of the logtalk_library_path/2 predicate clauses due to this
predicate being multifile and dynamic.

1.14.9 Settings files

Although it is always possible to edit the backend Prolog compiler adapter files, the recommended solution
to customize compiler flags is to create a settings.lgt file in the Logtalk user folder or in the user home
folder. Depending on the backend Prolog compiler and the operating-system, is also possible to define per-
project settings files by creating a settings.1gt file in the project directory and by starting Logtalk from this
directory. At startup, Logtalk tries to load a settings.1gt file from the following directories, searched in
sequence:

* Startup directory ($LOGTALK_STARTUP_DIRECTORY)

* Logtalk user directory ($LOGTALKUSER)

* User home directory ($HOME; %USERPROFILE% on Windows if %HOME% is not defined)
* Application data directory (%APPDATA%\Logtalk; only on Windows)

* Config directory ($XDG_CONFIG_HOME/logtalk)

* Default config directory ($HOME/.config/logtalk/)

The startup directory is only searched when the read-only settings file flag is set to allow. When no settings
files are found, Logtalk will use the default compiler flag values set on the backend Prolog compiler adapter
files. When limitations of the backend Prolog compiler or the operating-system prevent Logtalk from finding
the settings files, these can always be loaded manually after Logtalk startup.

1.14. Writing and running applications 109

The Logtalk Handbook, Release v3.89.0

Settings files are normal Logtalk source files (although when automatically loaded by Logtalk they are com-
piled and loaded silently with any errors being reported but otherwise ignored). The usual contents is an
initialization/1 Prolog directive containing calls to the set logtalk flag/2 Logtalk built-in predicate and
asserting clauses for the logtalk library path/2 multifile dynamic predicate. Note that the set logtalk flag/2
directive cannot be used as its scope is local to the source file being compiled.

One of the troubles of writing portable applications is the different feature sets of Prolog compilers. Using
the Logtalk support for conditional compilation and the prolog dialect flag we can write a single settings file
that can be used with several backend Prolog compilers:

:— if(current_logtalk_flag(prolog_dialect, yap)).

% YAP specific settings

elif(current_logtalk_flag(prolog_dialect, gnu)).

% GNU Prolog specific settings

else.
% generic Prolog settings

;- endif.

The Logtalk distribution includes a settings-sample.lgt sample file with commented out code snippets for
common settings.

1.14.10 Compiler linter

The compiler includes a linter that checks for a wide range of possible problems in source files. Notably,
the compiler checks for unknown entities, unknown predicates, undefined predicates (i.e., predicates that
are declared but not defined), missing directives (including missing dynamic/1 and meta_predicate/1 di-
rectives), redefined built-in predicates, calls to non-portable predicates, singleton variables, goals that are
always true or always false (i.e., goals that can be replaced by true or fail), and trivial fails (i.e., calls to
predicates with no match clauses). Most of the linter warnings are controlled by compiler flags. See the next
section for details.

1.14.11 Compiler flags

The logtalk load/1 and logtalk compile/1 always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the current session using the built-in predicate
set_logtalk flag/2. Although the default flag values cover the usual cases, you may want to use a different
set of flag values while compiling or loading some of your Logtalk source files. This can be accomplished by
using the logtalk load/2 or the logtalk compile/2 built-in predicates. These two predicates accept a list of
options affecting how a Logtalk source file is compiled and loaded:

[l ?- logtalk_compile(Files, Options).

or:

110 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

[| 7- logtalk_load(Files, Options).]

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are just shortcuts to the extended versions
called with the default compiler flag values. The options are represented by a compound term where the
functor is the flag name and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the adapter file by using the
set_logtalk flag/2 built-in predicate. For example:

[l ?- set_logtalk_flag(unknown_entities, silent). J

The current default flags values can be enumerated using the current logtalk flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent
yes

Logtalk also implements a set_logtalk flag/2 directive, which can be used to set flags within a source file or
within an entity. For example:

% compile objects in this source file with event support
.- set_logtalk_flag(events, allow).

:- object(foo).
% compile this object with support

% for dynamic predicate declarations
.- set_logtalk_flag(dynamic_declarations, allow).

:— end_object.

Note that the scope of the set_logtalk_flag/2 directive is local to the entity or to the source file containing
it.

O Note

Applications should never rely on default flag values for working properly. Whenever the compilation of
a source file or an entity requires a specific flag value, the flag should be set explicitly in the entity, in the
source file, or in the loader file.

1.14. Writing and running applications 111

The Logtalk Handbook, Release v3.89.0

Read-only flags

Some flags have read-only values and thus cannot be changed at runtime. Their values are defined in the
Prolog backend adapter files These are:

settings_file
Allows or disables loading of a settings file at startup. Possible values are allow, restrict, and deny.
The usual default value is allow but it can be changed by editing the adapter file when e.g. embedding
Logtalk in a compiled application. With a value of allow, settings files are searched in the startup di-
rectory, in the Logtalk user directory, in the user home directory, in the APPDATA if running on Windows,
and in the XDG configuration directory. With a value of restrict, the search for the settings files skips
the startup directory.

prolog_dialect
Identifier of the backend Prolog compiler (an atom). This flag can be used for conditional compilation
of Prolog compiler specific code.

prolog_version
Version of the backend Prolog compiler (a compound term, v(Major, Minor, Patch), whose arguments
are integers). This flag availability depends on the Prolog compiler. Checking the value of this flag fails
for any Prolog compiler that does not provide access to version data.

prolog_compatible_version
Compatible version of the backend Prolog compiler (a compound term, usually with the format
@=(v(Major, Minor, Patch)), whose arguments are integers). This flag availability depends on
the Prolog compiler. Checking the value of this flag fails for any Prolog compiler that does not provide
access to version data.

unicode
Informs Logtalk if the backend Prolog compiler supports the Unicode standard. Possible flag values
are unsupported, full (all Unicode planes supported), and bmp (supports only the Basic Multilingual
Plane).

encoding_directive
Informs Logtalk if the backend Prolog compiler supports the encoding/1 directive. This directive is used
for declaring the text encoding of source files. Possible flag values are unsupported, full (can be used
in both Logtalk source files and compiler generated Prolog files), and source (can be used only in
Logtalk source files).

tabling
Informs Logtalk if the backend Prolog compiler provides tabling programming support. Possible flag
values are unsupported and supported.

engines
Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for Logtalk threaded engines. Possible flag values are unsupported and supported.

threads
Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for all high-level Logtalk multi-threading features. Possible flag values are unsupported and
supported.

modules
Informs Logtalk if the backend Prolog compiler provides suitable module support. Possible flag val-
ues are unsupported and supported (independently of this flag, Logtalk provides limited support for
compiling Prolog modules as objects).

coinduction
Informs Logtalk if the backend Prolog compiler provides the required minimal support for cyclic terms

112 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

necessary for working with coinductive predicates. Possible flag values are unsupported and supported.

Version flags

version_data(Value)
Read-only flag whose value is the compound term logtalk(Major,Minor,Patch,Status). The first
three arguments are integers and the last argument is an atom, possibly empty, representing version
status: aN for alpha versions, bN for beta versions, rcN for release candidates (with N being a natural
number), and stable for stable versions. The version_data flag is also a de facto standard for Prolog
compilers.

Lint flags

linter(Option)
Meta-flag for managing the values of all the linter flags as a group. Possible option values are on to set
all the individual linter flags to warning, of f to set all the individual linter flags to silent, and default
to set all the individual linter flag values to their defaults as defined in the backend adapter files (the
usual default). This flag must always be defined in the backend adapter files with the value of default.

unknown_entities(Option)
Controls the unknown entity warnings, resulting from loading an entity that references some other
entity that is not currently loaded. Possible option values are warning (the usual default) and silent.
Note that these warnings are not always avoidable, specially when using reflective designs of class-
based hierarchies.

unknown_predicates(Option)
Defines the compiler behavior when unknown messages or calls to unknown predicates (or non-
terminals) are found. An unknown message is a message sent to an object that is not part of the
object protocol. An unknown predicate is a called predicate that is neither locally declared or defined.
Possible option values are error, warning (the usual default), and silent (not recommended).

undefined_predicates(Option)
Defines the compiler behavior when calls to declared but undefined predicates (or non-terminals) are
found. Note that these calls will fail at runtime as per closed-world assumption. Possible option values
are error, warning (the usual default), and silent (not recommended).

steadfastness(Option)
Controls warnings about possible non steadfast predicate definitions due to variable aliasing at a clause
head and a cut in the clause body. Possible option values are warning and silent (the usual default
due to the possibility of false positives).

portability(Option)
Controls the non-ISO specified Prolog built-in predicate and non-ISO specified Prolog built-in arith-
metic function calls warnings plus use of non-standard Prolog flags and/or flag values. Possible option
values are warning and silent (the usual default).

deprecated(Option)
Controls the deprecated predicate warnings. Possible option values are warning (the usual default)
and silent.

missing_directives(Option)
Controls the missing predicate directive warnings. Possible option values are warning (the usual de-
fault) and silent (not recommended).

duplicated_directives(Option)
Controls the duplicated predicate directive warnings. Possible option values are warning (the usual

1.14. Writing and running applications 113

The Logtalk Handbook, Release v3.89.0

default) and silent (not recommended). Note that conflicting directives for the same predicate are
handled as errors, not as duplicated directive warnings.

trivial_goal_fails(Option)
Controls the printing of warnings for calls to local static predicates with no matching clauses. Possible
option values are warning (the usual default) and silent (not recommended).

always_true_or_false_goals(Option)
Controls the printing of warnings for goals that are always true or false. Possible option values are
warning (the usual default) and silent (not recommended). A unexpected exception in the goal being
checked is also reported.

grammar_rules(Option)
Controls the printing of grammar rules related warnings. Possible option values are warning (the usual
default) and silent (not recommended).

arithmetic_expressions(Option)
Controls the printing of arithmetic expressions related warnings. Possible option values are warning
(the usual default) and silent (not recommended).

lambda_variables(Option)
Controls the printing of lambda variable related warnings. Possible option values are warning (the
usual default) and silent (not recommended).

suspicious_calls(Option)
Controls the printing of suspicious call warnings. Possible option values are warning (the usual default)
and silent (not recommended).

redefined_built_ins(Option)
Controls the Logtalk and Prolog built-in predicate redefinition warnings. Possible option values are
warning and silent (the usual default). Warnings about redefined Prolog built-in predicates are often
the result of running a Logtalk application on several Prolog compilers, as each Prolog compiler defines
its set of built-in predicates.

redefined_operators(Option)
Controls the Logtalk and Prolog built-in operator redefinition warnings. Possible option values are
warning (the usual default) and silent. Redefining Logtalk operators or standard Prolog operators
can break term parsing, causing syntax errors or change how terms are parsed, introducing bugs.

singleton_variables(Option)
Controls the singleton variable warnings. Possible option values are warning (the usual default) and
silent (not recommended).

naming(Option)
Controls warnings about entity, predicate, and variable names per official coding guidelines (which
advise using underscores for entity and predicate names and camel case for variable names). Addition-
ally, variable names should not differ only in case. Possible option values are warning and silent (the
usual default due to the current limitation to ASCII names and the computational cost of the checks).

duplicated_clauses(Option)
Controls warnings of duplicated entity clauses (and duplicated entity grammar rules). Possible option
values are warning and silent (the usual default due to the required heavy computations). When the
term-expansion mechanism is used and results in duplicated clauses, the reported line numbers are for
lines of the original clauses that were expanded.

disjunctions(Option)
Controls warnings on clauses where the body is a disjunction. Possible option values are warning (the
usual default) and silent. As per coding guidelines, in most cases, these clauses can be rewritten using
a clause per disjunction branch for improved code readability.

114 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

conditionals(Option)
Controls warnings on if-then-else and soft-cut control constructs. Possible option values are warning
(the usual default) and silent. Warnings include misuse of cuts, potential bugs in the test part, and
missing else part (lack of compliance with coding guidelines).

catchall_catch(Option)
Controls warnings on catch/3 goals that catch all exceptions. Possible option values are warning and
silent (the usual default). Lack of standardization often makes it tricky or cumbersome to avoid too
generic catch/3 goals when writing portable code.

left_recursion(Option)
Controls warnings of left-recursion on clauses and grammar rules. Specifically, when the clause or
grammar rule head and the leftmost goal in the body are variants. Possible option values are warning
(the usual default) and silent.

tail_recursive(Option)
Controls warnings of non-tail recursive predicate (and non-terminal) definitions. The lint check does
not detect all cases of non-tail recursive predicate definitions, however. Also, definitions that make two
or more recursive calls are not reported as usually they cannot be changed to be tail recursive. Possible
option values are warning and silent (the usual default).

encodings(Option)
Controls the source file text encoding warnings. Possible option values are warning (the usual default)
and silent.

general(Option)
Controls warnings that are not controlled by a specific flag. Possible option values are warning (the
usual default) and silent.

Optional features compilation flags

complements(Option)
Allows objects to be compiled with support for complementing categories turned off in order to im-
prove performance and security. Possible option values are allow (allow complementing categories
to override local object predicate declarations and definitions), restrict (allow complementing cate-
gories to add predicate declarations and definitions to an object but not to override them), and deny
(ignore complementing categories; the usual default). This option can be used on a per-object basis.
Note that changing this option is of no consequence for objects already compiled and loaded.

dynamic_declarations(Option)
Allows objects to be compiled with support for dynamic declaration of new predicates turned off in
order to improve performance and security. Possible option values are allow and deny (the usual
default). This option can be used on a per-object basis. Note that changing this option is of no
consequence for objects already compiled and loaded. This option is only checked when sending an
asserta/1 or assertz/1 message to an object. Local asserting of new predicates is always allowed.

events(Option)
Allows message-sending calls to be compiled with or without event-driven programming support. Possi-
ble option values are allow and deny (the usual default). Objects (and categories) compiled with this
option set to deny use optimized code for message-sending calls that do not trigger events. As such,
this option can be used on a per-object (or per-category) basis. Note that changing this option is of no
consequence for objects already compiled and loaded.

context_switching_calls(Option)
Allows context-switching calls ((<<)/2) to be either allowed or denied. Possible option values are
allow and deny. The default flag value is allow. Note that changing this option is of no consequence
for objects already compiled and loaded.

1.14. Writing and running applications 115

The Logtalk Handbook, Release v3.89.0

Backend Prolog compiler and loader flags

underscore_variables(Option)
Controls the interpretation of variables that start with an underscore (excluding the anonymous vari-
able) that occur once in a term as either don’t care variables or singleton variables. Possible option
values are dont_care (the default for all supported backends) and singletons. Although a changeable
flag, its value is backend dependent and thus expected to be set only in the backend adapter files.

prolog_compiler(Flags)
List of compiler flags for the generated Prolog files. The valid flags are specific to the used Prolog
backend compiler. The usual default is the empty list. These flags are passed to the backend Prolog
compiler built-in predicate that is responsible for compiling to disk a Prolog file. For Prolog compilers
that don’t provide separate predicates for compiling and loading a file, use instead the prolog loader
flag.

prolog_loader(Flags)
List of loader flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default is the empty list. These flags are passed to the backend Prolog compiler
built-in predicate that is responsible for loading a (compiled) Prolog file.

Other flags

scratch_directory(Directory)

Sets the directory to be used to store the temporary files generated when compiling Logtalk source files.
This directory can be specified using an atom or using library notation. The directory must always end
with a slash. The default value is a sub-directory of the source files directory, either './1gt_tmp/' or '.
/.1gt_tmp/' (depending on the backend Prolog compiler and operating-system). Relative directories
must always start with './' due to the lack of a portable solution to check if a path is relative or
absolute. The default value set on the backend Prolog compiler adapter file can be overridden by
defining the scratch_directory library alias (see the logtalk library path/2 predicate documentation
for details).

report(Option)
Controls the default printing of messages. Possible option values are on (by usual default, print all
messages that are not intercepted by the user), warnings (only print warning and error messages that
are not intercepted by the user), and off (do not print any messages that are not intercepted by the
user).

code_prefix(Character)

Enables the definition of prefix for all functors of Prolog code generated by the Logtalk compiler. The
option value must be a single character atom. Its default value is '$'. Specifying a code prefix provides
a way to solve possible conflicts between Logtalk compiled code and other Prolog code. In addition,
some Prolog compilers automatically hide predicates whose functor starts with a specific prefix, such
as the character $. Although this is not a read-only flag, it should only be changed at startup time
and before loading any source files. When changing this flag (e.g., from a settings file), restart with
the clean flag turned on to ensure that any compiled files using the old code_prefix value will be
recompiled.

optimize(Option)
Controls the compiler optimizations. Possible option values are on (used by default for deployment)
and of f (used by default for development). Compiler optimizations include the use of static binding
whenever possible, the removal of redundant calls to true/@ from predicate clauses, the removal of
redundant unifications when compiling grammar rules, and inlining of predicate definitions with a
single clause that links to a local predicate, to a plain Prolog built-in (or foreign) predicate, or to a
Prolog module predicate with the same arguments. Care should be taken when developing applications

116 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

with this flag turned on as changing and reloading a file may render static binding optimizations invalid
for code defined in other loaded files. Turning on this flag automatically turns off the debug flag.

source_data(Option)
Defines how much information is retained when compiling a source file. Possible option values are on
(the usual default for development) and of f. With this flag set to on, Logtalk will keep the information
represented using documenting directives plus source location data (including source file names and
line numbers). This information can be retrieved using the reflection API and is useful for documenting,
debugging, and integration with third-party development tools. This flag can be turned off in order to
generate more compact code.

debug(Option)
Controls the compilation of source files in debug mode (the Logtalk default debugger can only be
used with files compiled in this mode). Also controls, by default, printing of debug> and debug(Topic)
messages. Possible option values are on and of f (the usual default). Turning on this flag automatically
turns off the optimize flag.

reload(Option)
Defines the reloading behavior for source files. Possible option values are skip (skip reloading
of already loaded files; this value can be used to get similar functionality to the Prolog directive
ensure_loaded/1 but should be used only with fully debugged code), changed (the usual default;
reload files only when they are changed since last loaded, provided that any explicit flags and the
compilation mode are the same as before), and always (always reload files).

relative_to(Directory)
Defines a base directory for resolving relative source file paths. The default value is the directory of
the source file being compiled.

hook(0Object)
Allows the definition of an object (which can be the pseudo-object user) implementing the expanding
built-in protocol. The hook object must be compiled and loaded when this option is used. It’s also
possible to specify a Prolog module instead of a Logtalk object, but the module must be pre-loaded,
and its identifier must be different from any object identifier.

clean(Option)

Controls cleaning of the intermediate Prolog files generated when compiling Logtalk source files. Pos-
sible option values are off and on (the usual default). When turned on, intermediate files are deleted
after loading, and all source files are recompiled disregarding any existing intermediate files. When
turned off, the intermediate files are kept. This is useful when embedding applications, which requires
collecting the intermediate code, and when working on large applications to avoid repeated recompi-
lation of stable code. The flag must be turned on when changing compilation modes, changing flags
such as code_prefix, or when turning on linter flags that are off by default without at the same time
making changes to the application source files themselves, as any existing intermediate files would not
be recompiled as necessary due to file timestamps not changing.

1.14. Writing and running applications 117

../../docs/user_0.html#user-0
../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.89.0

User-defined flags

Logtalk provides a create_logtalk flag/3 predicate that can be used for defining new flags.

1.14.12 Reloading source files

As a general rule, reloading source files should never occur in production code and should be handled with
care in development code. Reloading a Logtalk source file usually requires reloading the intermediate Prolog
file that is generated by the Logtalk compiler. The problem is that there is no standard behavior for reloading
Prolog files. For static predicates, almost all Prolog compilers replace the old definitions with the new ones.
However, for dynamic predicates, the behavior depends on the Prolog compiler. Most compilers replace the
old definitions, but some of them simply append the new ones, which usually leads to trouble. See the
compatibility notes for the backend Prolog compiler you intend to use for more information. There is an
additional potential problem when using multi-threading programming. Reloading a threaded object does
not recreate from scratch its old message queue, which may still be in use (e.g., threads may be waiting on
it).

When using library entities and stable code, you can avoid reloading the corresponding source files (and,
therefore, recompiling them) by setting the reload compiler flag to skip. For code under development, you
can turn off the clean flag to avoid recompiling files that have not been modified since the last compilation
(assuming that backend Prolog compiler that you are using supports retrieving file modification dates). You
can disable deleting the intermediate files generated when compiling source files by changing the default
flag value in your settings file, by using the corresponding compiler flag with the compiling and loading
built-in predicates, or, for the remaining of a working session, by using the call:

[l ?- set_logtalk_flag(clean, off).

Some caveats that you should be aware of. First, some warnings that might be produced when compiling a
source file will not show up if the corresponding object file is up-to-date because the source file is not being
(re)compiled. Second, if you are using several Prolog compilers with Logtalk, be sure to perform the first
compilation of your source files with the clean flag turned off: the intermediate Prolog files generated by
the Logtalk compiler may not be compatible across Prolog compilers or even for the same Prolog compiler
across operating systems (e.g., due to the use of different character encodings or end-of-line characters).

1.14.13 Batch processing

When doing batch processing, you probably want to turn off the report flag to suppress all messages of type
banner, comment, comment(_), warning, and warning(_) that are normally printed. Note that error messages
and messages providing information requested by the user will still be printed.

1.14.14 Optimizing performance

The default compiler flag settings are appropriate for the development but not necessarily for the deploy-
ment of applications. To minimize the generated code size, turn the source data flag off. To optimize
runtime performance, turn on the optimize flag. Your chosen backend Prolog compiler may also provide
performance-related flags; check its documentation.

Pay special attention to file compilation/loading order. Whenever possible, compile and load your files by
taking into account file dependencies. By default, the compiler will print a warning whenever a file references
an entity that is not yet loaded. Solving these warnings is key for optimal performance by enabling static
binding optimizations. For a clear picture of file dependencies, use the diagrams tool to generate a file
dependency diagram for your application.

118 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic
predicates cannot be avoided, try to make them private. Declaring a dynamic predicate also as a private
predicate allows the compiler to optimize local calls to the database methods (e.g., assertz/1 and retract/1)
that modify the predicate.

Sending a message to self implies dynamic binding, but there are often cases where (::)/1 is misused to call
an imported or inherited predicate that is never going to be redefined in a descendant. In these cases,
a super call, (™ ~)/1, can be used instead with the benefit of often enabling static binding. Most of the
guidelines for writing efficient Prolog code also apply to Logtalk code. In particular, define your predicates
to take advantage of first-argument indexing. In the case of recursive predicates, define them as tail-recursive
predicates whenever possible.

See the section on performance for a detailed discussion on Logtalk performance.

1.14.15 Portable applications

Logtalk is compatible with most modern standards-compliant Prolog compilers. However, this does not
necessarily imply that your Logtalk applications will have the same level of portability. If possible, you
should only use in your applications Logtalk built-in predicates and ISO Prolog-specified built-in predicates
and arithmetic functions. If you need to use built-in predicates (or built-in arithmetic functions) that may
not be available in other Prolog compilers, you should try to encapsulate the non-portable code in a small
number of objects and provide a portable interface for that code through the use of Logtalk protocols. An
example will be code that access operating-system specific features. The Logtalk compiler can warn you of
the use of non-ISO-specified built-in predicates and arithmetic functions by using the portability compiler
flag.

1.14.16 Conditional compilation

Logtalk supports conditional compilation within source files using the if/1, elif/1, else/0, and endif/0 direc-
tives. This support is similar to the support found in several Prolog systems such as ECLiPSe, GNU Prolog,
SICStus Prolog, SWI-Prolog, XSB, and YAP.

1.14.17 Avoiding common errors

Try to write objects and protocol documentation before writing any other code; if you are having trouble
documenting a predicate, perhaps you need to go back to the design stage.

Try to avoid lengthy hierarchies. Composition is often a better choice over inheritance for defining new ob-
jects (Logtalk supports component-based programming through the use of categories). In addition, prototype-
based hierarchies are semantically simpler than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should always try to minimize the
use of non-logical features such as asserts and retracts.

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate
predicate, then the respective directives must be repeated to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return arguments comply with the declared modes.
On the other hand, Logtalk built-in predicates, built-in methods, and message-sending control structures are
fully checked for calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance,
the error terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predi-
cates behave as defined in the ISO standard regarding error conditions. In particular, if your Prolog compiler
does not support a read_term/3 built-in predicate compliant with the ISO Prolog Standard definition, then

1.14. Writing and running applications 119

The Logtalk Handbook, Release v3.89.0

the current version of the Logtalk compiler may not be able to detect misspelled variables in your source
code.

1.14.18 Coding style guidelines

It is suggested that all code between an entity opening and closing directives be indented by one tab stop.
When defining entity code, both directives and predicates, Prolog coding style guidelines may be applied.
All Logtalk source files, examples, and standard library entities use tabs (the recommended setting is a tab
width equivalent to 4 spaces) for laying out code. Closely related entities can be defined in the same source
file. However, for the best performance, is often necessary to have an entity per source file. Entities that
might be useful in different contexts (such as library entities) are best defined in their own source files.

A detailed coding style guide is available at the Logtalk official website.

1.15 Printing messages and asking questions

Applications, components, and libraries often print all sorts of messages. These include banners, logging,
debugging, and computation results messages. But also, in some cases, user interaction messages. How-
ever, the authors of applications, components, and libraries often cannot anticipate the context where their
software will be used and thus decide which and when messages should be displayed, suppressed, or di-
verted. Consider the different components in a Logtalk application development and deployment. At the
base level, you have the Logtalk compiler and runtime. The compiler writes messages related to e.g. com-
piling and loading files, compiling entities, and compilation warnings and errors. The runtime may write
banner messages or throw execution errors that may result in printing human-level messages. The develop-
ment environment can be console-based, or you may be using a GUI tool such as PDT. In the latter case, PDT
needs to intercept the Logtalk compiler and runtime messages to present the relevant information using its
GUL Then you have all the other components in a typical application. For example, your own libraries and
third-party libraries. The libraries may want to print messages on their own, e.g. banners, debugging infor-
mation, or logging information. As you assemble all your application components, you want to have the final
word on which messages are printed, where, and when. Uncontrolled message printing by libraries could
potentially disrupt application flow, expose implementation details, spam the user with irrelevant details, or
break user interfaces.

The solution is to decouple the calls to print a message from the actual printing of the output text. The same
is true for calls to read user input. By decoupling the call to input some data from the actual read of the data,
we can easily switch from, for example, a command-line interface to a GUI input dialog or even automate
providing the data (e.g., when automating testing of the user interaction).

Logtalk provides a solution based on the structured message printing mechanism that was introduced by
Quintus Prolog, where it was apparently implemented by Dave Bowen (thanks to Richard O’Keefe for the
historical bits). This mechanism gives the programmer full control of message printing, allowing it to filter,
rewrite, or redirect any message. Variations of this mechanism can also be found in some Prolog systems,
including SICStus Prolog, SWI-Prolog, and YAP. Based on this mechanism, Logtalk introduces an extension
that also allows abstracting asking a user for input. Both mechanisms are implemented by the logtalk built-
in object and described in this section. The message printing mechanism is extensively used by the Logtalk
compiler itself and by the developer tools. The question-asking mechanism is used e.g. in the debugger tool.

120 Chapter 1. User Manual

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.89.0

1.15.1 Printing messages

The main predicate for printing a message is logtalk::print_message/3. A simple example, using the Logtalk
runtime, is:

| ?- logtalk::print_message(banner, core, banner).

Logtalk 3.23.0
Copyright (c) 1998-2018 Paulo Moura
yes

The first argument of the predicate is the kind of message that we want to print. In this case, we use banner
to indicate that we are printing a product name and copyright banner. An extensive list of message kinds is
supported by default:

banner
banner messages (used e.g. when loading tools or main application components; can be suppressed by
setting the report flag to warnings or off)

help
messages printed in reply to the user asking for help (mostly for helping port existing Prolog code)

information and information(Group)
messages usually printed in reply to a user’s request for information

silent and silent(Group)
not printed by default (but can be intercepted using the message_hook/4 predicate)

comment and comment(Group)
useful but usually not essential messages (can be suppressed by setting the report flag to warnings or
of f)

warning and warning(Group)
warning messages (generated e.g. by the compiler; can be suppressed by turning off the report flag)

error and error(Group)
error messages (generated e.g. by the compiler)

debug, debug(Group)
debugging messages (by default, only printed when the debug flag is turned on; the print_message/3
goals for these messages are suppressed by the compiler when the optimize flag is turned on)

question, question(Group)
questions to a user

Using a compound term allows easy partitioning of messages of the same kind in different groups. Note
that you can define your own alternative message kind identifiers for your own components, together with
suitable definitions for their associated prefixes and output streams.

The second argument of print_message/3 represents the component defining the message being printed.
In this context, component is a generic term that can designate, e.g., a tool, a library, or some sub-
system in a large application. In our example, the component name is core, identifying the Logtalk com-
piler/runtime. This argument was introduced to provide multiple namespaces for message terms and thus
simplify programming-in-the-large by allowing easy filtering of all messages from a specific component and
also avoiding conflicts when two components happen to define the same message term (e.g., banner). Users
should choose and use a unique name for a component, which usually is the name of the component itself.
For example, all messages from the [gtunit tool use 1gtunit for the component argument. The compiler and
runtime are interpreted as a single component designated as core.

1.15. Printing messages and asking questions 121

The Logtalk Handbook, Release v3.89.0

The third argument of print_message/3 is the message itself, represented by a term. In the above example,
the message term is banner. Using a term to represent a message instead of a string with the message text
itself has significant advantages. Notably, it allows using a compound term for easy parameterization of the
message text and simplifies machine processing, localization of applications, and message interception. For
example:

| ?- logtalk::print_message(comment, core, redefining_entity(object, foo)).

% Redefining object foo
yes

1.15.2 Message tokenization

The use of message terms requires a solution for generating the actual text of the messages. This is supported
by defining grammar rules for the logtalk::message tokens//2 multifile non-terminal, which translates a mes-
sage term, for a given component, to a list of tokens. For example:

;- multifile(logtalk: :message_tokens//2).
:— dynamic(logtalk: :message_tokens//2).

logtalk: :message_tokens(redefining_entity(Type, Entity), core) -->
['Redefining ~w ~q'-[Type, Entity], nl].

The following tokens can be used when translating a message:

at_same_line
Signals a following part to a multi-part message with no line break in between; this token is ignored
when it’s not the first in the list of tokens

tab(Expression)
Evaluate the argument as an arithmetic expression and write the resulting number of spaces; this token
is ignored when the number of spaces is not positive

nl
Change line in the output stream

flush
Flush the output stream (by calling the flush_output/1 standard predicate)

Format-Arguments
Format must be an atom and Arguments must be a list of format arguments (the token arguments are
passed to a call to the format/3 de facto standard predicate)

term(Term, Options)
Term can be any term and Options must be a list of valid write_term/3 output options (the token
arguments are passed to a call to the write_term/3 standard predicate)

ansi(Attributes, Format, Arguments)
Taken from SWI-Prolog; by default, do nothing; can be used for styled output

begin(Kind, Var)
Taken from SWI-Prolog; by default, do nothing; can be used together with end(Var) to wrap a sequence
of message tokens

end(Var)
Taken from SWI-Prolog; by default, do nothing

122 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

The logtalk object also defines public predicates for printing a list of tokens, for hooking into printing an
individual token, and for setting default output streams and message prefixes. For example, the SWI-Prolog
adapter file uses the print message token hook predicate to enable coloring of messages printed on a console.

1.15.3 Meta-messages

Defining tokenization rules for every message is not always necessary, however. Logtalk defines several meta-
messages that are handy for simple cases and temporary messages only used during application development,
notably debugging messages. See the Debugging messages section and the logtalk built-in object remarks
section for details.

1.15.4 Defining message prefixes and output streams

The logtalk::message prefix_stream/4 hook predicate can be used to define a message line prefix and an
output stream for printing messages of a given kind and component. For example:

;- multifile(logtalk: :message_prefix_stream/4).

:— dynamic(logtalk: :message_prefix_stream/4).

logtalk: :message_prefix_stream(comment, my_app, '% ', user_output).
logtalk: :message_prefix_stream(warning, my_app, '* ', user_error).

A single clause at most is expected per message kind and component pair. When this predicate is not defined
for a given kind and component pair, the following defaults are used:

kind_prefix_stream(banner, "y user_output).
kind_prefix_stream(help, " user_output).
kind_prefix_stream(question, " user_output).
kind_prefix_stream(question(), " user_output).
kind_prefix_stream(information, "% ", user_output).
kind_prefix_stream(information(), '% ', user_output).
kind_prefix_stream(comment, "% ", user_output).
kind_prefix_stream(comment(), "% ', user_output).
kind_prefix_stream(warning, "% ', user_error).
kind_prefix_stream(warning(_), "% ', user_error).
kind_prefix_stream(error, "l ', user_error).
kind_prefix_stream(error(), "l ', user_error).
kind_prefix_stream(debug, >>> user_error).
kind_prefix_stream(debug(), >>> ' user_error).

When the message kind is unknown, information is used instead.

1.15.5 Defining message prefixes and output files

Some applications require copying and saving messages without diverting them from their default stream.
For simple cases, this can be accomplished by intercepting the messages using the logtalk::message hook/4
multifile hook predicate (see next section). In more complex cases, where messages are already intercepted
for a different purpose, it can be tricky to use multiple definitions of the message_hook/4 predicate as the
order of the clauses of a multiple predicate cannot be assumed in general (for all message_hook/4 predicate
definitions to run, all but the last one to be called must fail). Using a single master definition is also not ideal
as it would result in strong coupling instead of a clean separation of concerns.

1.15. Printing messages and asking questions 123

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.89.0

The experimental logtalk::message prefix file/6 hook predicate can be used to define a message line prefix
and an output file for copying messages of a given kind and component pair. For example:

;- multifile(logtalk: :message_prefix_file/6).
:- dynamic(logtalk: :message_prefix_file/6).

logtalk: :message_prefix_file(error, app, '! ', 'log.txt', append, [1).

logtalk: :message_prefix_file(warning, app, '! ', 'log.txt', append, []).

A single clause at most is expected per message kind and component pair.

This predicate is called by default by the message printing mechanism. Definitions of the message_hook/4
hook predicate are free to decide if the logtalk: :message_prefix_file/6 predicate should be called and
acted upon.

1.15.6 Intercepting messages

Calls to the logtalk::print message/3 predicate can be intercepted by defining clauses for the
logtalk::message_hook/4 multifile hook predicate. This predicate can suppress, rewrite, and divert messages.

As a first example, assume that you want to make Logtalk startup less verbose by suppressing printing of the
default compiler flag values. This can be easily accomplished by defining the following category in a settings
file:

.- category(my_terse_logtalk_startup_settings).

;- multifile(logtalk: :message_hook/4).
:— dynamic(logtalk: :message_hook/4).

logtalk: :message_hook(default_flags, comment(settings), core,).

:- end_category.

The printing message mechanism automatically calls the message_hook/4 hook predicate. When this call
succeeds, the mechanism assumes that the message has been successfully handled.

As another example, assume that you want to print all otherwise silent compiler messages:

.- category(my_verbose_logtalk_message_settings).

;- multifile(logtalk: :message_hook/4).
:— dynamic(logtalk: :message_hook/4).

logtalk: :message_hook(_Message, silent, core, Tokens) :-
logtalk: :message_prefix_stream(comment, core, Prefix, Stream),
logtalk: :print_message_tokens(Stream, Prefix, Tokens).

logtalk: :message_hook(_Message, silent(Key), core, Tokens) :-
logtalk: :message_prefix_stream(comment(Key), core, Prefix, Stream),
logtalk: :print_message_tokens(Stream, Prefix, Tokens).

.- end_category.

124 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.15.7 Asking questions

Logtalk structured question-asking mechanism complements the message printing mechanism. It provides an
abstraction for the common task of asking a user a question and reading back its reply. By default, this mech-
anism writes the question, writes a prompt, and reads the answer using the current user input and output
streams but allows all steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are
using a GUI dialog for asking questions and automatically providing answers to specific questions.

The question-asking mechanism works in tandem with the message printing mechanism, using it to print the
question text and a prompt. It provides an asking predicate and a hook predicate, both declared and defined
in the logtalk built-in object. The asking predicate, logtalk::ask_question/5, is used for asking a question
and reading the answer. Assume that we defined the following message tokenization and question prompt
and stream:

;- category(hitchhikers_guide_to_the_galaxy).

;- multifile(logtalk: :message_tokens//2).
.- dynamic(logtalk: :message_tokens//2).

% abstract the question text using the atom ultimate_question;
% the second argument, hitchhikers, is the application component
logtalk: :message_tokens(ultimate_question, hitchhikers) -->
['The answer to the ultimate question of life, the universe and everything is?'-[],.
—nl].

:- multifile(logtalk::question_prompt_stream/4).
:— dynamic(logtalk: :question_prompt_stream/4).

% the prompt is specified here instead of being part of the question text
% as it will be repeated if the answer doesn't satisfy the question closure

logtalk: :question_prompt_stream(question, hitchhikers, '> ', user_input).

.- end_category.

After compiling and loading this category, we can now ask the ultimate question:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

The answer to the ultimate question of life, the universe and everything is?
> 42.

N = 42
yes
Note that the fourth argument, '=='(42) in our example, is a closure that is used to check the answers

provided by the user. The question is repeated until the goal constructed by extending the closure with the
user answer succeeds. For example:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).
The answer to the ultimate question of life, the universe and everything is?

> icecream.

> tea.

> 42.

(continues on next page)

1.15. Printing messages and asking questions 125

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
N = 42
yes

Practical usage examples of this mechanism can be found, e.g., in the debugger tool where it’s used to
abstract the user interaction when tracing a goal execution in debug mode.

1.15.8 Intercepting questions

Calls to the logtalk::ask _question/5 predicate can be intercepted by defining clauses for the
logtalk::question_hook/6 multifile hook predicate. This predicate can suppress, rewrite, and divert ques-
tions. For example, assume that we want to automate testing and thus cannot rely on someone manually
providing answers:

.- category(hitchhikers_fixed_answers).

;- multifile(logtalk: :question_hook/6).
:— dynamic(logtalk: :question_hook/6).

logtalk: :question_hook(ultimate_question, question, hitchhikers, _, _, 42).

:- end_category.

After compiling and loading this category, trying the question again will now skip asking the user:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

N = 42
yes

In a practical case, the fixed answer would be used for follow-up goals being tested. The question-answer
read loop (which calls the question check closure) is not used when a fixed answer is provided using the
logtalk: :question_hook/6 predicate thus preventing the creation of endless loops. For example, the fol-
lowing query succeeds:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(41), N).

N = 42
yes

Note that the logtalk::question_hook/6 predicate takes as argument the closure specified in the
logtalk: :ask_question/5 call, allowing a fixed answer to be checked before being returned.

126 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.16 Term and goal expansion

Logtalk supports a term and goal expansion mechanism that can be used to define source-to-source transfor-
mations. Two common uses are the definition of language extensions and domain-specific languages.

Logtalk improves upon the term-expansion mechanism found on some Prolog systems by providing the user
with fine-grained control on if, when, and how expansions are applied. It allows declaring in a source file
itself which expansions, if any, will be used when compiling it. It allows declaring which expansions will be
used when compiling a file using compile and loading predicate options. It also allows defining a default
expansion for all source files. It defines a concept of hook objects that can be used as building blocks to create
custom and reusable expansion workflows with explicit and well-defined semantics. It prevents the simple
act of loading expansion rules affecting subsequent compilation of files. It prevents conflicts between groups
of expansion rules of different origins. It avoids a set of buggy expansion rules from breaking other sets of
expansion rules.

1.16.1 Defining expansions

Term and goal expansions are defined using, respectively, the predicates term_ expansion/2 and
goal_expansion/2, which are declared in the expanding built-in protocol. Note that, unlike Prolog systems
also providing these two predicates, they are not declared as multifile predicates in the protocol. This design
decision is key for giving the programmer full control of the expansion process and preventing the problems
inflicting most of the Prolog systems that provide a term-expansion mechanism.

An example of an object defining expansion rules:

:- object(an_object,
implements(expanding)).

term_expansion(ping, pong).
term_expansion(
colors,
[white, yellow, blue, green, read, black]

).

goal_expansion(a, b).

goal_expansion(b, c).

goal_expansion(X is Expression, true) :-
catch(X is Expression, _, fail).

:- end_object.

These predicates can be explicitly called using the expand term/2 and expand goal/2 built-in methods or
called automatically by the compiler when compiling a source file (see the section below on hook objects).

In the case of source files referenced in include/1 directives, expansions are only applied automatically when
the directives are found in source files, not when used as arguments in the create_object/4, create_protocol/3,
and create_category/4, predicates. This restriction prevents inconsistent results when, for example, an ex-
pansion is defined for a predicate with clauses found in both an included file and as argument in a call to
the create_object/4 predicate.

Clauses for the term_expansion/2 predicate are called until one of them succeeds. The returned expansion
can be a single term or a list of terms (including the empty list). For example:

1.16. Term and goal expansion 127

../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.89.0

| ?- an_object::expand_term(ping, Term).

Term = pong
yes

| ?- an_object::expand_term(colors, Colors).

Colors = [white, yellow, blue, green, read, black]
yes

When no term_expansion/2 clause applies, the same term that we are trying to expand is returned:

| ?- an_object::expand_term(sounds, Sounds).

Sounds = sounds
yes

Clauses for the goal_expansion/2 predicate are recursively called on the expanded goal until a fixed point is
reached. For example:

| ?- an_object::expand_goal(a, Goal).

Goal = ¢
yes

| ?- an_object::expand_goal(X is 3+2x5, Goal).
X =13,

Goal = true
yes

When no goal_expansion/2 clause applies, the same goal that we are trying to expand is returned:

| ?- an_object::expand_goal(3 =:= 5, Goal).

Goal = (3=:=5)
yes

The goal-expansion mechanism prevents an infinite loop when expanding a goal by checking that a goal
to be expanded was not the result from a previous expansion of the same goal. For example, consider the
following object:

.- object(fixed_point,
implements(expanding)).

goal_expansion(a, b).
goal_expansion(b, c).

goal_expansion(c, (a -> b; c)).

:- end_object.

The expansion of the goal a results in the goal (a -> b; c¢) with no attempt to further expand the a, b, and
c goals as they have already been expanded.

Goal-expansion applies to goal arguments of control constructs, meta-arguments in built-in or user defined

128 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

meta-predicates, meta-arguments in local user-defined meta-predicates, meta-arguments in meta-predicate
messages when static binding is possible, and initialization/1, if/1, and elif/1 directives.

1.16.2 Expanding grammar rules

A common term expansion is the translation of grammar rules into predicate clauses. This transformation
is performed automatically by the compiler when a source file entity defines grammar rules. It can also be
done explicitly by calling the expand_term/2 built-in method. For example:

| ?- logtalk::expand_term((a --> b, c), Clause).

Clause = (a(A,B) :- b(A,C), c(C,B))
yes

Note that the default translation of grammar rules can be overridden by defining clauses for the
term_expansion/2 predicate.

1.16.3 Bypassing expansions

Terms and goals wrapped by the {}/1 control construct are not expanded. For example:

| ?- an_object::expand_term({ping}, Term).

Term = {ping}
yes

| ?- an_object::expand_goal({a}, Goal).

Goal = {a}
yes

This also applies to source file terms and source file goals when using hook objects (discussed next).

1.16.4 Hook objects

Term and goal expansion of a source file during its compilation is performed by using hook objects. A hook
object is simply an object implementing the expanding built-in protocol and defining clauses for the term and
goal expansion hook predicates. Hook objects must be compiled and loaded prior to being used to expand a
source file.

To compile a source file using a hook object, we can use the hook compiler flag in the second argument of
the logtalk_compile/2 and logtalk load/2 built-in predicates. For example:

‘I ?- logtalk_load(source_file, [hook(hook_object)]). ’

In alternative, we can use a set_logtalk flag/2 directive in the source file itself. For example:

[: - set_logtalk_flag(hook, hook_object).]

To use multiple hook objects in the same source file, simply write each directive before the block of code that
it should handle. For example:

1.16. Term and goal expansion 129

../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.89.0

:— object(hl,
implements(expanding)).

term_expansion((:- public(a/0)), (:- public(b/2))).
term_expansion(a, b).

:— end_object.

:- object(h2,
implements(expanding)).

term_expansion((:- public(a/0)), (:- public(c/0))).
term_expansion(a, c).

:- end_object.

.- set_logtalk_flag(hook, h1).
:- object(s1).

:- public(a/0).
a.

:- end_object.

.- set_logtalk_flag(hook, h2).
:- object(s2).

.- public(a/0).
a.

:- end_object.

| ?- {h1, h2, s}.

| ?- s1::b.
yes
| ?- s2::c.
yes

It is also possible to define a default hook object by defining a global value for the hook flag by calling the
set_logtalk flag/2 predicate. For example:

| ?- set_logtalk_flag(hook, hook_object).

yes

Note that, due to the set_logtalk_flag/2 directive being local to a source file, using it to specify a hook
object will override any defined default hook object or any hook object specified as a logtalk_compile/2 or

130 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

logtalk_load/2 predicate compiler option for compiling or loading the source file.

O Note

Clauses for the term_expansion/2 and goal_expansion/2 predicates defined within an object or a cate-
gory are never used in the compilation of the object or the category itself.

1.16.5 Virtual source file terms and loading context

When using a hook object to expand the terms of a source file, two virtual file terms are generated:
begin_of_file and end_of_file. These terms allow the user to define term-expansions before and after
the actual source file terms.

Logtalk also provides a logtalk load context/2 built-in predicate that can be used to access the compila-
tion/loading context when performing expansions. The logtalk built-in object also provides a set of predi-
cates that can be useful, notably when adding Logtalk support for language extensions originally developed
for Prolog.

As an example of using the virtual terms and the logtalk_load_context/2 predicate, assume that you want
to convert plain Prolog files to Logtalk by wrapping the Prolog code in each file using an object (named after
the file) that implements a given protocol. This could be accomplished by defining the following hook object:

:— object(wrapper(_Protocol),
implements(expanding)).

term_expansion(begin_of_file, (:- object(Name,implements(_Protocol _)))) :-
logtalk_load_context(file, File),
os: :decompose_file_name(File, , Name, _).

term_expansion(end_of_file, (:- end_object)).

:- end_object.

Assuming, e.g., my_car.pl and lease_car.pl files to be wrapped and a car_protocol protocol, we could
then load them using:

| ?- logtalk_load(
['my_car.pl', 'lease_car.pl'],
[hook (wrapper(car_protocol))]

yes

O Note

When a source file also contains plain Prolog directives and predicates, these are term-expanded but not
goal-expanded (with the exception of the initialization/1, if/1, and elif/1 directives, where the goal
argument is expanded to improve code portability across backends).

1.16. Term and goal expansion 131

The Logtalk Handbook, Release v3.89.0

1.16.6 Default compiler expansion workflow

When compiling a source file, the compiler will first try, by default, the source file-specific hook object specified
using a local set_logtalk_flag/2 directive, if defined. If that expansion fails, it tries the hook object specified
using the hook/1 compiler option in the logtalk_compile/2 or logtalk_load/2 goal that compiles or loads
the file, if defined. If that expansion fails, it tries the default hook object, if defined. If that expansion also
fails, the compiler tries the Prolog dialect-specific expansion rules found in the adapter file (which are used
to support non-standard Prolog features).

1.16.7 User defined expansion workflows

Sometimes we have multiple hook objects that we need to combine and use in the compilation of a source
file. Logtalk includes a hook_flows library that supports two basic expansion workflows: a pipeline of hook
objects, where the expansion results from a hook object are fed to the next hook object in the pipeline,
and a set of hook objects, where expansions are tried until one of them succeeds. These workflows are
implemented as parametric objects, allowing combining them to implement more sophisticated expansion
workflows. There is also a hook objects library that provides convenient hook objects for defining custom
expansion workflows. This library includes a hook object that can be used to restore the default expansion
workflow used by the compiler.

For example, assuming that you want to apply the Prolog backend-specific expansion rules defined in its
adapter file, using the backend adapter hook library object, passing the resulting terms to your own expan-
sion when compiling a source file, we could use the goal:

| ?- logtalk_load(
source,
[hook (hook_pipeline([backend_adapter_hook, my_expansion]))]
).

As a second example, we can prevent expansion of a source file using the library object identity hook by
adding as the first term in a source file the directive:

[:— set_logtalk_flag(hook, identity_hook).]

The file will be compiled as-is as any hook object (specified as a compiler option or as a default hook object)
and any backend adapter expansion rules are overridden by the directive.

1.16.8 Using Prolog defined expansions

In order to use clauses for the term_expansion/2 and goal_expansion/2 predicates defined in plain Prolog,
simply specify the pseudo-object user as the hook object when compiling source files. When using backend
Prolog compilers that support a module system, it can also be specified a module containing clauses for the
expanding predicates as long as the module name doesn’t coincide with an object name. When defining a
custom workflow, the library object prolog module hook/1 can be used as a workflow step. For example,
assuming a module functions defining expansion rules that we want to use:

| ?- logtalk_load(
source,
[hook (hook_set ([prolog_module_hook(functions), my_expansion]))]
).

But note that Prolog module libraries may provide definitions of the expansion predicates that are not com-
patible with the Logtalk compiler. In particular, when setting the hook object to user, be aware of any Prolog

132 Chapter 1. User Manual

../../docs/hook_pipeline_1.html#hook-pipeline-1
../../docs/hook_set_1.html#hook-set-1
../../docs/backend_adapter_hook_0.html#backend-adapter-hook-0
../../docs/identity_hook_0.html#identity-hook-0
../../docs/prolog_module_hook_1.html#prolog-module-hook-1

The Logtalk Handbook, Release v3.89.0

library that is loaded, possibly by default or implicitly by the Prolog system, that may be contributing defini-
tions of the expansion predicates. It is usually safer to define a specific hook object for combining multiple
expansions in a fully controlled way.

O Note

The user object declares term_expansion/2 and goal_expansion/2 as multifile and dynamic predicates.
This helps in avoiding predicate existence errors when compiling source files with the hook flag set to
user as these predicates are only natively declared by some of the supported backend Prolog compilers.

1.16.9 Debugging expansions

The term_expansion/2 and goal_expansion/2 predicates can be debugged like any other object predicates.
Note that expansions can often be manually tested by sending expand term/2 and expand_goal/2 messages
to a hook object with the term or goal whose expansion you want to check as argument. An alternative to the
debugging tools is to use a monitor for the runtime messages that call the predicates. For example, assume
a expansions_debug.1gt file with the contents:

;- initialization(
define_events(after, edcg, _, _, expansions_debug)

:— object(expansions_debug,
implements(monitoring)).

after(edcg, term_expansion(T,E), _) :-
writeq(term_expansion(T,E)), nl.

:- end_object.

We can use this monitor to help debug the expansion rules of the edcg library when applied to the edcgs
example using the queries:

| ?- {expansions_debug}.

| ?- set_logtalk_flag(events, allow).
yes

| ?- {edcgs(loader)}.

term_expansion(begin_of_file,begin_of_file)
term_expansion((:-object(gemini)),[(:-object(gemini)), (:-op(1200,xfx,-->>))1)
term_expansion(acc_info(castor,A,B,C,true),[1)

term_expansion(pass_info(pollux),[])

term_expansion(pred_info(p, 1, [castor,pollux]),[])
term_expansion(pred_info(q, 1, [castor,pollux]),[]1)
term_expansion(pred_info(r,1,[castor,pollux]),[])

term_expansion((p(A)-->>B is A+1,q(B),r(B)), (p(A,C,D,E):-B is A+1,q(B,C,F,E),r(B,F,D,E)))
term_expansion((q(A)-->>[1), (q(A,B,B,C):-true))

term_expansion((r(A)-->>[1), (r(A,B,B,C):-true))

(continues on next page)

1.16. Term and goal expansion 133

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

term_expansion(end_of_file,end_of_file)

This solution does not require compiling the edcg hook object in debug mode or access to its source code
(e.g., to modify its expansion rules to emit debug messages). We could also simply use the user pseudo-
object as the monitor object:

| ?- assertz((
after(_, term_expansion(T,E), _) :-
writeq(term_expansion(T,E)), nl

).
yes
| ?- define_events(after, edcg, _, Sender, user).
yes

Another alternative is to use a pipeline of hook objects with the library hook_pipeline/1 and
write_to_stream_hook objects to write the expansion results to a file. For example, using the unique.lgt
test file from the edcgs library directory:

| ?- {hook_flows(loader), hook_objects(loader)}.

| ?- open('unique_expanded.lgt', write, Stream),
logtalk_compile(
unique,
[hook (hook_pipeline([edcg,write_to_stream_hook(Stream, [quoted(true)1)1))]
),

close(Stream).

The generated unique_expanded.1gt file will contain the clauses resulting from the expansion of the EDCG
rules found in the unique.lgt file by the edcg hook object expansion.

1.17 Documenting

Assuming that the source data flag is turned on, the compiler saves all relevant documenting information
collected when compiling a source file. The provided I[gtdoc tool can access this information by using the
reflection support and generate a documentation file for each compiled entity (object, protocol, or category)
in XML format. Contents of the XML file include the entity name, type, and compilation mode (static
or dynamic), the entity relations with other entities, and a description of any declared predicates (name,
compilation mode, scope, ...). The XML documentation files can be enriched with arbitrary user-defined
information, either about an entity or about its predicates, by using documentation directives. The 1gtdoc
tool includes POSIX and Windows scripts for converting the XML documentation files to several final formats
(such as HTML and PDF).

Logtalk supports two documentation directives for providing arbitrary user-defined information about an
entity or a predicate. These two directives complement other directives that also provide important docu-
mentation information, such as the mode/2 and meta_predicate/1 directives.

134 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.17.1 Entity documenting directives

Arbitrary user-defined entity information can be represented using the info/1 directive:

;= info([
Keyl is Valuel,
Key2 is Value2,

.

In this pattern, keys should be atoms and values should be bound terms. The following keys are predefined
and may be processed specially by Logtalk tools:

comment
Comment describing the entity purpose (an atom). End the comment with a period (full stop). As
a style guideline, don’t use overly long comments. If you need to provide additional details, use the
fails_if and remarks keys.

author
Entity author(s) (an atom or a compound term {entity} where entity is the name of an XML entity
in a user-defined custom.ent file).

version
Version number (a Major:Minor:Patch compound term) Following the Semantic Versioning guidelines
is strongly advised.

date
Date of last modification in ISO 8601 standard format (Year-Month-Day where Year, Month, and Day
are integers).

parameters
Parameter names and descriptions for parametric entities (a list of Name-Description pairs where both
names and descriptions are atoms). End the Description with a period (full stop).

parnames
Parameter names for parametric entities (a list of atoms; a simpler version of the previous key, used
when parameter descriptions are deemed unnecessary).

copyright
Copyright notice for the entity source code (an atom or a compound term {entity} where entity is
the name of an XML entity defined in a user-defined custom. ent file).

license
License terms for the entity source code; usually, just the license name (an atom or a compound term
{entity} where entity is the name of an XML entity in a user-defined custom.ent file). License names
should, whenever possible, be a license identifier as specified in the SPDX standard.

remarks
List of general remarks about the entity using Topic-Text pairs where both the topic and the text must
be atoms. End the Text with a period (full stop).

see_also
List of related entities (using the entity identifiers, which can be atoms or compound terms).

For example:

:— info([
version is 2:1:0,
author is 'Paulo Moura',

(continues on next page)

1.17. Documenting 135

https://semver.org
https://spdx.org/licenses/

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
date is 2000-11-20,
comment is 'Building representation.',
diagram is 'UML Class Diagram #312'
.

Use only the keywords that make sense for your application, and remember that you are free to invent your
own keywords. All key-value pairs can be retrieved programmatically using the reflection API and are visible
to the [gtdoc tool (which includes them in the generated documentation).

1.17.2 Predicate documenting directives

Arbitrary user-defined predicate information can be represented using the info/2 directive:

:— info(Name/Arity, [
Keyl is Valuel,
Key2 is Value2,

.

The first argument can also a grammar rule non-terminal indicator, Name//Arity. Keys should be atoms.
Values should be bound terms. The following keys are predefined and may be processed specially by Logtalk
tools:

comment
Comment describing the predicate (or non-terminal) purpose (an atom). End the comment with a
period (full stop). As a style guideline, don’t use overly long comments. If you need to provide
additional details, use the remarks key.

fails_if
Comment describing failing conditions for the predicate. As a style guideline, don’t use overly long
comments. If you need to provide additional details, use the remarks key.

arguments
Names and descriptions of predicate arguments for pretty print output (a list of Name-Description
pairs where both names and descriptions are atoms). End the Description with a period (full stop).

argnames
Names of predicate arguments for pretty print output (a list of atoms; a simpler version of the previous
key, used when argument descriptions are deemed unnecessary).

allocation
Objects where we should define the predicate. Some possible values are container, descendants,
instances, classes, subclasses, and any.

redefinition
Describes if a predicate is expected to be redefined and, if so, in what way. Some possible values are
never, free, specialize, call_super_first, call_super_last

exceptions
List of possible exceptions thrown by the predicate using Description-Exception pairs. The descrip-
tion must be an atom. The exception term must be a ground term.

examples
List of typical predicate call examples using the format Description-Goal-Bindings. The description
must be an atom with the goal term sharing variables with the bindings. The variable bindings term
uses the format {Variable = Term, ...}. When there are no variable bindings, the success or failure

136 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

of the predicate call should be represented by the terms {true} or {false}, respectively (you can also
use in alternative the terms {yes} or {no}).

remarks
List of general remarks about the predicate using Topic-Text pairs where both the topic and the text
must be atoms. End the Text with a period (full stop).

since
Version that added the predicate (Major:Minor:Patch).

see_also
List of related predicates and non-terminals (using the predicate and non-terminal indicators).

For example:

:— info(color/1, [
comment is 'Table of defined colors.',
argnames is ['Color'],
constraint is 'Up to four visible colors allowed.',
examples is [
'Check that the color blue is defined' - color(blue) - {true}
]
.

As with the info/1 directive, use only the keywords that make sense for your application and remember that
you are free to invent your own keywords. All key-value pairs can also be retrieved programmatically using
the reflection API and are visible to the [gtdoc tool (which includes them in the generated documentation).

1.17.3 Describing predicates

The value of the comment key, possibly extended with the remarks key, should describe a predicate purpose
and, when applicable, the circumstances under which a call may fail. Descriptions should be consistent
across library and application APIs. Some guidelines:

1. When starting the description with a verb, use the third-person singular simple present form. For example,

write 'Runs ...', 'Calls ...', 'Compares ...', 'Parses ...', 'Generates ...', 'Converts ...', 'Creates
..."'",'Maps ...', 'Merges ...', 'Finds ...', etc.
2. Predicates that are pure logical relations often have descriptions starting with 'True iff ...' or 'True

if ..ot
3. Predicates with multiple solutions often have descriptions starting with 'Enumerates, by backtracking,

all ...' or 'Enumerates, by backtracking, the ..."'.

4. Predicate call failure conditions often have descriptions with one or more sentences starting with 'Fails

1

when ...'or 'Fails if ..."'.

If you’re not sure how best to describe a predicate, look for examples in the Logtalk libraries and developer
tools APIs documentation.

1.17. Documenting 137

The Logtalk Handbook, Release v3.89.0

1.17.4 Documenting predicate exceptions

As described above, the info/2 predicate directive supports an exceptions key that allows us to list all
exceptions that may occur when calling a predicate. For example:

;- info(check_option/1, [
comment is 'Succeeds if the option is valid. Throws an error otherwise.',

argnames is ['Option'],
exceptions is [

'*“Option™" is a variable' - instantiation_error,
'““Option~~ is neither a variable nor a compound term' - type_error(compound, 'Option
“")7
'““Option~ " is a compound term but not a valid option' - domain_error(option, 'Option
")
]
D.

When possible, only standard exceptions should be used. See e.g. the error handling methods section for
a full list. The argument names should be the same as those provided in the arguments or argnames keys.
Exceptions are usually listed starting with instantiation and uninstantiation errors, followed by type errors,
and then domain errors. These may then be followed by permission, existence, evaluation, representation,

Or resource errors.

For each exception, use of controlled language as found, e.g., in the ISO Prolog Core standard and this
Handbook is advised. Some examples:

Instantiation error when one or more arguments cannot be a variable
Argument is a variable

Argument1 and Argument?2 are variables

Instantiation error when a closed list with bound elements is required
Argument is a partial list or a list with an element Element which is a variable

Uninstantiation error when an argument is not a variable
Argument is not a variable

Type error when an argument is not a variable but also not of the expected type
Argument is neither a variable nor a TYPE

Argument is neither a partial list nor a list

Type error when an element of a list is not a variable but is not of the expected type
An element Element of the Argument list is neither a variable nor a TYPE

Domain error when an argument is of the correct type but not in the expected domain
Argument is a TYPE but not a valid DOMAIN

Argument is an integer that is less than zero

Domain error when an element of a list is of the correct type but not in the expected domain
An element Element of the Argument list is a TYPE but not a valid DOMAIN

Existence error when an entity of a given kind does not exist
The KIND Argument does not exist

Other classes of errors have a less rigid style. In case of doubt, look for examples in this Handbook, in the
APIs documentation, and in standard documents.

138 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.17.5 Processing and viewing documenting files

The [gtdoc tool generates an XML documenting file per entity. It can also generate library, directory, entity,
and predicate indexes when documenting libraries and directories. For example, assuming the default file-
name extensions, a trace object and a sort(_) parametric object will result in trace_0.xml and sort_1.xml
XML files.

Each entity XML file contains references to two other files, an XML specification file and a XSLT stylesheet
file. The XML specification file can be either a DTD file (logtalk_entity.dtd) or an XML Scheme file
(logtalk_entity.xsd). The XSLT stylesheet file is responsible for converting the XML files to some desired
format such as HTML or PDF. The default names for the XML specification file and the XSL stylesheet file
are defined by the [gtdoc tool but can be overridden by passing a list of options to the tool predicates. The
lgtdoc/xml sub-directory in the Logtalk installation directory contains the XML specification files described
above, along with several sample XSL stylesheet files and sample scripts for converting XML documenting
files to several formats (e.g., reStructuredText, Markdown, HTML, and PDF). For example, assume that you
want to generate the API documentation for the types library:

| ?- {types(loader)}.
| ?- {lgtdoc(loader)}.

| ?- lgtdoc::library(types).

The above queries will result in the creation of a xml_docs in your current directory by default. Assuming
that we want to generate Sphinx-based documentation and that we are using a POSIX operating-system, the
next steps would be:

$ cd xml_docs
$ lgt2rst -s -m

The 1gt2rst script will ask a few questions (project name, author, version, ...). After its completion, the
generated HTML files will be found in the _build/html directory by default:

[$ open _build/html/index.html J

For Windows operating-systems, PowerShell scripts are available. For example, assuming that we want to
generate HTML documentation, we could run in a PowerShell window:

PS > lgt2html.ps1 -p saxon

PS > cd xml_docs ’

After completion, the generated HTML files will be found in the xml_docs directory by default.

See the NOTES file in the tool directory for details, specially on the XSLT processor dependencies. You may use
the supplied sample files as a starting point for generating the documentation of your Logtalk applications.

The Logtalk DTD file, logtalk_entity.dtd, contains a reference to a user-customizable file, custom.ent,
which declares XML entities for source code author names, license terms, and copyright strings. After editing
the custom.ent file to reflect your personal data, you may use the XML entities on info/1 documenting
directives. For example, assuming that the XML entities are named author, license, and copyright we may
write:

1.17. Documenting 139

The Logtalk Handbook, Release v3.89.0

:— info([
version is 1:1:0,
author is {author},
license is {license},
copyright is {copyright}
D.

The entity references are replaced by the value of the corresponding XML entity when the XML documenting
files are processed (not when they are generated; this notation is just a shortcut to take advantage of XML
entities).

The Igtdoc tool supports a set of options that can be used to control the generation of the XML documentation
files. See the tool documentation for details. There is also a doclet tool that allows automating the steps
required to generate the documentation for an application.

1.17.6 Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown or reStructuredText syntax and
converting XML documenting files to Markdown or reStructuredText files (and these, if required, to e.g.
HTML, ePub, or PDF formats). Note that Markdown and reStructuredText common syntax elements are
enough for most API documentation:

Mark xitalic text* with one asterisk.
Mark xxbold text** with two asterisks.
Mark "~ “monospaced text " with two backquotes.

Rendering this block as markup gives:

Mark italic text with one asterisk. Mark bold text with two asterisks. Mark monospaced text with
two backquotes.

As single backquotes have different purposes in Markdown (monospaced text) and reStructuredText
(domain- or application-dependent meaning), never use them. This also avoids doubts if there’s an inline
formatting typo in text meant to be rendered as monospaced text (usually inline code fragments).

140 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.17.7 Diagrams

The diagrams tool supports a wide range of diagrams that can also help in documenting an application. The
generated diagrams can include URL links to both source code and API documentation. They can also be
linked, connecting, for example, high level diagrams to detail diagrams. These features allow diagrams to be
an effective solution for navigating and understanding the structure and implementation of an application.
This tool uses the same reflection API as the 1gtdoc tool and thus has access to the same source data. See the
tool documentation for details.

1.18 Debugging

The Logtalk distribution includes a command-line debugger tool implemented as a Logtalk application using
the debugging API. It can be loaded at the top-level interpreter by typing:

[l ?- logtalk_load(debugger(loader)). }

It can also be loaded automatically at startup time by using a settings file.

The debugger tool includes the debugging features found in traditional Prolog debuggers. There are some
differences, however, between the usual implementation of Prolog debuggers and the current implementa-
tion of the Logtalk debugger that you should be aware of. First, unlike most Prolog debuggers, the Logtalk
debugger is not a built-in feature but a regular Logtalk application using documented debugging hook pred-
icates. This translates to a different, although similar, set of debugging features when compared with some
of the more sophisticated Prolog debuggers. Second, debugging is only possible for entities compiled in
debug mode. When compiling an entity in debug mode, Logtalk decorates clauses with source information
to allow tracing of the goal execution. Third, the tool provides several types of breakpoints (for pausing
and interacting with the debugger) and also log points, while most Prolog systems are limited to traditional
predicate spy points.

1.18.1 Compiling source files in debug mode

Compilation of source files in debug mode is controlled by the debug compiler flag. The default value for
this flag, usually off, is defined in the adapter files. Its default value may be changed globally at runtime by
calling:

[I ?- set_logtalk_flag(debug, on).]

Implicitly, this goal also turns off the optimize flag. In alternative, if we want to compile only some source
files in debug mode, we may instead write:

[| 7- logtalk_load([filel, file2, ...1, [debug(on)]).]

The logtalk _make/1 built-in predicate can also be used to recompile all loaded files (that were compiled
without using explicit values for the debug and optimize compiler flags in a logtalk_load/2 call or in a
loader file, if used) in debug mode:

[| ?2- logtalk_make(debug). J

With most backend Prolog compilers, the {+d} top-level shortcut can also be used. After debugging, the files
can be recompiled in normal or optimized mode using, respectively, the {+n} or {+o0} top-level shortcuts.

1.18. Debugging 141

The Logtalk Handbook, Release v3.89.0

A Warning

The clean compiler flag should be turned on whenever the debug flag is turned on at runtime. This
is necessary because debug code would not be generated for files previously compiled in normal or
optimized mode if there are no changes to the source files.

After loading the debugger, we may check (or enumerate by backtracking), all loaded entities compiled in
debug mode as follows:

[I ?- debugger: :debugging(Entity). J

To compile only a specific entity in debug mode, use the set logtalk flag/2 directive inside the entity. To
compile all entities in a source file in debug mode, use the set logtalk flag/2 directive at the beginning of
the file.

1.18.2 Procedure box model

Logtalk uses a procedure box model similar to those found on most Prolog systems. The traditional Prolog
procedure box model defines four ports (call, exit, redo, and fail) for describing control flow when calling a
predicate:

call

predicate call
exit

success of a predicate call
redo

backtracking into a predicate
fail

failure of a predicate call

Logtalk, as found on some recent Prolog systems, adds a port for dealing with exceptions thrown when
calling a predicate:

exception
predicate call throws an exception

In addition to the ports described above, Logtalk adds two more ports, fact and rule, which show the result
of the unification of a goal with, respectively, a fact and a rule head:

fact
unification success between a goal and a fact
rule
unification success between a goal and a rule head

142 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Following Prolog tradition, the user may define for which ports the debugger should pause for user interac-
tion by specifying a list of leashed ports. Unleashed ports are just printed with no pause for user interaction
when tracing. For example:

[I ?- debugger::leash([call, exit, faill).]

Alternatively, the user may use an atom abbreviation for a pre-defined set of ports. For example:

[l ?- debugger: :leash(loose). J

The abbreviations defined in Logtalk are similar to those defined on some Prolog compilers:

none
[]
loose
[fact, rule, call]
half
[fact, rule, call, redo]
tight
[fact, rule, call, redo, fail, exception]
full

[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

1.18.3 Activating the debugger

The debuggerp::trace/0 and debuggerp::debug/0 predicates implicitly select the debugger tool as the active
debug handler. If you have additional debug handlers loaded (e.g., the ports_profiler tool), those would no
longer be active (there can be only one active debug handler at any given time). The debuggerp::nodebug/0
predicate implicitly deselects the debugger tool as the active debug handler.

1.18.4 Defining breakpoints
The debugger tool provides the following breakpoint types where the debugger pauses at a leashed port for
user interaction:

* Predicate breakpoints
Traditional Prolog spy points are defined using a predicate (or a non-terminal) indicator.

Clause breakpoints
Defined using the location of a clause.

* Conditional breakpoints
Defined using the location of a clause and a condition for pausing.

* Hit count breakpoints
Defined using the location of a clause and an unification count expression as a condition for
pausing.

1.18. Debugging 143

../../docs/debuggerp_0.html#debuggerp-0-trace-0
../../docs/debuggerp_0.html#debuggerp-0-debug-0
../../docs/debuggerp_0.html#debuggerp-0-nodebug-0

The Logtalk Handbook, Release v3.89.0

» Triggered breakpoints
Defined using the location of a clause and another breakpoint that must be hit first as a condition
for pausing.

* Context breakpoints
Defined using execution context and goal templates as a condition for pausing.

Clause breakpoints are checked when the current goal successfully unifies with a clause head. To simplify
their definition, these are specified using the entity identifier instead of the file name (as all entities share a
single namespace, an entity can only be defined in a single file) and the first line number of the clause head.
But note that only some Prolog backends provide accurate source file term line numbers. Check the debugger
tool documentation for details.

Defining predicate and clause breakpoints

Predicate and clause breakpoints can be defined using the debugger spy/1 predicate. The argument can be
a predicate indicator (Name/Arity), a non-terminal indicator (Name//Arity), a clause location (expressed as
an Entity-Line pair), or a list of breakpoints. For example:

| ?- debugger::spy(person-42).

All specified breakpoints added.
yes

| ?- debugger::spy(foo/2).

All specified breakpoints added.
yes

| ?- debugger::spy([foo/4, bar//1, agent-99]).

All specified breakpoints added.
yes

Note that setting a clause breakpoint implicitly removes any existing conditional breakpoint, triggered break-
point, or log point for the same clause.

Unconditional clause and predicate breakpoints can be removed by using the debugger nospy/1 predicate.
The argument can also be a list of breakpoints or a non-instantiated variable, in which case all breakpoints
will be removed. For example:

| ?- debugger::nospy(_).

All matching predicate and clause breakpoints removed.
yes

144 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Defining conditional breakpoints

Conditional clause breakpoints are specified using the debugger spy/3 predicate. The condition can be
a lambda expression, an unification count expression (see next section), or another breakpoint (see next
section).

The supported lambda expressions are [Count, N, Goall>>Condition and [Goal]>>Condition where Count
is the unification count, N is the goal invocation number, and Goal is the goal that unified with the clause
head; Condition is called in the context of the user pseudo-object and must not have any side effects. Some
examples:

| ?- debugger::spy(planet, 76, [weight(m1,_)1>>true).

Conditional breakpoint added.
yes

Note that setting a conditional breakpoint will remove any existing clause breakpoint or log point for the
same location.

Conditional breakpoints can be removed by using the debugger nospy/3 predicate. For example:

| ?- debugger::nospy(planet, _, _).

All matching conditional breakpoints removed.
yes

Defining hit count breakpoints
Conditional clause breakpoints that depend on the unification count are known as hit count clause break-
points. The debugger pauses at a hit count breakpoint depending on an unification count expression:

* >(Count) - break when the unification count is greater than Count

* >=(Count) - break when the unification count is greater than or equal to Count

* =:=(Count) - break when the unification count is equal to Count

* =<(Count) - break when the unification count is less than or equal to Count

e <(Count) - break when the unification count is less than Count

* mod(M) - break when the unification count modulo M is zero

* Count - break when the unification count is greater than or equal to Count

For example:

| ?- debugger::spy(planet, 41, =<(2)).

Conditional breakpoint added.
yes

1.18. Debugging 145

The Logtalk Handbook, Release v3.89.0

Defining triggered breakpoints

Conditional clause breakpoints that depend on other clause breakpoint or on a log point are known as
triggered clause breakpoints. The debugger only pauses at a triggered breakpoint if the clause breakpoint or
log point it depends on is hit first. For example:

| ?- debugger::spy(mars, 98, planet-76).

Triggered breakpoint added.
yes

In this case, the debugger will break for user interaction at the unification port for the clause in the source
file defining the mars object at line 98 if and only if the debugger paused earlier at the unification port for
the clause in the source file defining the planet category at line 76.

The debugger prints a * character at the beginning of the line for easy recognition of triggered breakpoints.

Defining context breakpoints

A context breakpoint is a tuple describing a message execution context and a goal:

[(Sender, This, Self, Goal)

The debugger pauses for user interaction whenever the breakpoint goal and execution context subsume the
goal currently being executed and its execution context. The user may establish any number of context
breakpoints as necessary. For example, in order to call the debugger whenever a predicate defined on an
object named foo is called, we may define the following context breakpoint:

| ?- debugger::spy(_, foo, _, _).

Spy point set.
yes

For example, we can spy all calls to a foo/2 predicate with a bar atom in the second argument by setting the
condition:

| ?- debugger::spy(_, _, _, foo(_, bar)).

Spy point set.
yes

The debugger nospy/4 predicate may be used to remove all matching breakpoints. For example, the call:

| ?- debugger::nospy(_, _, foo, _).

All matching context breakpoints removed.
yes

will remove all context breakpoints where the value of self is the atom foo.

146 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Removing all breakpoints

We can remove all breakpoints by using the debugger nospyall/e predicate:

| ?- debugger::nospyall.

All breakpoints removed.
yes

There’s also a reset/0 predicate that can be used to reset the debugger to its default settings and delete all
defined breakpoints and log points.

1.18.5 Defining log points

Logtalk log points are similar to breakpoints. Therefore, the line number must correspond to the first line
of an entity clause. When the debugger reaches a log point, it prints a log message and continues without
pausing execution for reading a port command. When the log message is an empty atom, the default port
output message is printed. When the log message starts with a % character, the default port output message is
printed, followed by the log message. In these two cases, the debugger prints a @ character at the beginning
of the line for easy recognition of log points output. When the log message is neither empty nor starts with a
% character, the log message is printed instead of the default port output message. In this case, the message
can contain $KEYWORD placeholders that are expanded at runtime. The valid keywords are:

* PORT

* ENTITY

¢ CLAUSE_NUMBER

* FILE

e LINE

* UNIFICATION_COUNT
* INVOCATION_NUMBER
* GOAL

e PREDICATE

e EXECUTION_CONTEXT
* SENDER

* THIS

* SELF

* METACALL_CONTEXT
* COINDUCTION_STACK
* THREAD

Log points are defined using the log/3 predicate. For example:

| ?- debugger::log(agent, 99, '% At the secret headquarters!').
Log point added.
yes

(continues on next page)

1.18. Debugging 147

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
| ?- debugger::log(loop, 42, 'Message $PREDICATE from $SENDER at thread $THREAD').
Log point added.
yes

The logging/3 and nolog/3 predicate can be used to, respectively, query and remove log points. There’s also
a nologall/e predicate that removes all log points.

Note that setting a log point will remove any existing clause breakpoint for the same location.

1.18.6 Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug mode. To start the debugger in trace
mode, write:

| ?- debugger::trace.

yes

Next, type the query to be debugged. For example, using the family example in the Logtalk distribution
compiled for debugging:

| ?- addams::sister(Sister, Sibling).
Call: (1) sister(_1082,_1104) ?
Rule: (1) sister(_1082,_1104) ?
Call: (2) ::female(_1082) ?
Call: (3) female(_1082) ?
Fact: (3) female(morticia) ?
*Exit: (3) female(morticia) ?
*Exit: (2) ::female(morticia) ?

While tracing, the debugger will pause for user input at each leashed port, printing an informative message.
Each trace line starts with the port, followed by the goal invocation number, followed by the goal. The
invocation numbers are unique and allow us to correlate the ports used for a goal. In the output above, you
can see, for example, that the goal ::female(_1082) succeeds with the answer ::female(morticia). The
debugger also provides determinism information by prefixing the exit port with a * character when a call
succeeds with choice-points pending, thus indicating that there might be alternative solutions for the goal.

Note that breakpoints are ignored when tracing. But when a breakpoint is set for the current predicate
or clause, the debugger prints, before the port name and number, a + character for predicate breakpoints,
a # character for clause breakpoints, a ? character for conditional clause breakpoints, a * for triggered
breakpoints, and a * character for context breakpoints. For example:

| ?- debugger::spy(female/2).
yes

| ?- addams::sister(Sister, Sibling).
Call: (1) sister(_1078,_1100) ?
Rule: (1) sister(_1078,_1100) ?
Call: (2) ::female(_1078) ?
+ Call: (3) female(_1078) ?

To stop tracing (but still allowing the debugger to pause at the defined breakpoints), write:

148 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

| ?- debugger::notrace.

yes

1.18.7 Debugging using breakpoints

Tracing a program execution may generate large amounts of debugging data. Debugging using breakpoints
allows the user to concentrate on specific points of the code. To start a debugging session using breakpoints,
write:

| ?- debugger: :debug.

yes

For example, assuming the predicate breakpoint we set in the previous section on the female/1 predicate:

| ?- addams::sister(Sister, Sibling).
+ Call: (3) female(_1078) ?

To stop the debugger, write:

| ?- debugger: :nodebug.

yes

Note that stopping the debugger does not remove any defined breakpoints or log points.

1.18.8 Debugging commands

The debugger pauses for user interaction at leashed ports when tracing and when hitting a breakpoint. The
following commands are available:

c — creep

go on; you may use the spacebar, return, or enter keys in alternative
1—leap

continues execution until the next breakpoint is found
s — skip

skips tracing for the current goal; valid at call, redo, and unification ports
S - Skip

similar to skip but displaying all intermediate ports unleashed

q — quasi-skip
skips tracing until returning to the current goal or reaching a breakpoint; valid at call and redo ports
r — retry
retries the current goal but side-effects are not undone; valid at the fail port
j — jump
reads invocation number and continues execution until a port is reached for that number
z — zap
reads either a port name and continues execution until that port is reached or a negated port name
and continues execution until a port other than the negated port is reached

1.18. Debugging 149

The Logtalk Handbook, Release v3.89.0

i —ignore
ignores goal, assumes that it succeeded; valid at call and redo ports
f — fail

forces backtracking; may also be used to convert an exception into a failure

n — nodebug
turns off debugging

N — notrace
turns off tracing

@ — command; ! can be used in alternative
reads and executes a query

b — break
suspends execution and starts new interpreter; type end_of_file to terminate

a — abort
returns to top level interpreter

Q — quit
quits Logtalk
p — print
writes current goal using the print/1 predicate if available
d — display
writes current goal without using operator notation
w — write
writes current goal quoting atoms if necessary
$ — dollar

outputs the compiled form of the current goal (for low-level debugging)

x — context
prints execution context

. — file
prints file, entity, predicate, and line number information at an unification port
e — exception
prints exception term thrown by the current goal
E — raise exception
reads and throws an exception term
= — debugging
prints debugging information

< — write depth
sets the write term depth (set to @ to reset)

* — add

adds a context breakpoint for the current goal

/ — remove
removes a context breakpoint for the current goal

+—add

adds a predicate breakpoint for the current goal

150 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

- — remove
removes a predicate breakpoint for the current goal

#— add
adds a breakpoint for the current clause

| — remove
removes a breakpoint for the current clause

h — condensed help
prints list of command options

? — extended help
prints list of command options

1.18.9 Customizing term writing

Debugging complex applications often requires customizing term writing. The available options are limiting
the writing depth of large compound terms and using the p command at a leashed port. This command uses
the format/3 de facto standard predicate with the ~p formatting option to delegate writing the term to the
print/1 predicate. But note that some backends don’t support this formatting option.

Term write depth

The terms written by the debugger can be quite large depending on the application being debugged. As
described in the previous section, the debugger accepts the < command to set the maximum write term
depth for compound terms. This command requires that the used backend Prolog compiler supports the non-
standard but common max_depth/1 option for the write_term/3 predicate. When the compound term being
written is deeply nested, the sub-terms are only written up to the specified depth with the omitted sub-terms
replaced usually by For example:

| ?- write_term([0,1,2,3,4,5,6,7,8,9], [max_depth(5)1).

[0,1,2,3,4]...]
yes

The default maximum depth depends on the backend. To print compound terms without a depth limit, set it
explicitly to zero if necessary.

Custom term writing

The implicit use of the traditional print/1 predicate (using the p command) and the portray/1 user-defined
hook predicate requires backend Prolog compiler support for these predicates. See the documentation of the
backend you intend to use for details. As an example, assuming the following portray/1 definition:

portray(e(V1,V2)) :-
format('~q ---> ~g~n', [V1,V2]).

Calling the print/1 predicate with e.g. a e(x1,x7) compound term argument will output:

| ?- print(e(x1,x7)).

x1 —=-=> x7
yes

1.18. Debugging 151

The Logtalk Handbook, Release v3.89.0

1.18.10 Context-switching calls

Logtalk provides a debugging control construct, (< <)/2, which allows the execution of a query within the
context of an object. Common debugging uses include checking an object local predicates (e.g. predicates
representing internal dynamic state) and sending a message from within an object. This control construct
may also be used to write unit tests.

Consider the following toy example:

:— object(broken).
;- public(a/1).
a(A) :- b(A, B), c(B).
b(1, 2). b(2, 4). b(3, 6).
c(3).

:- end_object.

Something is wrong when we try the object public predicate, a/1:

| ?- broken::a(A).

no

For helping in diagnosing the problem, instead of compiling the object in debug mode and doing a trace of
the query to check the clauses for the non-public predicates, we can instead simply type:

| ?- broken << c(C).

c=3
yes

The (<<)/2 control construct works by switching the execution context to the object in the first argument
and then compiling and executing the second argument within that context:

| ?- broken << (self(Self), sender(Sender), this(This)).
Self = broken
Sender = broken

This = broken

yes

As exemplified above, the (<<)/2 control construct allows you to call an object local and private predicates.
However, it is important to stress that we are not bypassing or defeating an object predicate scope directives.
The calls take place within the context of the specified object, not within the context of the object making
the (<<)/2 call. Thus, the (<<)/2 control construct implements a form of execution-context-switching.

The availability of the (<<)/2 control construct is controlled by the context switching calls compiler flag (its
default value is defined in the adapter files of the backend Prolog compilers).

152 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.18.11 Debugging messages

Calls to the logtalk::print_message/3 predicate where the message kind is either debug or debug(Group) are
only printed, by default, when the debug flag is turned on. Moreover, these calls are suppressed by the
compiler when the optimize flag is turned on. Note that actual printing of debug messages does not require
compiling the code in debug mode, only turning on the debug flag.

Meta-messages

To avoid having to define message tokens//2 grammar rules for translating each and every debug message,
Logtalk provides default tokenization for seven meta-messages that cover the most common cases:

@Message
By default, the message is printed as passed to the write/1 predicate followed by a newline.

Key-Value
By default, the message is printed as Key: Value followed by a newline. The key is printed as passed
to the write/1 predicate while the value is printed as passed to the writeq/1 predicate.

Format+Arguments
By default, the message is printed as passed to the format/2 predicate.

List
By default, the list items are printed indented, one per line. The items are preceded by a dash and can
be @essage, Key-Value, or Format+Arguments messages. If that is not the case, the item is printed as
passed to the writeq/1 predicate.

Title::List
By default, the title is printed, followed by a newline and the indented list items, one per line. The
items are printed as in the List meta message.

[Stream,Prefix]>>Goal
By default, call user-defined printing Goal in the context of user. The use of a lambda expression
allows passing the message stream and prefix. Printing the prefix is delegated to the goal.

[Stream]>>Goal
By default, call user-defined printing Goal in the context of user. The use of a lambda expression
allows passing the message stream.

Some simple examples of using these meta-messages:

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
yes

| ?- logtalk::print_message(debug, core, [Stream]>>write(Stream,fo0)).
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk::print_message(debug, core, [Stream]>>write(Stream,fo0)).
foo
yes

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
>>> Phase 1 completed
yes
(continues on next page)

1.18. Debugging 153

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

| ?- logtalk::print_message(debug, core, answer-42).
>>> answer: 42
yes

| ?- logtalk::print_message(debug, core, 'Position: <~d,~d>'+[42,23]).
>>> Position: <42,23>
yes

| ?- logtalk::print_message(debug, core, [arthur,ford,marvin]).
>>> - arthur

>>> - ford
>>> - marvin
yes

| ?- logtalk::print_message(debug, core, names::[arthur,ford,marvin]).

>>> names:
>>> - arthur
>>> - ford
>>> - marvin
yes

The >>> prefix is the default message prefix for debug messages. It can be redefined using the
logtalk::message prefix_stream/4 hook predicate. For example:

:- multifile(logtalk: :message_prefix_stream/4).
:— dynamic(logtalk: :message_prefix_stream/4).

logtalk: :message_prefix_stream(debug, core, '(dbg) ', user_error).

Selective printing of debug messages

By default, all debug messages are either printed or skipped, depending on the debug and optimize flags.
When the code is not compiled in optimal mode, the debug messages tool allows selective enabling of debug
messages per component and per debug group. For example, to enable all debug and debug(Group) messages
for the parser component:

% upon loading the tool, all messages are disabled by default:
| ?- logtalk_load(debug_messages(loader)).

% enable both debug and debug(_) messages:
| ?- debug_messages::enable(parser).
yes

To enable only debug(tokenization) messages for the parser component:

% first disable any and all enabled messages:
| ?- debug_messages: :disable(parser).
yes

(continues on next page)

154 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
% enable only debug(tokenization) messages:
| ?- debug_messages::enable(parser, tokenization).
yes

See the tool documentation for more details.

1.18.12 Using the term-expansion mechanism for debugging

Debugging messages only output information by default. These messages can, however, be intercepted
to perform other actions. An alternative is to use instead the term-expansion mechanism for conditional
compilation of debugging goals. For example, the hook objects library provides a print_goal hook object
that simplifies printing entity goals before or after calling them by simply prefixing them with an operator.
See the library and hook object documentation for details. You can also define your own specialized hook
objects for custom debugging tasks.

1.18.13 Ports profiling

The Logtalk distribution includes a ports_profiler tool based on the same procedure box model described
above. This tool is specially useful for debugging performance issues (e.g., due to lack of determinism or
unexpected backtracking). See the tool documentation for details.

1.18.14 Debug and trace events

The debugging API defines two multifile predicates, logtalk::trace event/2 and logtalk::debug handler/3
for handling trace and debug events. It also provides a logtalk::debug handler/1 multifile predicate that
allows an object (or a category) to declare itself as a debug handler provider. The Logtalk debugger and
ports_profiler tools are regular applications that are implemented using this API, which can also be used
to implement alternative or new debugging-related tools. See the API documentation for details and the
source code of the debugger and ports_profiler tools for usage examples.

To define a new debug handler provider, add (to an object or category) clauses for the debug_handler/1 and
debug_handler/3 predicates. For example:

% declare my_debug_handler as a debug handler provider

;- multifile(logtalk: :debug_handler/1).

logtalk: :debug_handler (my_debug_handler).

% handle debug events

;- multifile(logtalk: :debug_handler/3).

logtalk: :debug_handler (my_debug_handler, Event, ExCtx) :-
debug_handler(Event, ExCtx).

debug_handler(fact(Entity,Fact,Clause,File,Line), ExCtx) :-

debug_handler(rule(Entity,Head,Clause,File,Line), ExCtx) :-

debug_handler(top_goal(Goal, TGoal), ExCtx) :-

debug_handler(goal (Goal, TGoal), ExCtx) :-

1.18. Debugging 155

../../docs/print_goal_hook_0.html#print-goal-hook-0
../../docs/logtalk_0.html#logtalk-0-trace-event-2
../../docs/logtalk_0.html#logtalk-0-debug-handler-3
../../docs/logtalk_0.html#logtalk-0-debug-handler-1

The Logtalk Handbook, Release v3.89.0

Your debug handler provider should also either automatically call the logtalk::activate_debug handler/1
and logtalk::deactivate debug handler/0 predicate or provide public predicates to simplify calling these
predicates. For example:

:— public(start/0).
start :-
logtalk::activate_debug_handler(my_debug_handler).

:— public(stop/0).
stop :-
logtalk: :deactivate_debug_handler.

If you only need to define a trace event handler, then simply define clauses for the logtalk::trace event/2
multifile predicate:

;- multifile(logtalk::trace_event/2).
.- dynamic(logtalk: :trace_event/2).

% the Logtalk runtime calls all defined logtalk::trace_event/2 hooks using
% a failure-driven loop; thus we don't have to worry about handling all

% events or failing after handling an event to give other hooks a chance
logtalk: :trace_event(fact(Entity, Fact, N, _,), _) :-

logtalk::trace_event(rule(Entity, Head, N, _,),) :-

1.18.15 Source-level debugger

A minimal source-level debugger is provided by the Logtalk for VSCode extension: when debugging in the
integrated terminal using the debugger tool, the current clause (at leashed unification ports) is shown in
the active editor window. The extension can also be used with VSCodium. See its documentation for more
details.

1.19 Performance

Logtalk is implemented as a trans-compiler to Prolog. When compiling predicates, it preserves in the gener-
ated Prolog code all cases of first-argument indexing and tail-recursion. In practice, this means that if you
know how to write efficient Prolog predicates, you already know the basics of how to write efficient Logtalk
predicates.

The Logtalk compiler appends a single argument to the compiled form of all entity predicate clauses. This
hidden argument is used to pass the execution-context when proving a query. In the common case where
a predicate makes no calls to the execution-context predicates and message-sending control constructs and is
neither a meta-predicate nor a coinductive predicate, the execution-context is simply passed between goals.
In this case, with most backend Prolog virtual machines, the cost of this extra argument is null or negligible.
When the execution-context needs to be accessed (e.g. to fetch the value of self for a (::)/1 call) there may
be a small inherent overhead due to the access to the individual arguments of the compound term used to
represent the execution-context.

156 Chapter 1. User Manual

../../docs/logtalk_0.html#logtalk-0-activate-debug-handler-1
../../docs/logtalk_0.html#logtalk-0-deactivate-debug-handler-0
../../docs/logtalk_0.html#logtalk-0-trace-event-2

The Logtalk Handbook, Release v3.89.0

1.19.1 Source code compilation modes

Source code can be compiled in optimal, normal, or debug mode, depending on the optimize and debug com-
piler flags. Optimal mode is used when deploying an application, while normal and debug modes are used
when developing an application. Compiling code in optimal mode enables several optimizations, notably
the use of static binding whenever enough information is available at compile-time. In debug mode, most
optimizations are turned off, and the code is instrumented to generate debug events that enable developer
tools such as the command-line debugger and the ports profiler.

1.19.2 Local predicate calls

Local calls to object (or category) predicates have zero overhead in terms of the number of inferences, as
expected, compared with local Prolog calls.

1.19.3 Calls to imported or inherited predicates

Assuming the optimize flag is turned on and a static predicate, (™ ~)/1 calls have zero overhead in terms of
number of inferences.

1.19.4 Calls to module predicates

Local calls from an object (or category) to a module predicate have zero overhead (assuming both the module
and the predicate are bound at compile-time).

1.19.5 Messages

Logtalk implements static binding and dynamic binding for message-sending calls. For dynamic binding, a
caching mechanism is used by the runtime. It’s useful to measure the performance overhead in number of
logic inferences compared with plain Prolog and Prolog modules. Note that the number of logic inferences
is a metric independent of the chosen backend Prolog compiler. The results for Logtalk 3.17.0 and later
versions are:

* Static binding: 0
* Dynamic binding (object bound at compile-time): +1
* Dynamic binding (object bound at runtime): +2

Static binding is the common case with libraries and most application code; it requires compiling code with
the optimize flag turned on. Dynamic binding numbers are after the first call (i.e. after the generalization of
the query is cached). All numbers with the events flag set to deny (setting this flag to allow adds an overhead
of +5 inferences to the results above; note that this flag can be defined on a per-object basis as needed
instead of globally and thus minimizing the performance impact).

The dynamic binding caches assume the used backend Prolog compiler does indexing of dynamic predicates.
This is a common feature of modern Prolog systems, but the actual details vary from system to system and
may have an impact on dynamic binding performance.

Note that messages to self ((::)/1 calls) and messages to an object ((::)/2 calls) from the top-level interpreter
always use dynamic binding, as the object that receives the message is only known at runtime.

Messages sent from Prolog modules may use static binding depending on the used backend Prolog compiler
native support for goal-expansion. Consult the Prolog compiler documentation and adapter file notes for
details.

1.19. Performance 157

The Logtalk Handbook, Release v3.89.0

A Warning

Some Prolog systems provide a time/1 predicate that also reports the number of inferences. But the
reported numbers are often misleading when the predicate is called from the top-level. Besides common
top-level bookkeeping operations (e.g., keeping track of goal history or applying goal-expansion) that
may influence the inference counting, the Logtalk runtime code for a (::)/2 top-level goal is necessarily
different from the code generated for a (::)/2 goal from a compiled object, as it requires runtime compi-
lation of the goal into the same low-level message-sending primitive (assuming dynamic-binding is also
required for the compiled object goal).

1.19.6 Automatic expansion of built-in meta-predicates

The compiler always expands calls to the forall/2, once/1, and ignore/1 meta-predicates into equivalent
definitions using the negation and conditional control constructs. It also expands calls to the call/I-N,
phrase/2, and phrase/3 meta-predicates when the first argument is bound. These expansions are performed
independently of the optimize flag value.

1.19.7 Inlining

When the optimize flag is turned on, the Logtalk compiler performs inlining of predicate calls whenever possi-
ble. This includes calls to Prolog predicates that are either built-in, foreign, or defined in a module (including
user). Inlining notably allows wrapping module or foreign predicates using an object without introducing
any overhead. In the specific case of the execution-context predicates, calls are inlined independently of the
optimize flag value.

1.19.8 Generated code simplification and optimizations

When the optimize flag is turned on, the Logtalk compiler simplifies and optimizes generated clauses (in-
cluding those resulting from the compilation of grammar rules), by flattening conjunctions, folding left
unifications (e.g. generated as a by-product of the compilation of grammar rules), and removing redundant
calls to true/o.

When using lambda expressions and library meta-predicates, use the meta _compiler library to avoid most
meta-call overheads.

1.19.9 Size of the generated code

The size of the intermediate Prolog code generated by the compiler is proportional to the size of the source
code. Assuming that the term-expansion mechanism is not used, each predicate clause in the source code
is compiled into a single predicate clause. But the Logtalk compiler also generates internal tables for the
defined entities, for the entity relations, and for the declared and defined predicates. These tables enable
support for fundamental features such as inheritance and reflection. The size of these tables is proportional
to the number of entities, entity relations, and predicate declarations and definitions. When the source_data
is turned on (the default when developing an application), the generated code also includes additional data
about the source code, such as entity and predicate positions in a source file. This data enables advanced
developer tool functionality. But it is usually not required when deploying an application. Thus, turning this
flag off is a common setting for minimizing an application footprint.

158 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.19.10 Circular references

Circular references, i.e. two objects sending messages to each other, are relatively costly and should be
avoided if possible as they prevent using static binding for the messages sent from the first loaded object to
the second object. The logtalk make(circular) goal (or its {@} top-level abbreviation) can be used to scan for
circular entity dependencies. The linter also warns by default about non-ideal file loading order (controlled
by the unknown_entities flag).

1.19.11 Debug mode overhead

Code compiled in debug mode runs slower, as expected, when compared with normal or optimized mode.
The overhead depends on the number of debug events generated when running the application. A debug
event is simply a pass on a call or unification port of the procedure box model. These debug events can be
intercepted by defined clauses for the logtalk::trace event/2 and logtalk::debug handler/3 multifile predi-
cates. With no application (such as a debugger or a port profiler) loaded defining clauses for these predicates,
each goal has an overhead of four extra inferences due to the runtime checking for a definition of the hook
predicates and a meta-call of the user goal. The clause head unification events result in one or more infer-
ences per goal (depending on the number of clauses whose head unifies with the goal and backtracking).
In practice, this overhead translates to code compiled in debug mode running typically ~2x to ~7x slower
than code compiled in normal or optimized mode, depending on the application (the exact overhead is pro-
portional to the number of passes on the call and unification ports; deterministic code often results in a
relatively larger overhead when compared with code performing significant backtracking).

1.19.12 Other considerations

One aspect of performance that affects both Logtalk and Prolog code is the characteristics of the Prolog VM.
The Logtalk distribution includes two examples, bench and benchmarks, to help evaluate performance with
specific backend Prolog systems. A table with benchmark results for a subset of the supported systems is also
available at the Logtalk website. But note that multiple factors affect the performance of an application. The
benchmark examples and their results only provide a partial assessment.

1.20 Installing Logtalk

This page provides an overview of Logtalk installation requirements and instructions and a description of
the files contained in the Logtalk distribution. For detailed, up-to-date installation and configuration instruc-
tions, please see the README.md, INSTALL.md, and CUSTOMIZE.md files distributed with Logtalk. The broad
compatibility of Logtalk, both with Prolog compilers and operating-systems, together with all the possible
user scenarios, means that installation can vary from very simple, by running an installer or a couple of
scripts, to the need of patching both Logtalk and Prolog compilers to workaround the lack of strong Prolog
standards or to cope with the requirements of less common operating-systems.

The preferred installation scenario is to have Logtalk installed in a system-wide location, thus available for
all users, and a local copy of user-modifiable files on each user home directory (even when you are the
single user of your computer). This scenario allows each user to independently customize Logtalk and to
freely modify the provided libraries and programming examples. Logtalk installers, installation shell scripts,
and Prolog integration scripts favor this installation scenario, although alternative installation scenarios are
always possible. The installers set two environment variables, LOGTALKHOME and LOGTALKUSER, pointing,
respectively, to the Logtalk installation folder and to the Logtalk user folder.

User applications should preferably be kept outside of the Logtalk user folder created by the installation
process, as updating Logtalk often results in updating the contents of this folder. If your applications depend
on customizations to the distribution files, backup those changes before updating Logtalk.

1.20. Installing Logtalk 159

../../docs/logtalk_0.html#logtalk-0-trace-event-2
../../docs/logtalk_0.html#logtalk-0-debug-handler-3
https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/bench
https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/benchmarks
https://logtalk.org/performance.html

The Logtalk Handbook, Release v3.89.0

1.20.1 Hardware and software requirements

Computer and operating system

Logtalk is compatible with almost any computer/operating-system with a modern, standards-compliant,
Prolog compiler available.

Prolog compiler
Logtalk requires a backend Prolog compiler supporting official and de facto standards. Capabilities needed by
Logtalk that are not defined in the official ISO Prolog Core standard include:

* access to predicate properties

* operating-system access predicates

* de facto standard predicates not (yet) specified in the official standard

Logtalk needs access to the predicate property built_in to properly compile objects and categories that con-
tain Prolog built-in predicate calls. In addition, some Logtalk built-ins need to know the dynamic/static
status of predicates to ensure correct application. The ISO standard for Prolog modules defines a
predicate_property/2 predicate that is already implemented by most Prolog compilers. Note that if these
capabilities are not built-in the user cannot easily define them.

For optimal performance, Logtalk requires that the Prolog compiler supports first-argument indexing for
both static and dynamic code (most modern compilers support this feature).

Since most Prolog compilers are moving closer to the ISO Prolog standard [ISO95], it is advisable that you
try to use the most recent version of your favorite Prolog compiler.

1.20.2 Logtalk installers

Logtalk installers are available for macOS, Linux, and Microsoft Windows. Depending on the chosen installer,
some tasks (e.g., setting environment variables or integrating Logtalk with some Prolog compilers) may need
to be performed manually.

1.20.3 Source distribution

Logtalk sources are available in a tar archive compressed with bzip2, 1gt3xxx.tar.bz2. You may expand
the archive by using a decompressing utility or by typing the following commands at the command-line:

[]

This will create a sub-directory named 1gt3xxx in your current directory. Almost all files in the Logtalk
distribution are text files. Different operating-systems use different end-of-line codes for text files. Ensure
that your decompressing utility converts the end-of-lines of all text files to match your operating system.

160 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.20.4 Distribution overview

In the Logtalk installation directory, you will find the following files and directories:
ACKNOWLEDGMENTS.md - List of authors, contributors, sponsors, and open source credits
BIBLIOGRAPHY.bib — Logtalk bibliography in BibTeX format

CITATION.cff - Information on how to cite Logtalk

CODE_OF _CONDUCT .md - Code of conduct for contributors and users posting on support forums
CUSTOMIZE.md — Logtalk end-user customization instructions

INSTALL.md — Logtalk installation instructions

LICENSE. txt — Logtalk user license

NOTICE. txt — Logtalk copyright notice

QUICK_START.md — Quick start instructions for those that do not like to read manuals

README . md — several useful pieces of information

RELEASE_NOTES.md — release notes for this version

UPGRADING.md — instructions on how to upgrade your programs to the current Logtalk version

VERSION.txt — file containing the current Logtalk version number (used for compatibility checking when
upgrading Logtalk)

loader-sample.lgt — sample loader file for user applications
settings-sample.lgt — sample file for user-defined Logtalk settings

tester-sample.lgt — sample file for helping to automate running user application unit tests

adapters
NOTES.md — notes on the provided adapter files template.pl — template adapter file ... — specific
adapter files
coding
NOTES.md — notes on syntax highlighter and text editor support files providing syntax coloring for
publishing and editing Logtalk source code . .. — syntax coloring support files
contributions
NOTES.md — notes on the user-contributed code . .. — user-contributed code files
core
NOTES.md — notes on the current status of the compiler and runtime . .. — core source files
docs
NOTES.md — notes on the provided documentation for core, library, tools, and contributions entities
index.html — root document for all entities documentation ... — other entity documentation files
examples

NOTES.md — short description of the provided examples

bricks
NOTES.md — example description and other notes SCRIPT.txt — step-by-step example tutorial
loader.1gt — loader utility file for the example objects . .. — bricks example source files

... —other examples

1.20. Installing Logtalk 161

The Logtalk Handbook, Release v3.89.0

integration
NOTES.md — notes on scripts for Logtalk integration with Prolog compilers ... — Prolog integration
scripts

library
NOTES.md — short description of the library contents all_loader.lgt — loader utility file for all library
entities . .. — library source files

man

... — POSIX man pages for the shell scripts

manuals
NOTES.md — notes on the provided documentation bibliography.html — bibliography glossary.html —
glossary index.html — root document for all documentation . .. — other documentation files

paths

NOTES.md — description on how to setup library and example paths paths.pl — default library and
example paths

ports
NOTES.md — description of included ports of third-party software ... — ports

scratch
NOTES.md — notes on the scratch directory

scripts
NOTES.md — notes on scripts for Logtalk user setup, packaging, and installation ... — packaging, instal-
lation, and setup scripts

tests
NOTES.md — notes on the current status of the unit tests ... — unit tests for built-in features

tools
NOTES.md — notes on the provided programming tools ... — programming tools

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime and a Prolog compiler. Each
adapter file contains two sets of predicates: ISO Prolog standard predicates and directives not built-in in the
target Prolog compiler and Logtalk specific predicates.

Logtalk already includes ready-to-use adapter files for most academic and commercial Prolog compilers. If
an adapter file is not available for the compiler that you intend to use, then you need to build a new one,
starting from the included template.pl file. Start by making a copy of the template file. Carefully check (or
complete if needed) each listed definition. If your Prolog compiler conforms to the ISO standard, this task
should only take you a few minutes. In most cases, you can borrow code from the predefined adapter files.
If you are unsure that your Prolog compiler provides all the ISO predicates needed by Logtalk, try to run the
system by setting the unknown predicate error handler to report as an error any call to a missing predicate.
Better yet, switch to a modern, ISO-compliant, Prolog compiler. If you send me your adapter file, with a
reference to the target Prolog compiler, maybe I can include it in the next release of Logtalk.

The adapter files specify default values for most of the Logtalk compiler flags. They also specify values for
read-only flags that are used to describe Prolog backend-specific features.

162 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

Compiler and runtime

The core sub-directory contains the Prolog and Logtalk source files that implement the Logtalk compiler and
the Logtalk runtime. The compiler and the runtime may be split in two (or more) separate files or combined
into a single file, depending on the Logtalk release that you are installing.

Library

The Logtalk distribution includes a standard library of useful objects, categories, and protocols. Read the
corresponding NOTES.md file for details about the library contents.

Examples

The Logtalk distribution includes a large number of programming examples. The sources of each one of
these examples can be found included in a subdirectory with the same name, inside the directory examples.
The majority of these examples include tests and a file named SCRIPT. txt with sample calls. Some examples
may depend on other examples and library objects to work properly. Read the corresponding NOTES.md file
for details before running an example.

Logtalk source files

Logtalk source files are text files containing one or more entity definitions (objects, categories, or protocols).
The Logtalk source files may also contain plain Prolog code. The extension .1gt is normally used. Logtalk
compiles these files to plain Prolog by appending to the file name a suffix derived from the extension and by
replacing the .1gt extension with .pl (.pl is the default Prolog extension; if your Prolog compiler expects
the Prolog source filenames to end with a specific, different extension, you can set it in the corresponding
adapter file).

1.21 Prolog integration and migration

This section provides suggestions for integrating and migrating plain Prolog code and Prolog module code
to Logtalk. Detailed instructions are provided for encapsulating plain Prolog code in objects, converting
Prolog modules into objects, and compiling and reusing Prolog modules as objects from inside Logtalk.
An interesting application of the techniques described in this section is a solution for running a Prolog
application that uses modules on a Prolog compiler with no module system. The wrapper tool can be used
to help in migrating Prolog code.

1.21.1 Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with Logtalk code. The Logtalk compiler
simply copies the plain Prolog code as-is to the generated Prolog file. With Prolog modules, it is assumed
that the module code starts with a module/1-2 directive and ends at the end of the file. There is no module
ending directive that would allow us to define more than one module per file. In fact, most, if not all, Prolog
module systems always define a single module per file. Some of them mandate that the module/1-2 directive
be the first term in a source file. As such, when the Logtalk compiler finds a module/1-2 directive, it assumes
that all code that follows until the end of the file belongs to the module.

1.21. Prolog integration and migration 163

The Logtalk Handbook, Release v3.89.0

1.21.2 Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one defining a few top-level predicates
and auxiliary predicates that are not meant to be directly called by the user. Encapsulating plain Prolog code
in objects allows us to make clear the different roles of each predicate, to hide implementation details, to
prevent auxiliary predicates from being called outside the object, and to take advantage of Logtalk advanced
code encapsulating and reusing features. It also simplifies using its developer tools.

Encapsulating Prolog code using Logtalk objects is simple. First, for each source file, add an opening object
directive, object/1-5, to the beginning of the file and an ending object directive, end object/0, to the end of
the file. Choose an object name that reflects the purpose of the source file code (this is a good opportunity
for code refactoring if necessary). Second, add public/1 predicate directives for the top-level predicates that
are used directly by the user or called from other source files. Third, we need to be able to call from inside
an object predicates defined in other source files/objects. The easiest solution, which has the advantage of
not requiring any changes to the predicate definitions, is to use the uses/2 directive. If your Prolog compiler
supports cross-referencing tools, you may use them to help you make sure that all calls to predicates on other
source files/objects are listed in the uses/2 directives. The Logtalk wrapper tool can also help in detecting
cross-predicate calls. Compiling the resulting objects with the Logtalk unknown predicates and portability
flags set to warning will help you identify calls to predicates defined in other converted source files and
possible portability issues.

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same predicate are spread among several source
files. When encapsulating plain Prolog code that uses multifile predicates, it’s often the case that the clauses
of the multifile predicates get spread between different objects and categories, but conversion is straight-
forward. In the Logtalk object (or category) holding the multifile predicate primary declaration, add a
predicate scope directive and a multifile/1 directive. In all other objects (or categories) defining clauses for
the multifile predicate, add a multifile/1 directive and predicate clauses using the format:

:— multifile(Entity::Name/Arity).

Entity::Functor(...) :-

See the section on the multifile/1 predicate directive for more information. An alternative solution is to
simply keep the clauses for the multifile predicates as plain Prolog code and define, if necessary, a parametric
object to encapsulate all predicates working with the multifile predicate clauses. For example, assume the
following multifile/1 directive:

% city(Name, District, Population, Neighbors)
:— multifile(city/4).

We can define a parametric object with city/4 as its identifier:

:— object(city(_Name, _District, _Population, _Neighbors)).
% predicates for working with city/4 clauses

:- end_object.

This solution is preferred when the multifile predicates are used to represent large tables of data. See the
section on parametric objects for more details.

164 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

1.21.3 Converting Prolog modules into objects

Converting Prolog modules into objects may allow an application to run on a wider range of Prolog compilers,
overcoming portability problems. Some Prolog compilers don’t support a module system. Among those
Prolog compilers that support a module system, the lack of standardization leads to several issues, notably
with semantics, operators, and meta-predicates. In addition, the conversion allows you to take advantage
of Logtalk more powerful abstraction and reuse mechanisms, such as separation between interface and
implementation, inheritance, parametric objects, and categories. It also allows you to take full advantage of
Logtalk developer tools for improved productivity.

Converting a Prolog module into an object is simplified when the directives used in the module are supported
by Logtalk (see the listing in the next section). Assuming that this is the case, apply the following steps:

1. Convert the module module/1 directive into an object/1 opening object directive, using the module
name as the object name. For module/2 directives apply the same conversion and convert the list of
exported predicates into public/1 predicate directives. Add a closing object directive, end object/0, at
the end of the source code.

2. Convert any export/1 directives into public/1 predicate directives.

3. Convert any use_module/1 directives for modules that will not be converted to objects into use_module/
2 directives (see next section), replacing the file spec in the first argument with the module name.

4. Convert any use_module/1-2 directives referencing other modules also being converted to objects into
Logtalk uses/2 directives.

5. Convert each reexport/1 directive into a uses/2 directive and public/1 predicate directives (see next
section).

6. Convert any meta_predicate/1 directives into Logtalk meta predicate/1 directives by replacing the
module meta-argument indicator, :, with the Logtalk meta-argument indicator @ for goal meta-
arguments. For closure meta-arguments, use an integer denoting the number of additional arguments
that will be appended to construct a goal. Arguments that are not meta-arguments are represented by
the x character. Do not use argument mode indicators such as ?, or +, or - as Logtalk supports mode
directives.

7. Convert any explicit qualified calls to module predicates to messages by replacing the (:)/2 operator
with the (::)/2 message-sending operator when the referenced modules are also being converted into
objects. Calls in the pseudo-module user can be encapsulated using the {}/1 Logtalk external call
control construct. You can also use instead a uses/2 directive where the first argument would be
the atom user and the second argument a list of all external predicates. This alternative has the
advantages of not requiring changes to the code making the predicate calls and of better visibility for
the documenting and diagramming tools.

8. If your module uses the database built-in predicates to implement module-local mutable state using
dynamic predicates, add both private/1 and dynamic/1 directives for each dynamic predicate.

9. If your module declares or defines clauses for multifile module predicates, replace the (:)/2 functor
by (::)/2 in the multifile/1 directives and in the clause heads for all modules defining the multifile
predicates that are also being converted into objects; if that is not the case, just keep the multifile/1
directives and the clause heads as-is.

10. Compile the resulting objects with the Logtalk unknown_predicates, and portability flags set to warning
to help you locate possible issues and calls to proprietary Prolog built-in predicates and to predicates
defined on other converted modules. In order to improve code portability, check the Logtalk library for
possible alternatives to the use of proprietary Prolog built-in predicates.

Before converting your modules to objects, you may try to compile them first as objects (using the
logtalk compile/1 Logtalk built-in predicates) to help identify any issues that must be dealt with when doing

1.21. Prolog integration and migration 165

The Logtalk Handbook, Release v3.89.0

the conversion to objects. Note that Logtalk supports compiling Prolog files as Logtalk source code without
requiring changes to the file name extensions.

1.21.4 Compiling Prolog modules as objects

A possible alternative to porting Prolog code to Logtalk is to compile the Prolog source files using the
logtalk_load/1-2 and logtalk_compile/1-2 predicates. The Logtalk compiler provides partial support for
compiling Prolog modules as Logtalk objects. This support may allow using modules from a backend Prolog
system in a different backend Prolog system, although its main purpose is to help in porting existing Pro-
log code to Logtalk in order to benefit from its extended language features and its developer tools. Why
partial support? Although there is an ISO Prolog standard for modules, it is (rightfully) ignored by most
implementers and vendors (due to its flaws and deviation from common practice). In addition, there is no
de facto standard for module systems, despite otherwise frequent misleading claims. Key system differences
include the set of implemented module directives, the directive semantics, the handling of operators, the
locality of flags, and the integration of term-expansion mechanisms (when provided). Another potential
issue is that, when compiling modules as objects, Logtalk assumes that any referenced module (e.g., using
use_module/1-2 directives) is also being compiled as an object. If that’s not the case, the compiled module
calls being compiled as message-sending goals will still work for normal predicates but will not work for
meta-predicates called using implicit module qualification. The reason is that, unlike in Logtalk, calls to
implicitly and explicitly qualified module meta-predicates have different semantics. Follows a discussion of
other limitations of this approach that you should be aware of.

Supported module directives

Currently, Logtalk supports the following module directives:

module/1
The module name becomes the object name.

module/2
The module name becomes the object name. The exported predicates become public object predicates.
The exported grammar rule non-terminals become public grammar rule non-terminals. The exported
operators become public object operators but are not active elsewhere when loading the code.

use_module/2
This directive is compiled as a Logtalk uses/2 directive in order to ensure correct compilation of the
module predicate clauses. The first argument of this directive must be the module name (an atom),
not a module file specification (the adapter files attempt to use the Prolog dialect level term-expansion
mechanism to find the module name from the module file specification). Note that the module is not
automatically loaded by Logtalk (as it would be when compiling the directive using Prolog instead
of Logtalk; the programmer may also want the specified module to be compiled as an object). The
second argument must be a predicate indicator (Name/Arity), a grammar rule non-terminal indicator
(Name//Arity), a operator declaration, or a list of predicate indicators, grammar rule non-terminal
indicators, and operator declarations. Predicate aliases can be declared using the notation Name/Arity
as Alias/Arity or, in alternative, the notation Name/Arity:Alias/Arity. Similar for non-terminal
aliases.

export/1
Exported predicates are compiled as public object predicates. The argument must be a predicate indi-
cator (Name/Arity), a grammar rule non-terminal indicator (Name//Arity), an operator declaration, or
a list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

reexport/2
Reexported predicates are compiled as public object predicates. The first argument is the module
name. The second argument must be a predicate indicator (Name/Arity), a grammar rule non-terminal

166 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

indicator (Name//Arity), an operator declaration, or a list of predicate indicators, grammar rule non-
terminal indicators, and operator declarations. Predicate aliases can be declared using the notation
Name/Arity as Alias/Arity or, in alternative, the notation Name/Arity:Alias/Arity. Similar for non-
terminal aliases.

meta_predicate/1
Module meta-predicates become object meta-predicates. All meta-predicates must be declared us-
ing the meta_predicate/1 directive using Logtalk syntax for normal arguments and meta-arguments.
Note that Prolog module meta-predicates and Logtalk meta-predicates don’t share the same explicit-
qualification calling semantics: in Logtalk, meta-arguments are always called in the context of the
sender. Moreover, Logtalk is not based on the predicate-prefixing mechanism common to most Prolog
module systems.

A common issue when compiling modules as objects is the use of the atoms dynamic, discontiguous, and
multifile as operators in directives. For better portability, avoid this usage. For example, write:

[:- dynamic([foo/1, bar/21).

instead of:

[:— dynamic foo/1, bar/2.

Another common issue is missing meta_predicate/1, dynamic/1, discontiguous/1, and multifile/1 predi-
cate directives. The Logtalk compiler supports detection of missing directives (by setting its missing directives
flag to warning).

When compiling modules as objects, you probably don’t need event support turned on. You may use the
events compiler flag to deny in the Logtalk compiling and loading built-in methods for a small performance
gain for the compiled code.

Unsupported module directives

The reexport/1 and use_module/1 directives are not directly supported by the Logtalk compiler. But most
Prolog adapter files provide support for compiling these directives using Logtalk’s first stage of its term-
expansion mechanism. Nevertheless, these directives can be converted, respectively, into a sequence of : -
use_module/2 and export/1 directives and use_module/2 directives by finding which predicates exported by
the specified modules are reexported or imported into the module containing the directive. For use_module/
1 directives, finding the names of the imported predicates that are actually used is easy. First, comment out
the directive and compile the file (making sure that the unknown_predicates compiler flag is set to warning).
Logtalk will print a warning with a list of predicates that are called but never defined. Second, use this list
to replace the use_module/1 directives by use_module/2 directives. You should then be able to compile the
modified Prolog module as an object.

Modules using a term-expansion mechanism

Although Logtalk supports term and goal expansion mechanisms, the usage semantics are different from
similar mechanisms found in some Prolog compilers. In particular, Logtalk does not support defining term
and goal expansions clauses in a source file for expanding the source file itself. Logtalk forces a clean
separation between expansion clauses and the source files that will be subject to source-to-source expansions
by using hook objects. But hook objects also provide a working solution here when the expansion code
is separated from the code to be expanded. Logtalk supports using a module as a hook object as long
as its name doesn’t coincide with the name of an object and that the module uses term_expansion/2 and
goal_expansion/2 predicates. Assuming that’s the case, before attempting to compile the modules as objects,
set the default hook object to the module containing the expansion code. For example, if the expansions are
stored in a system module:

1.21. Prolog integration and migration 167

The Logtalk Handbook, Release v3.89.0

| ?- set_logtalk_flag(hook, system).

This, however, may not be enough, as expansions may be stored in multiple modules. A common example is
to use a module named prolog for system expansions and to store the user-defined expansions in user. The
Logtalk library provides a solution for these scenarios. Using the hook_flows library we can select multiple
hook objects or hook modules. For example, assuming expansions stored on both user and system modules:

| ?- logtalk_load(hook_flows(loader)).

| ?- set_logtalk_flag(hook, hook_set([user, system])).

After these queries, we can try to compile the modules and look for other porting or portability issues. A
well-know issue is Prolog module term-expansions calling predicates such as prolog_load_context/2, which
will always fail when it’s the Logtalk compiler instead of the Prolog compiler loading a source file. In some
of these cases, it may be possible to rewrite the expansion rules to use the logtalk load context/2 predicate
instead.

File search paths

Some Prolog systems provide a mechanism for defining file search paths (this mechanism works differently
from Logtalk own support for defining library path aliases). When porting Prolog code that defines file
search paths, e.g. for finding module libraries, it often helps to load the pristine Prolog application before
attempting to compile its source files as Logtalk source files. Depending on the Prolog backend, this may
allow the file search paths to be used when compiling modules as objects that use file directives such as
use_module/2.

1.21.5 Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard directives and predicates that may be used in both
plain code and module code. Non-standard Prolog built-in predicates are usually not problematic, as Logtalk
is usually able to identify and compile them correctly (but see the notes on built-in meta-predicates for
possible caveats). However, Logtalk will generate compilation errors on source files containing proprietary
directives unless you first specify how the directives should be handled. Several actions are possible on a
per-directive basis: ignoring the directive (i.e., do not copy the directive, although a goal can be proved
as a consequence), rewriting and copying the directive to the generated Prolog files, or rewriting and re-
compiling the resulting directive. To specify these actions, the adapter files contain clauses for the internal
'$lgt_prolog_term_expansion'/2 predicate. For example, assume that a given Prolog compiler defines a
comment/2 directive for predicates using the format:

[:— comment(foo/2, "Brief description of the predicate”). J

We can rewrite this predicate into a Logtalk info/2 directive by defining a suitable clause for the
'$1gt_prolog_term_expansion'/2 predicate:

'$1gt_prolog_term_expansion'(

(:- comment(F/A, String)),

(:- info(F/A, [comment is Atom]))
) o

atom_codes(Atom, String).

168 Chapter 1. User Manual

The Logtalk Handbook, Release v3.89.0

This Logtalk feature can be used to allow compilation of legacy Prolog code without the need of changing
the sources. When used, it is advisable to set the portability compiler flag to warning in order to more easily
identify source files that are likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded after triggering a side effect:

'$1gt_prolog_term_expansion' (
(:- load_foreign_files(Files,Libs,InitRoutine)),
[]

) -

load_foreign_files(Files,Libs,InitRoutine).

In this case, although the directive is not copied to the generated Prolog file, the foreign library files are
loaded as a side effect of the Logtalk compiler calling the '$1gt_prolog_term_expansion'/2 hook predicate.

1.21.6 Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by simply using explicit module
qualification, i.e. by writing Module:Goal or Goal@Module (depending on the module system). Logtalk also
supports the use of use_module/2 directives in objects and categories (with the restriction that the first
argument of the directive must be the actual module name and not the module file name or the module file
path). In this case, these directives are parsed in a similar way to Logtalk uses/2 directives, with calls to the
specified module predicates being automatically translated to Module:Goal calls.

As a general rule, the Prolog modules should be loaded (e.g., in the auxiliary Logtalk loader files) before
compiling objects that make use of module predicates. Moreover, the Logtalk compiler does not generate
code for the automatic loading of modules referenced in use_module/1-2 directives. This is a consequence
of the lack of standardization of these directives, whose first argument can be a module name, a straight file
name, or a file name using some kind of library notation, depending on the backend Prolog compiler. Worse,
modules are sometimes defined in files with names different from the module names, requiring finding,
opening, and reading the file in order to find the actual module name.

Logtalk allows you to send a message to a module in order to call one of its predicates. This is usually not ad-
vised as it implies a performance penalty when compared to just using the Module:Call notation. Moreovet,
this works only if there is no object with the same name as the module you are targeting. This feature is nec-
essary, however, in order to properly support the compilation of modules containing use_module/2 directives
as objects. If the modules specified in the use_module/2 directives are not compiled as objects but are instead
loaded as-is by Prolog, the exported predicates would need to be called using the Module:Call notation but
the converted module will be calling them through message-sending. Thus, this feature ensures that, on a
module compiled as an object, any predicate calling other module predicates will work as expected, either
these other modules are loaded as-is or also compiled as objects.

For more details, see the Calling Prolog predicates section.

1.21.7 Loading converted Prolog applications

Logtalk strongly favors and advises users to provide a main loader file for applications that explicitly load any
required libraries and the application source files. In contrast, Prolog applications often either scatter loading
of source files from multiple files or use implicit loading of source files via use_module/1-2 directives. Due
to this frequent ad-hoc approach, it’s common to find Prolog applications with duplicated loading directives,
and where loading order ignores the dependencies between source files. These issues are easily exposed by
the Logtalk linter when compiling Prolog files as Logtalk files. Also common are Prolog files with multiple
circular dependencies. While this should not affect the semantics of the ported code, it may cause some
performance penalties as it prevents the Logtalk compiler from optimizing the message sending goals using

1.21. Prolog integration and migration 169

The Logtalk Handbook, Release v3.89.0

static-binding. It also makes the application architecture more difficult to understand. The definition of
explicit loader files provides a good opportunity for sorting out loading order and circular dependencies,
with the linter warnings providing hints for possible code refactoring to eliminate these issues. The diagrams
tool supports directory and file loading and dependency diagrams that are also useful in understanding
applications architecture.

170 Chapter 1. User Manual

CHAPTER
TWO

REFERENCE MANUAL

2.1 Grammar

The Logtalk grammar is here described using W3C-style Extended Backus-Naur Form syntax. Non-terminal
symbols not defined here can be found in the ISO Prolog Core standard. Terminal symbols are represented
between double-quotes.

2.1.1 Entities

entity ::=
object
| category
| protocol

2.1.2 Object definition

object ::=
begin_object_directive (object_term)* end_object_directive

begin_object_directive ::=

n n o n

;- object(” object_identifier (","” object_relations)? ")."
end_object_directive ::=
":- end_object.”

object_relations ::=
prototype_relations
| non_prototype_relations

prototype_relations ::=
prototype_relation
| prototype_relation "," prototype_relations

prototype_relation ::=
implements_protocols
| imports_categories
| extends_objects

(continues on next page)

171

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

non_prototype_relations ::=
non_prototype_relation
| non_prototype_relation ",” non_prototype_relations

non_prototype_relation ::=
implements_protocols
| imports_categories
| instantiates_classes
| specializes_classes

2.1.3 Category definition

category ::=
begin_category_directive (category_term)* end_category_directive

begin_category_directive ::=

n n o n

;- category(" category_identifier ("," category_relations)? ")."
end_category_directive ::=
":- end_category."”

category_relations ::=
category_relation
| category_relation "," category_relations

category_relation ::=
implements_protocols
| extends_categories
| complements_objects

2.1.4 Protocol definition

protocol ::=
begin_protocol_directive (protocol_directive)* end_protocol_directive

begin_protocol_directive ::=
":- protocol(” protocol_identifier ("," extends_protocols)? ")."

end_protocol_directive ::=
":- end_protocol.”

172 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

2.1.5 Entity relations

extends_protocols ::=
"extends(" extended_protocols ")"

extends_objects ::=
"extends(" extended_objects ")"

extends_categories ::=
"extends(" extended_categories ")"

implements_protocols ::=
"implements("” implemented_protocols ")"

imports_categories ::=
"imports(" imported_categories ")"

instantiates_classes ::=
"instantiates(" instantiated_objects ")"

specializes_classes ::=
"specializes("” specialized_objects ")"

complements_objects ::=
"complements(” complemented_objects ")"

Implemented protocols

implemented_protocols ::=
implemented_protocol
| implemented_protocol_sequence
| implemented_protocol_list

implemented_protocol ::=
protocol_identifier
| scope "::" protocol_identifier

implemented_protocol_sequence ::=
implemented_protocol
| implemented_protocol "," implemented_protocol_sequence

implemented_protocol_list ::=
"[" implemented_protocol_sequence "]1"

2.1. Grammar 173

The Logtalk Handbook, Release v3.89.0

Extended protocols

extended_protocols ::=
extended_protocol
| extended_protocol_sequence
| extended_protocol_list

extended_protocol ::=
protocol_identifier
| scope "::" protocol_identifier

extended_protocol_sequence ::=
extended_protocol
|extended_protocol "," extended_protocol_sequence

extended_protocol_list ::=
"[" extended_protocol_sequence "]"

Imported categories

imported_categories ::=
imported_category
| imported_category_sequence
| imported_category_list

imported_category ::=
category_identifier
| scope "::" category_identifier

imported_category_sequence ::=
imported_category
| imported_category "," imported_category_sequence

imported_category_list ::=
"[" imported_category_sequence "]"

Extended objects

extended_objects ::=
extended_object
| extended_object_sequence
| extended_object_list

extended_object ::=
object_identifier
| scope "::" object_identifier

extended_object_sequence ::=
extended_object
| extended_object ","” extended_object_sequence

(continues on next page)

174 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

extended_object_list ::=
"[" extended_object_sequence "]1"

Extended categories

extended_categories ::=
extended_category
| extended_category_sequence
| extended_category_list

extended_category ::=
category_identifier
| scope "::" category_identifier

extended_category_sequence ::=
extended_category
| extended_category "," extended_category_sequence

extended_category_list ::=
"[" extended_category_sequence "]"

Instantiated objects

instantiated_objects ::=
instantiated_object
| instantiated_object_sequence
| instantiated_object_list

instantiated_object ::=
object_identifier
| scope "::" object_identifier

instantiated_object_sequence ::=
instantiated_object
| instantiated_object "," instantiated_object_sequence

instantiated_object_list ::=
"[" instantiated_object_sequence "]1"

2.1. Grammar 175

The Logtalk Handbook, Release v3.89.0

Specialized objects

specialized_objects ::=
specialized_object
| specialized_object_sequence
| specialized_object_list

specialized_object ::=
object_identifier
| scope "::" object_identifier

specialized_object_sequence ::=
specialized_object
| specialized_object "," specialized_object_sequence

specialized_object_list ::=
"[" specialized_object_sequence "]"

Complemented objects

complemented_objects ::=
object_identifier
| complemented_object_sequence
| complemented_object_list

complemented_object_sequence ::=
object_identifier
| object_identifier ","” complemented_object_sequence

complemented_object_list ::=
"[" complemented_object_sequence "]"

Entity and predicate scope

scope ::=
"public”
| "protected”
| "private”

2.1.6 Entity identifiers

entity_identifier ::=
object_identifier
| protocol_identifier
| category_identifier

176 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

Object identifiers

object_identifier ::=
atom
| compound

Category identifiers

category_identifier ::=
atom
| compound

Protocol identifiers

protocol_identifier ::=
atom

Module identifiers

module_identifier ::=
atom

2.1.7 Source files

source_file ::=
(source_file_content)=*

source_file_content ::=
source_file_directive
| clause
| grammar_rule
| entity

2.1.8 Source file names

source_file_name ::=
atom
| library_source_file_name

library_source_file_name ::=
library_name "(" atom ")"

library_name ::=
atom

2.1. Grammar 177

The Logtalk Handbook, Release v3.89.0

2.1.9 Terms

Object terms

object_term ::=
object_directive
| clause
| grammar_rule

Category terms

category_term ::=
category_directive
| clause
| grammar_rule

2.1.10 Directives

Source file directives

source_file_directive ::=
":- encoding("” atom ").”
| ":- set_logtalk_flag(" atom ",” nonvar ")."
| ":- include(” source_file_name ").
| prolog_directive

n

Conditional compilation directives

conditional_compilation_directive ::=
":- if(" callable ")."
| ":- elif(" callable ")."
| ":- else.”
| ":- endif.”

Object directives

object_directive ::=
":- initialization(” callable ").

n

":- built_in."
":- threaded.”
":- dynamic.”
":- set_logtalk_flag("” atom "," nonvar ")."

n

:= include(” source_file_name ").
;- uses("” object_alias_list ")."

I
I
I
| ":- info(” entity_info_list ")."
I
I
I
| ":- use_module(” module_alias_list ")."

(continues on next page)

178

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

conditional_compilation_directive
predicate_directive

(continued from previous page)

Category directives

category_ directive 1=

n

;= built_in.

":- dynamic."”

":- info(" entity_info_list ")."

":- set_logtalk_flag(" atom "," nonvar ")."

;= include(” source_file_name ")."

:- uses("” object_alias_list ")."

:— use_module(” module_alias_list ")."
condltlonal _compilation_directive
predicate_directive

Protocol directives

protocol_directive ::=

n

:- built_in."

":- dynamic.”

":- info(" entity_info_list ")."

".- set_logtalk_flag(" atom "," nonvar ")."

:= include(” source_file_name ")."
condltlonal _compilation_directive
predicate_directive

Predicate directives

predicate_directive ::=
alias_directive

synchronized_directive
uses_directive
use_module_directive
scope_directive
mode_directive
meta_predicate_directive
meta_non_terminal_directive
info_directive
dynamic_directive
discontiguous_directive
multifile_directive
coinductive_directive
operator_directive

alias_directive ::=

n

n on

:— alias(” entity_identifier "," alias_directive_resource_list ")."

(continues on next page)

2.1. Grammar

179

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

synchronized_directive ::=
":- synchronized(" synchronized_directive_resource_term ")."

uses_directive ::=
":- uses(" (object_identifier | parameter_variable) ",

n

uses_directive_resource_list ").

use_module_directive ::=
":- use_module(” (module_identifier | parameter_variable) ",
—resource_list ")."

n

use_module_directive_

scope_directive ::=
":- public(" scope_directive_resource_term ")."
| ":- protected(” scope_directive_resource_term ")."
| ":- private(” scope_directive_resource_term ")."

mode_directive ::=

":- mode(" (predicate_mode_term | non_terminal_mode_term) "," number_of_proofs ")."
meta_predicate_directive ::=

":- meta_predicate(" meta_predicate_template_term ")."

meta_non_terminal_directive ::=
":- meta_non_terminal (" meta_non_terminal_template_term ")."

info_directive ::=
":- info(" (predicate_indicator | non_terminal_indicator) "," predicate_info_list ")."

dynamic_directive ::=
":- dynamic(" qualified_directive_resource_term ")."

discontiguous_directive ::=
":- discontiguous(” qualified_directive_resource_term ")."

multifile_directive ::=
":- multifile(" qualified_directive_resource_term ")."

coinductive_directive ::=
":- coinductive(” (predicate_indicator_term | coinductive_predicate_template_term) ")."

parameter_variable ::=
variable

scope_directive_resource_term ::=
scope_directive_resource
| scope_directive_resource_sequence
| scope_directive_resource_list

scope_directive_resource ::=
predicate_indicator
| non_terminal_indicator

(continues on next page)

180 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

| operator

scope_directive_resource_sequence ::=
scope_directive_resource
scope_directive_resource "," scope_directive_resource_sequence
)

scope_directive_resource_list ::=
"[" scope_directive_resource_sequence "]"

entity_resources_list ::=
predicate_indicator_list
| operator_list

predicate_indicator_term ::=
predicate_indicator
| predicate_indicator_sequence
| predicate_indicator_list

predicate_indicator_sequence ::=
predicate_indicator
| predicate_indicator

n

," predicate_indicator_sequence

predicate_indicator_list ::=
"[" predicate_indicator_sequence "]"

alias_directive_resource_list ::=
"[" alias_directive_resource_sequence "]"

alias_directive_resource_sequence ::=
alias_directive_resource
| alias_directive_resource ","” alias_directive_resource_sequence

alias_directive_resource ::=
predicate_indicator_alias
| non_terminal_indicator_alias

synchronized_directive_resource_term ::=
synchronized_directive_resource
| synchronized_directive_resource_sequence
| synchronized_directive_resource_list

synchronized_directive_resource ::=
predicate_indicator
| non_terminal_indicator

synchronized_directive_resource_sequence ::=
synchronized_directive_resource
n n

| synchronized_directive_resource "," synchronized_directive_resource_sequence

synchronized_directive_resource_list ::=
"[" synchronized_directive_resource_sequence "]"

(continues on next page)

2.1. Grammar 181

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
uses_directive_resource_list ::=
"[" uses_directive_resource_sequence "]"

uses_directive_resource_sequence ::=
uses_directive_resource
| uses_directive_resource "," uses_directive_resource_sequence

uses_directive_resource ::=
predicate_indicator
| non_terminal_indicator
| predicate_template_alias
| operator

use_module_directive_resource_list ::=
"[" use_module_directive_resource_sequence "]"

use_module_directive_resource_sequence ::=
use_module_directive_resource
| use_module_directive_resource ","” use_module_directive_resource_sequence

use_module_directive_resource ::=
predicate_indicator
| non_terminal_indicator
| predicate_template_alias
| operator

qualified_directive_resource_term ::=
qualified_directive_resource
| qualified_directive_resource_sequence
| qualified_directive_resource_list

qualified_directive_resource_sequence ::=
qualified_directive_resource
| qualified_directive_resource

n

," qualified_directive_resource_sequence

qualified_directive_resource_list ::=
"[" qualified_directive_resource_sequence "]"

qualified_directive_resource ::=
predicate_indicator
| non_terminal_indicator
| object_identifier "::" (predicate_indicator | non_terminal_indicator)
| category_identifier "::" (predicate_indicator | non_terminal_indicator)
| module_identifier ":" (predicate_indicator | non_terminal_indicator)

n

predicate_indicator_alias ::=

predicate_indicator "as" predicate_indicator

predicate_template_alias ::=
callable "as" callable

non_terminal_indicator ::=

(continues on next page)

182 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

functor "//" arity

non_terminal_indicator_alias ::=
non_terminal_indicator "as"” non_terminal_indicator

operator_sequence ::=
operator specification
| operator specification ",” operator_sequence

operator_list ::=
"[" operator_sequence "]"

coinductive_predicate_template_term ::=
coinductive_predicate_template
| coinductive_predicate_template_sequence
| coinductive_predicate_template_list

coinductive_predicate_template_sequence ::=
coinductive_predicate_template
| coinductive_predicate_template ","” coinductive_predicate_template_sequence

coinductive_predicate_template_list ::=
"[" coinductive_predicate_template_sequence "]1"

coinductive_predicate_template ::=
atom " (" coinductive_mode_terms ")"

coinductive_mode_terms ::=
coinductive_mode_term
| coinductive_mode_terms "," coinductive_mode_terms

coinductive_mode_term ::=
ll+”

| n_mn

predicate_mode_term ::=
atom " (" mode_terms ")"

non_terminal_mode_term ::=
atom " (" mode_terms ")"

mode_terms ::=

mode_term

|mode_term ","” mode_terms
mode_term ::=

"@" type?

| "+ type?

| "= type?

| "?" type?

| "++" type?

| "-=" type?

(continues on next page)

2.1. Grammar 183

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

type ::=
prolog_type | logtalk_type | user_defined_type

prolog_type ::=
"term”

| "nonvar”

| "var”

| "compound”
| "ground”

| "callable"
| "list”

| "atomic”

| "atom”

| "number”

| "integer”
| "float”

logtalk_type ::=
"object"”
| "category”
| "protocol”
| "event”

user_defined_type ::=
atom
| compound

number_of_proofs ::=

"zero"
"zero_or_one"
"zero_or_more"
"one
"one_or_more"”
"zero_or_error"
"one_or_error"
"zero_or_one_or_error"”
"zero_or_more_or_error"”
"one_or_more_or_error"
"error"

n

meta_predicate_template_term ::=
meta_predicate_template
| meta_predicate_template_sequence
| meta_predicate_template_list

meta_predicate_template_sequence ::=
meta_predicate_template
| meta_predicate_template "," meta_predicate_template_sequence

meta_predicate_template_list ::=
"[" meta_predicate_template_sequence "]"

(continues on next page)

184 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

meta_predicate_template ::=
object_identifier "::" atom " (" meta_predicate_specifiers ")"
| category_identifier "::" atom "(" meta_predicate_specifiers ")"
| module_identifier ":"” atom "(" meta_predicate_specifiers ")"
| atom " (" meta_predicate_specifiers ")"

meta_predicate_specifiers ::=
meta_predicate_specifier
| meta_predicate_specifier "," meta_predicate_specifiers

meta_predicate_specifier ::=
non_negative_integer
| n,.n
| naAnNn

n n
| "=*

meta_non_terminal_template_term
meta_predicate_template_term

entity_info_list ::=
"[" entity_info_sequence? "]"

entity_info_sequence ::=

nsn

entity_info_item "is"” nonvar

n n on

| entity_info_item "is"” nonvar ","” entity_info_sequence

entity_info_item ::=
"comment"”

| "remarks”

| "author”

| "version”

| "date”

| "copyright”

| "license”

| "parameters”

| "parnames”

| "see_also”

| atom

predicate_info_list ::=
"[" predicate_info_sequence? "]1"

predicate_info_sequence ::=

nin

predicate_info_item "is" nonvar

nsn n o n

| predicate_info_item "is"” nonvar "," predicate_info_sequence

predicate_info_item ::=
"comment”
| "remarks"
| "arguments”
| "argnames"”

(continues on next page)

2.1. Grammar 185

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
"redefinition”
"allocation”
"examples"”
"exceptions"”
"see_also”
atom

object_alias_list ::=
"[" object_alias_sequence "]"

object_alias_sequence ::=
object_alias
| object_alias ","” object_alias_sequence

object_alias ::=
object_identifier "as" object_identifier

module_alias_list ::=
"[" module_alias_sequence "]"

module_alias_sequence ::=
module_alias
| module_alias ",” module_alias_sequence

module_alias ::=
module_identifier

n

as"” module_identifier

2.1.11 Clauses and goals

clause ::=
object_identifier "::" head ":-" body
| module_identifier ":"” head ":-" body
| head ":-" body
| object_identifier "::" fact
| module_identifier ":" fact
| fact
goal ::=
message_sending
| super_call

| external_call
| context_switching_call
| callable

message_sending ::=
message_to_object
| message_delegation
| message_to_self

message_to_object ::=

(continues on next page)

186 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

n n

receiver ":: messages

message_delegation ::=
"[" message_to_object "]"

message_to_self ::=
"::" messages

super_call ::=
"Ant message

messages ::=
message
| "(" message "," messages ")"
| "(" message ";" messages ")"
| "(" message "->" messages ")"

n

message ::=
callable
| variable

receiver ::=
"{" callable "}"
| object_identifier
| variable

external_call ::=
n{n Callable n}n

context_switching_call ::=
object_identifier "<<" callable

2.1.12 Lambda expressions

lambda_expression ::=
lambda_free_variables "/" lambda_parameters ">>" callable
| lambda_free_variables "/" callable
| lambda_parameters ">>" callable

lambda_free_variables ::
"{" variables? "}"

lambda_parameters ::=
ll[” terms? Il]ll

variables ::=
variable
| variable "," variables

terms ::=

(continues on next page)

2.1. Grammar 187

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

term
| term ","” terms

2.1.13 Entity properties

category_property ::=
"static”
"dynamic”
"built_in"
"file(" atom ")"
"file(" atom "," atom ")"

n on

I

I

I

I

| "lines("” integer "," integer ")"

| "directive(" integer ","” integer ")"
| "events”

| "source_data”

| "public(" entity_resources_list ")"

| "protected(” entity_resources_list ")"
I
I
I

"private(” entity_resources_list ")"

"declares("” predicate_indicator "," predicate_declaration_property_list ")"
"defines(" predicate_indicator "," predicate_definition_property_list ")"
| "includes(" predicate_indicator "," (object_identifier | category_identifier) ",".
—predicate_definition_property_list ")"
| "provides(" predicate_indicator ","” (object_identifier | category_identifier) ","_.
—.predicate_definition_property_list ")"
| "alias(” (object_identifier | module_identifier) ","” entity_alias_property_list ")"
"alias("” predicate_indicator ","” predicate_alias_property_list ")"
"calls(" predicate "," predicate_call_update_property_list ")"
"updates(” predicate "," predicate_call_update_property_list ")"

"number_of_clauses(" integer ")"
"number_of_rules("” integer ")"
"number_of_user_clauses(” integer ")"
"number_of_user_rules(” integer ")"
"debugging”

object_property ::=
"static”
"dynamic”
"built_in"
"threaded"”
"file(" atom ")"
"file(" atom "," atom ")"

"lines(" integer "," integer ")"
"directive(” integer "," integer ")"
"context_switching_calls”
"dynamic_declarations”

"events”

"source_data”

"complements("” ("allow" | "restrict”) ")"
"complements”

"public("” entity_resources_list ")"

(continues on next page)

188 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

"protected(” entity_resources_list ")"
"private(” entity_resources_list ")"

"declares("” predicate_indicator "," predicate_declaration_property_list ")"
"defines("” predicate_indicator "," predicate_definition_property_list ")"
| "includes(" predicate_indicator "," (object_identifier | category_identifier) ","_
—predicate_definition_property_list ")"
| "provides(" predicate_indicator ","” (object_identifier | category_identifier) ","_.
—predicate_definition_property_list ")"
| "alias(” (object_identifier | module_identifier) ",” entity_alias_property_list ")"
"alias(" predicate_indicator ","” predicate_alias_property_list ")"
"calls(" predicate "," predicate_call_update_property_list ")"
"updates(” predicate ","” predicate_call_update_property_list ")"

I

I

I

| "number_of_clauses("” integer ")"

| "number_of_rules(” integer ")"

| "number_of_user_clauses("” integer ")"
| "number_of_user_rules("” integer ")"

| "module”

| "debugging”

protocol_property ::=
"static”
"dynamic”
"built_in"
"source_data”
"file(" atom ")"

"file(" atom "," atom ")"
"lines(" integer "," integer ")"
n n

"public(” entity_resources_list ")"
"protected(” entity_resources_list ")"

I

I

I

I

I

I

| "directive(” integer "," integer ")"
I

I

| "private(" entity_resources_list ")"
I

I

I

"declares(" predicate_indicator "," predicate_declaration_property_list ")"
"alias(" predicate_indicator "," predicate_alias_property_list ")"
"debugging"

predicate_declaration_property_list ::=
"[" predicate_declaration_property_sequence "]"

predicate_declaration_property_sequence ::=
predicate_declaration_property
| predicate_declaration_property "," predicate_declaration_property_sequence

predicate_declaration_property ::=
"static”

"dynamic”

"scope(" scope ")"

"private”

"protected”

"public”

"coinductive”

"multifile”

"synchronized”

(continues on next page)

2.1. Grammar 189

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
"meta_predicate(” meta_predicate_template ")"
"coinductive("” coinductive_predicate_template ")"
"non_terminal (" non_terminal_indicator ")"
"include(” atom ")"
"lines(" integer "," integer ")"
"line_count(" integer ")"
"mode (" (predicate_mode_term | non_terminal_mode_term) "," number_of_proofs ")"
"info(" list ")"

predicate_definition_property_list ::=
"[" predicate_definition_property_sequence "]"

predicate_definition_property_sequence ::=
predicate_definition_property
| predicate_definition_property ",” predicate_definition_property_sequence

predicate_definition_property ::=
"inline”
| "auxiliary”
| "non_terminal("” non_terminal_indicator ")"
| "include(” atom ")"
| "lines(" integer "," integer ")"
| "line_count(” integer ")"
| "number_of_clauses("” integer ")"
| "number_of_rules(” integer ")"

entity_alias_property_list ::=
"[" entity_alias_property_sequence "]"

entity_alias_property_sequence ::=
entity_alias_property
| entity_alias_property ","” entity_alias_property_sequence

entity_alias_property ::=
"object”
| "module”
| "for(" (object_identifier | module_identifier) ")"
| "include(” atom ")"
| "lines(" integer "," integer ")"
| "line_count(” integer ")"

predicate_alias_property_list ::=
"[" predicate_alias_property_sequence "]"

predicate_alias_property_sequence ::=
predicate_alias_property
| predicate_alias_property "," predicate_alias_property_sequence

predicate_alias_property ::=
"predicate”
| "for(" predicate_indicator ")"
| "from(" entity_identifier ")"

(continues on next page)

190 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

"non_terminal (" non_terminal_indicator ")"
"include("” atom ")"
n n

"lines(" integer ," integer ")"
"line_count("” integer ")"

predicate ::=
predicate_indicator
| “~~" predicate_indicator
| predicate_indicator
| (variable | object_identifier) predicate_indicator
| (variable | module_identifier) ":" predicate_indicator

n, ., n

n,.n

predicate_call_update_property_list ::
"[" predicate_call_update_property_sequence "]"

predicate_call_update_property_sequence ::=
predicate_call_update_property
| predicate_call_update_property ","” predicate_call_update_property_sequence

predicate_call_update_property ::=
"caller(" predicate_indicator ")"
| "include(” atom ")"
| "lines(" integer "," integer ")"
| "line_count(” integer ")"
| "
I

"alias(" predicate_indicator ")
"non_terminal (" non_terminal_indicator ")"

2.1.14 Predicate properties

predicate_property ::=
"static”
| "dynamic”

| "scope(” scope ")"

| "private”

| “"protected”

| "public”

| "logtalk”

| "prolog”

| "foreign”

| "coinductive(” coinductive_predicate_template ")"

| "multifile”

| "synchronized”

| "built_in"

| "inline"”

| "recursive”

| "declared_in(" entity_identifier ")"

| "defined_in(" (object_identifier | category_identifier) ")"

| "redefined_from(" (object_identifier | category_identifier) ")"

| "meta_predicate(" meta_predicate_template ")"

| "alias_of (" callable ")"

(continues on next page)

2.1. Grammar 191

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
"alias_declared_in(" entity_identifier ")"
"non_terminal (" non_terminal_indicator ")"
"mode (" (predicate_mode_term | non_terminal_mode_term) ","” number_of_proofs ")"
"info(" list ")"
"number_of_clauses(” integer ")"
"number_of_rules(” integer ")"

"declared_in(" entity_identifier ","” line_count ")"
"defined_in(" (object_identifier | category_identifier) ",” line_count ")"
"redefined_from(” (object_identifier | category_identifier) ",” line_count ")"
"alias_declared_in("” entity_identifier ","” line_count ")"
line_count ::=
integer

2.1.15 Compiler flags

compiler_flag ::=
flag "(" flag_value ")"

2.2 Control constructs

2.2.1 Message sending
control construct

(::)/2

Description

Object: :Message
{Proxy}: :Message

Sends a message to an object. The message argument must match a public predicate of the receiver object.
When the message corresponds to a protected or private predicate, the call is only valid if the sender matches
the predicate scope container. When the predicate is declared but not defined, the message simply fails (as
per the closed-world assumption).

When the predicate used to answer the message is a meta-predicate, the calling context for the predicate
meta-arguments is the object sending the message.

The {Proxy}: :Message syntax allows simplified access to parametric object proxies. Its operational semantics
is equivalent to the conjunction (call(Proxy), Proxy::Message). I.e. Proxy is proved within the context of
the pseudo-object user and, if successful, the Proxy term is used as an object identifier. Exceptions thrown
when proving Proxy are handled by the (::)/2 control construct. This control construct supports backtrack-
ing over the {Proxy} goal.

The lookups for the message declaration and the corresponding method are performed using a depth-first
strategy. Depending on the value of the optimize flag, these lookups are performed at compile-time whenever

192 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

sufficient information is available. When the lookups are performed at runtime, a caching mechanism is used
to improve performance for subsequent messages. See the User Manual section on performance for details.

Modes and number of proofs

+object_identifier::+callable - zero_or_more
{+tobject_identifier}::+callable - zero_or_more

Errors

Either Object or Message is a variable:
instantiation_error
Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)
Message is neither a variable nor a callable term:
type_error(callable, Message)
Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is declared protected:
permission_error(access, protected_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)
Object does not exist:
existence_error(object, Object)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor a callable term:
type_error(callable, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:
existence_error(procedure, Name/Arity)

Examples

| ?- list::member(X, [1, 2, 31).

> See also
C)/1, (" 7)1, [1/1

2.2. Control constructs 193

The Logtalk Handbook, Release v3.89.0

control construct

(::)n

Description

[: :Message]

Sends a message to self. Can only be used in the body of a predicate definition. The argument should match
a public or protected predicate of self. It may also match a private predicate if the predicate is within the scope
of the object where the method making the call is defined, if imported from a category, if used from within
a category, or when using private inheritance. When the predicate is declared but not defined, the message
simply fails (as per the closed-world assumption).

When the predicate used to answer the message is a meta-predicate, the calling context for the predicate
meta-arguments is the object sending the message.

The lookups for the message declaration and the corresponding method are performed using a depth-first
strategy. A message to self necessarily implies the use of dynamic binding but a caching mechanism is used
to improve performance in subsequent messages. See the User Manual section on performance for details.

Modes and number of proofs

[: :+callable - zero_or_more

Errors

Message is a variable:
instantiation_error

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

area(Area) :-
::width(Width),
:rheight(Height),
Area is Width * Height.

> See also
C/2, (" ")/1,[1/1

194 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

2.2.2 Message delegation

control construct

[1/1

Description

[Object: :Message]
[{Proxy}: :Message]

This control construct allows the programmer to send a message to an object while preserving the original
sender and meta-call context. It is mainly used in the definition of object handlers for unknown messages.
This functionality is usually known as delegation but be aware that this is an overloaded word that can mean
different things in different object-oriented programming languages.

To prevent the use of this control construct to break object encapsulation, an attempt to delegate a message
to the original sender results in an error. The remaining error conditions are the same as the (::)/2 control
construct.

Note that, despite the correct functor for this control construct being (traditionally) '.'/2, we refer to it as
[1/1 simply to emphasize that the syntax is a list with a single element.

Modes and number of proofs

[+object_identifier::+callable] - zero_or_more
[{+object_identifier}::+callable] - zero_or_more

Errors

Object is a variable:
instantiation_error
Object is neither a variable nor an object identifier:
type_error(object_identifier, Object)
Object does not exist:
existence_error(object, Object)
Object and the original sender are the same object:
permission_error(access, object, Sender)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error(object_identifier, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:
existence_error(procedure, Name/Arity)

Message is a variable:
instantiation_error

2.2. Control constructs 195

The Logtalk Handbook, Release v3.89.0

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:
permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

% delegate unknown messages to the "backup” object:
forward(Message) :-
[backup: :Message].

> See also

:2)/2, /1, (" 7)/1, forward/1

2.2.3 Calling imported and inherited predicates

control construct

(AA)/1

Description

[MPredicate J

Calls an imported or inherited predicate definition. The call fails if the predicate is declared but there is no
imported or inherited predicate definition (as per the closed-world assumption). This control construct may
be used within objects or categories in the body of a predicate definition.

This control construct preserves the implicit execution context self and sender arguments (plus the meta-
call context and coinduction stack when applicable) when calling the inherited (or imported) predicate
definition.

The lookups for the predicate declaration and the predicate definition are performed using a depth-first
strategy. Depending on the value of the optimize flag, these lookups are performed at compile-time when
the predicate is static and sufficient information is available. When the lookups are performed at runtime,
a caching mechanism is used to improve performance in subsequent calls. See the User Manual section on
performance for details.

When the call is made from within an object, the lookup for the predicate definition starts at the imported
categories, if any. If an imported predicate definition is not found, the lookup proceeds to the ancestor
objects. Calls from predicates defined in complementing categories lookup inherited definitions as if the
calls were made from the complemented object, thus allowing more comprehensive object patching. For
other categories, the predicate definition lookup is restricted to the extended categories.

196 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

The called predicate should be declared public or protected. It may also be declared private if within the
scope of the entity where the method making the call is defined.

This control construct is a generalization of the Smalltalk super keyword to take into account Logtalk support
for prototypes and categories besides classes.

Modes and number of proofs

[“ *+callable - zero_or_more

Errors

Predicate is a variable:
instantiation_error

Predicate is neither a variable nor a callable term:
type_error(callable, Predicate)

Predicate, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Predicate, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

% specialize the inherited definition
% of the init/0 predicate:
init :-

assertz(counter(9)),

Ainit.

> See also
/2, /1, [1/1

2.2.4 Calling predicates in this

control construct

2.2. Control constructs 197

The Logtalk Handbook, Release v3.89.0

@1

Description

[@Predicate J

Calls a predicate definition in this. The argument must be a callable term at compile-time. The predicate
must be declared (by a scope directive). This control construct provides access to predicate definitions in this
from categories. For example, it allows overriding a predicate definition from a complementing category with
a new definition that calls goals before and after calling the overridden definition (the overriding definition
is sometimes described in other programming languages as an around method). When used within an object,
it’s the same as calling its argument.

Modes and number of proofs

[@ +callable - zero_or_more]

Errors

Predicate, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

Assuming an object declaring a make_sound/@ predicate, define an around method in a complementing cate-
gory:

make_sound :-
write('Started making sound...'), nl,
@make_sound,
write('... finished making sound.'), nl.
> See also

/2, (:/1, [1/1

2.2.5 Calling external predicates

control construct

198 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

{n

Description

{Goal}
{Closure}
{Term}

This control construct allows the programmer to bypass the Logtalk compiler (including its linter but not its
optimizer) in multiple contexts:

* Calling a goal as-is (from within an object or category) in the context of the user pseudo-object.

* Extending a closure as-is with the remaining arguments of a call/2-N call in order to construct a goal
that will be called within the context of the user pseudo-object.

* Wrapping a source file term (either a clause or a directive) or a source file goal to bypass the term-
expansion mechanism.

* Using it in place of an object identifier when sending a message. In this case, its argument is proved
as a goal within the context of the user pseudo-object with the resulting term being used as an object
identifier in the message-sending goal. This feature is mainly used with parametric objects when their
identifiers correspond to predicates defined in user.

* Using it as a message to an object. This is mainly useful when the message is a conjunction of messages
where some of goals are calls to Prolog built-in predicates.

O Note

This control construct is opaque to cuts when used to wrap a goal (thus ensuring the same semantics
independently of the argument being bound at compile-time or at runtime).

Modes and number of proofs

[{+ca11ab1e} - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error(callable, Closure)

Term is a variable:
instantiation_error

2.2. Control constructs 199

The Logtalk Handbook, Release v3.89.0

Term is neither a variable nor a callable term:
type_error(callable, Term)

Examples

% overload the standard (<)/2 operator by
% calling its standard built-in definition:
N1/D1 < N2/D2 :-

{N1%D2 < N2*D13}.

% call a closure in the context of "user":
call_in_user(F, X, Y, Z) :-
call({F}, X, Y, 2).

% bypass the compiler for a proprietary backend directive:
{:- load_foreign_resource(file)}.

% use parametric object proxies:
| ?- {circle(Id, Radius, Color)}::area(Area).

% use Prolog built-in predicates as messages:
| ?- logtalk::{write('hello world!"), nl}.
hello world!

yes

2.2.6 Context switching calls

control construct

(<<)/2

Description

Object<<Goal
{Proxy}<<Goal

Debugging control construct. Calls a goal within the context of the specified object. The goal is called with
the following execution context:

* sender, this, and self values set to the object
* empty meta-call context
* empty coinduction stack

The goal may need to be written between parenthesis to avoid parsing errors due to operator conflicts. This
control construct should only be used for debugging or for writing unit tests. This control construct can only
be used for objects compiled with the context switching calls compiler flag set to allow. Set this compiler
flag to deny to disable this control construct and thus prevent using it to break encapsulation when deploying
applications.

200 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

The {Proxy}<<Goal syntax allows simplified access to parametric object proxies. Its operational semantics is
equivalent to the goal conjunction (call(Proxy), Proxy<<Goal). Le. Proxy is proved within the context of
the pseudo-object user and, if successful, the goal term is used as a parametric object identifier. Exceptions
thrown when proving Proxy are handled by the (<<)/2 control construct. This syntax construct supports
backtracking over the {Proxy} goal.

Caveat: although the goal argument is fully compiled before calling, some necessary information for the
second compiler pass may not be available at runtime.

Modes and number of proofs

+object_identifier<<+callable - zero_or_more
{+tobject_identifier}<<+callable - zero_or_more

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Object does not contain a local definition for the Goal predicate:
existence_error(procedure, Goal)

Object does not exist:
existence_error(object, Object)

Object was created/compiled with support for context-switching calls turned off:
permission_error(access, database, Goal)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error(object_identifier, Proxy)

The predicate Proxy does not exist in the user pseudo-object:
existence_error(procedure, ProxyFunctor/ProxyArity)

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

2.2. Control constructs 201

The Logtalk Handbook, Release v3.89.0

Examples

% call the member/2 predicate in the
% context of the "list” object:
test(member) :-

list << member(1, [11).

2.3 Directives

2.3.1 Source file directives

directive

encoding/1

Description

[encoding(Encoding)]

Declares the source file text encoding. Requires a backend Prolog compiler supporting the chosen encoding.
When used, this directive must be the first term in the source file in the first line. This directive is also
supported in files included in a main file or in a dynamically created entity using include/1 directives.

The encoding used in a source file (and, in the case of a Unicode encoding, any BOM present) will be used
for the intermediate Prolog file generated by the compiler. Logtalk uses the encoding names specified by
IANA. In those cases where a preferred MIME name alias is specified, the alias is used instead. Examples in-
cludes 'US-ASCII', 'IS0-8859-1', 'IS0-8859-2', 'IS0-8859-15", 'UCS-2', 'UCS-2LE', 'UCS-2BE', 'UTF-8",
"UTF-16"', 'UTF-16LE', 'UTF-16BE', 'UTF-32', 'UTF-32LE', 'UTF-32BE', 'Shift_JIS', and 'EUC-JP'. When
writing portable code that cannot be expressed using ASCII, 'UTF-8' is the most commonly supported Uni-
code encoding.

The backend Prolog compiler adapter files define a table that translates between the Logtalk and Prolog
specific atoms that represent each supported encoding. The encoding directive read-only flag can be used to
find if a backend supports this directive and how.

Template and modes

[encoding(+atom)]

202 Chapter 2. Reference Manual

http://www.iana.org/assignments/character-sets/character-sets.xhtml

The Logtalk Handbook, Release v3.89.0

Examples

[:— encoding('UTF-8").

directive

include/1

Description

[include(File)

]

Includes a file contents, which must be valid terms, at the place of occurrence of the directive. The file can be
specified as a relative path, an absolute path, or using library notation and is expanded as a source file name.
Relative paths are interpreted as relative to the path of the file containing the directive. The file extension is
optional (the recognized Logtalk and Prolog file extensions are defined in the backend adapter files).

When using the reflection API, predicates from an included file can be distinguished from predicates from the
main file by looking for the include/1 predicate declaration property or the include/1 predicate definition
property. For the included predicates, the line_count/1 property stores the term line number in the included
file.

This directive can be used as either a source file directive or an entity directive. As an entity directive, it can
be used both in entities defined in source files and with the entity creation built-in predicates. In the latter
case, the file should be specified using an absolute path or using library notation (which expands to a full
path) to avoid a fragile dependency on the current working directory.

Included files may contain an encoding/1 directive, which may specify the same encoding of the main file or
a different encoding.

A\ Warning

When using this directive as an argument in calls to the create object/4, create_category/4, and cre-
ate_protocol/3 built-in predicates, the objects, categories, and protocols will not be recreated or rede-
fined when the included file(s) are modified and the logtalk make/0 predicate or the logtalk make/1
(with target all) predicates are called.

Template and modes

[include(@sour‘ce_File_name)]

2.3. Directives 203

The Logtalk Handbook, Release v3.89.0

Examples

% include the "raw_1.txt" text file found
% on the "data" library directory:
:— include(data('raw_1.txt")).

% include a "factbase.pl” file in the same directory
% of the source file containing the directive:
:— include('factbase.pl').

% include a file given its absolute path:
:= include('/home/me/databases/countries.pl"').

% create a wrapper object for a Prolog file using
% library notation to define the file path:
| ?- create_object(cities, [], [public(city/4), include(geo('cities.pl'))], [1).

directive

initialization/1

Description

[initialization(Goal)

When used within an object, this directive defines a goal to be called after the object has been successfully
loaded into memory. When used at a global level within a source file, this directive defines a goal to be called
after the source file is successfully compiled and loaded into memory.

The loading context can be accessed from this directive by calling the logtalk load context/2 predicate. Note
that the usable loading context keys depend on the directive scope (file or object).

Multiple initialization directives can be used in a source file or in an object. Their goals will be called in the
same order as the directives at loading time.

O Note

Arbitrary goals cannot be used as directives in source files. Any goal that should be automatically called
when a source file is loaded must be wrapped using this directive.

Categories and protocols cannot contain initialization/1 directives as the initialization goals would
lack a complete execution context that is only available for objects.

Although technically a global initialization/1 directive in a source file is a Prolog directive, calls to Logtalk
built-in predicates from it are usually compiled to improve portability, improve performance, and provide
better support for embedded applications.

A\ Warning

Some backend Prolog compilers declare the atom initialization as an operator for a lighter syntax.
But this makes the code non-portable and is therefore a practice best avoided.

204 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

Template and modes

[initialization(@callable)]

Examples

% call the init/@ predicate after loading the
% source file containing the directive

:— initialization(init).

% print a debug message after loading a
% source file defining an object

:— object(log).
;- initialization(start_date).
start_date :-
os::date_time(Year, Month, Day, _, _, _, _),

logtalk: :print_message(debug, my_app, 'Starting date: ~d-~d-~d~n'+[Year,Month,Day]).

:- end_object.

e See also

logtalk_load context/2

directive

op/3

Description

op(Precedence, Associativity, Operator)
op(Precedence, Associativity, [Operator, ...J])

Declares operators. Global operators can be declared inside a source file by writing the respective directives
before the entity opening directives. Operators declared inside entities have local scope. Calls to the standard
term input and output predicates take into account any locally defined operators.

2.3. Directives 205

The Logtalk Handbook, Release v3.89.0

Template and modes

[op(+integer, +associativity, +atom_or_atom_list)

Examples

Some of the predicate argument instantiation mode operators used by Logtalk:

;- op(200, fy, +).
;- op(200, fy, 7).
:— op(200, fy, @).
:= op(200, fy, -).

An example of using entity local operators. Consider the following ops.1gt file:

;- initialization((write(<=>(1,2)), nl)).
:- object(ops).

;= op(700, xfx, <=>).

;= public(w/1).

w(Term) :-
write(Term), nl.

;= public(r/1).
r(Term) :-
read(Term).

:- end_object.

Loading the file automatically calls the initialization goal. Compare its output with the output of the ops: :w/
1 predicate. Compare also reading a term from within the ops object versus reading from user.

| ?- {ops}.
<=>(1,2)
true.

| ?- ops::w(<=>(1,2)).
1<=>2
true.

| ?- ops::r(T).
|: 3<=>4.

T = <=>(3, 4).

| ?- read(T).
|: 5<=>6.

SYNTAX ERROR: operator expected

206 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

> See also

current_op/3

directive

set_logtalk_flag/2

Description

[set_logtalk_Flag(Flag, Value)

]

Sets local flag values. The scope of this directive is the entity or the source file containing it. For global
scope, use the corresponding set logtalk flag/2 built-in predicate called from an initialization/1 directive.
For a description of the predefined compiler flags, consult the Compiler flags section in the User Manual. The
directive affects the compilation of all terms that follow it within the scope of the directive.

Template and modes

[set_logtalk_f'lag (+atom, +nonvar)

Errors

Flag is a variable:
instantiation_error

Value is a variable:
instantiation_error

Flag is not an atom:
type_error(atom, Flag)

Flag is neither a variable nor a valid flag:
domain_error(flag, Flag)

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a read-only flag:
permission_error(modify, flag, Flag)

Examples

% turn off the compiler unknown entity warnings
% during the compilation of this source file:
:— set_logtalk_flag(unknown_entities, silent).

;- object(...).

(continues on next page)

2.3. Directives

207

The Logtalk Handbook, Release v3.89.0

(continued from previous page)
% generate events for messages sent from this object:
:— set_logtalk_flag(events, allow).

% turn off suspicious call lint checks for the next predicate:
:— set_logtalk_flag(suspicious_calls, silent).
foo :-

.- set_logtalk_flag(suspicious_calls, warning).

2.3.2 Conditional compilation directives
directive
if/1

Description

[i’r‘(Goal) J

Starts an if-then branch when performing conditional compilation. The code following the directive is com-
piled iff Goal is true. If Goal throws an error instead of either succeeding or failing, the error is reported by
the compiler and compilation of the enclosing source file or entity is aborted. The goal is expanded when the
directive occurs in a source file. Conditional compilation directives can be nested.

A\ Warning

Conditional compilation goals cannot depend on predicate definitions contained in the same source file
that contains the conditional compilation directives (as those predicates only become available after the
file is successfully compiled and loaded).

Template and modes

[if(@callable)]

Examples

A common example is checking if a built-in predicate exists and providing a definition when the predicate is
absent:

:— if(\+ predicate_property(length(_,_), built_in)).
length(List, Length) :-

(continues on next page)

208 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.89.0

(continued from previous page)

;- endif.

Another common example is conditionally including code for a specific backend Prolog compiler:

:— if(current_logtalk_flag(prolog_dialect, swi)).

% SWI-Prolog specific code
.- set_prolog_flag(double_quotes, codes).
