
PopCap Games Framework Version 1.2
Changes

Overview

There have been a number of changes to the framework since version
1.0, much of which has been in the area of widgets and graphics. The
big change in widgets is the formalization of widget hierarchies,
which allows any number of child widgets to be parented by any
widget. This makes it easier to create widget-based user interfaces
than before. The big changes in graphics include a non-hardware-
accelerated textured triangle rasterizer and an overall decrease in the
memory that images consume.

There have been a number of changes in just about all of the major
framework sections, most of which are small, but hopefully add up to
the framework being even friendlier than before.

Backwards Compatibility

Version 1.2 is backward-compatible, except
DDImage::OnlyKeepDDSurface has been replaced by a more
generalized MemoryImage::PurgeBits. Example:

Version 1.0:

if (mApp->Is3DAccelerated())
mNextBackdrop->mOnlyKeepDDSurface = true;

else
mNextBackdrop->OnlyKeepDDSurface();

Version 1.2:

mNextBackdrop->mWantDDSurface = true;
mNextBackdrop->PurgeBits();

App Changes

Many of the image-based SexyAppBase methods that construct
images (such as SexyAppBase::GetImage) have been modified to
directly return DDImages rather than Images. This should avoid some
confusion and allow you to avoid feeling uncomfortable making
“dangerous” upcasts.

Initialization and shutdown has changed slightly, in that there is now a
ShutdownHook and an InitHook. Overriding ShutdownHook takes the
place of overriding Shutdown, except you don’t have to check
mShutdown and call the base implementation, and InitHook gets
called by SexyAppBase::Init at the end. In addition, it is now safe to
call Shutdown during the loading thread; doing so will only cause
mLoadingFailed to be set to true, which is the standard way to cause
program termination from that thread.

Blocking operations are now formally and generally supported by the
framework. The only blocking operation allowed before was
Dialog::WaitForResult, which returned the dialog result once the
dialog was closed. Blocking operation support has been generalized
to simplify some types of time-based tasks by allowing state to be
maintained within local variables (and by nature of code execution
location) rather than forcing widgets to explicitly store that state
information across calls to Update. The obvious use is for dialogs, but
it can also be used for transitions or other animations (for example,
calling a RollDice() method that creates a dice object, animates the
rolling, and returns the result). One thing to be careful of is that the
program can be shut down at any time, so you must be able to exit
gracefully from your blocking calls. SexyApp::UpdateApp returns
false if the application is shutting down, and you can detect that the
blocking call was terminated prematurely by checking
SexyAppBase::mExitToTop. The core of a blocking call should be
formatted as such:

while ((gSexyAppBase->UpdateApp()) && (mStillPerformingTask))
{

// This code gets executed once per update
}
return mTaskResult;

Or, if you need the termination condition to be evaluated with more
granularity because you want to avoid processing update or any other
input events if the termination condition is met by a previous input
event (such as clicking a button), you can use the following:

bool updated;
while ((gSexyAppBase->UpdateApp(&updated)) && (mStillPerformingTask))
{

// This code gets executed after every input event and after
// every update

if (updated)
{

// This code gets executed once per update
}

}
return mTaskResult;

Widget Changes

Full widget hierarchies are now support, which allows any widget to
be a parent to any number of child widgets. The child widgets inherit
flags from the parent widget, draw relative to the parent widget, and
are added and removed from the widget manager along with the
parent widget. This means that in a widget’s constructor you can
allocate a child widget, immediately position it and add it as your
child by calling the parent widget’s AddWidget method instead of the
WidgetManager’s AddWidget, and then delete it in the destructor
without having to remove it first – no other child management is
required. To facilitate this generalized parenting, both Widget and
WidgetManager now share a base class: WidgetContainer. Despite
the enhanced functionality, widgets are still fairly light-weight and no
changes are required for old widgets to work as they always have.

A “flag system” has been added to Widgets to help simplify some
common-usage cases such as always marking widgets dirty (avoiding
explicit calls to MarkDirty) and pausing the game when it loses focus.
Widget behavior is described by the following flags:

WIDGETFLAGS_UPDATE- Set to receive Update calls
WIDGETFLAGS_MARK_DIRTY - Set to automatically mark the widget dirty
WIDGETFLAGS_DRAW - Set to allow drawing
WIDGETFLAGS_CLIP - Set to clip Graphics passed into Draw
WIDGETFLAGS_ALLOW_MOUSE - Set to allow mouse interaction
WIDGETFLAGS_ALLOW_FOCUS - Set to allow focus to be maintained

The only flag not set by default is WIDGETFLAGS_MARK_DIRTY. A
top-level widget’s flags are based on the initial
WidgetManager::mWidgetFlags value, but modified by that widget’s
parent WidgetContainer::mWidgetFlagsMod value.
mWidgetFlagsMod allows you to override flags by specifying which
ones to turn off and which ones to turn on. The default setting of
mWidgetFlagsMod neither adds or removes flags, so adding
WIDGETFLAGS_MARK_DIRTY to WidgetManager::mWidgetFlags will
cause every widget to automatically mark itself dirty, or you could set
one particular Widget’s mWidgetFlagsMod.mAddFlags to
WIDGETFLAGS_MARK_DIRTY to enable it just for that one Widget. To
use more than one flag, use the bitwise OR operator to combine them
together.

The flags system now extends to modal dialogs, which are more
flexible and well-behaved now. In order for modal dialogs to be

modal, focus must be taken away from any widgets under the modal
dialog and mouse interaction must not be allowed. This behavior is
defined by mDefaultBelowModalFlagsMod.mRemoveFlags, which is
initially set to WIDGETFLAGS_ALLOW_MOUSE |
WIDGETFLAGS_ALLOW_FOCUS. Any widget can act as a modal
widget, however, with WidgetManager::SetBaseModal, and the modal
behavior can be extended to not updating or even not drawing
widgets beneath the base modal widget by passing in the appropriate
FlagsMod to the function. The modal system has been further
extended by allowing modal widgets to stack, so a dialog can open
another dialog but have its previous modal settings remembered when
the second dialog closes. Focus is automatically returned to the
formerly-focused widget when a modal widget closes, as well.

Overlay drawing has now been incorporated as a basic widget feature.
Most applications have a need for some type of overlay drawing,
generally where the game board needs to draw some graphic effects
over some other widgets such as button widgets, but it cannot due so
because the board is, in fact, beneath the other widgets. Previously,
developers would generally create an OverlayWidget that was
positioned at the top level which was responsible for drawing the
special effects, often by just a simple dispatch to mBoard-
>DrawOverlay. These overlays can be a pain, however, since they
have to be managed separately from the widget that actually wants to
draw the overlaid graphics, and the developer typically has to do extra
work to make sure that the OverlayWidget stays properly placed at
the top of the widget list (but under dialogs and sometimes
transitions, etc).

The new integrated solution is exposed as Widget::DeferOverlay.
DeferOverlay schedules a call to Widget::DrawOverlay later on, after
other widgets have had a chance to draw. The overlay scheme is
based on priorities, where you pass in an overlay priority to
DeferOverlay, and every Widget has an mPriority that determines its
Draw() priority. When a widget is reached in the drawing cycle that
has a higher priority than a deferred overlay, the overlay is drawn
before that widget’s Draw is called. In the simple normal case, every
Widget has a priority of zero except Dialogs, which have a priority of
one (these are default). The board will call DeferOverlay() (with the
default priority of zero), where the overlay will not get drawn until
either a dialog (with the priority of one) is encountered or all widgets
have been drawn. Multiple overlays can be scheduled for a single
Widget. DeferOverlay should be called in the widget’s normal Draw
method and not in Update.

Another change is that lazy programmers that don’t want to pass
around Graphics to things like sprites can get the current graphics
context from WidgetManager::mCurG, although it’s only valid during
widget drawing.

Dialog Changes

Previously, dialog results had to be decoded through button ids passed
into SexyAppBase::ButtonDepress, but now Dialogs work with a
generic DialogListener. The dialog’s DialogListener is specified in
Dialog::mDialogListener which defaults to gSexyAppBase.
DialogListener includes DialogButtonPress and DialogButtonDepress,
both of which receive the dialog id and the applicable dialog’s button
id. Button ids are 1 for yes/ok, and 0 for no/cancel (or for one-button
dialogs). In contrast, by using ButtonPress/Depress to catch the clicks,
the ids passed in were the id of the dialog box plus 2000 for yes/ok
and plus 3000 for no/cancel..

Dialogs also now include default drawing implementation so you can
include dialogs in quick mockups without requiring extra graphics or
overriding SexyAppBase::NewDialog.

Graphics Changes

There are several new methods in the graphics class that are made
possible by the inclusion of a software triangle rasterizer in the
framework. The calls are:

DrawImageMatrix
DrawImageTransform
DrawTriangleTex

DrawImageMatrix draws an image with an arbitrary matrix
transformation (for instance a scale and a rotation concatenated
together).

DrawImageTransform is similar to DrawImageMatrix but it uses the
Transform class which keeps track of whether or not the
transformation is a simple one which can be accomplished with other
graphics calls. So, for instance, if you simply do a rotation
transformation, DrawImageTransform will delegate the call to
DrawImageRotated. If the transformation can't be accomplished with
a more specific graphics call then DrawImageMatrix is used to
accomplish the drawing.

Both DrawImageMatrix and DrawImageTransform draw the image
relative to its center rather than its upper-left corner.

DrawTriangleTex will draw a textured triangle using the image passed
to it as the texture.

Please note that the software triangle rasterizer doesn't have support
for additive drawing or linear blending right now, but we plan to add
these in the future.

Other graphics changes include a reduction in memory consumption
by allowing for some redundant data to be removed from images. In
2d mode, images typically end up containing both the raw 32-bit pixel
data plus “native data”, which has been converted to the format of the
display for faster drawing. In 3d mode, images contain the 32-bit
pixel data plus the memory occupied by the textures comprising the
image in the Direct3D texture manager. In both cases, the 32-bit raw
pixel data can be often considered extraneous. To help reduce overall
memory usage, MemoryImage::PurgeBits has been added. This call
indicates to the image that you do not need the raw bits around, only
the native data. PurgeBits can be accessed through the resource
manager by adding “nobits”, “nobits2d”, and “nobits3d” tags to
images in your resource XML file. “nobits3d” means that you want to
get rid of the bits only in 3d mode, “nobits2d” means you only want to
get rid of them in 2d mode, and “nobits” means to get rid of them
regardless of mode. Note that, while purging the raw image bits does
reduce overall memory usage, it’s unlikely to actually produce any
frame rate improvement on low-memory machines, as those unused
bits would be paged out by the Windows virtual memory manager
anyway. An important thing to note is that you shouldn’t purge an
image if you are going to be calling GetBits on it, or doing any other
operation that as a side effect calls GetBits. Since the bits would have
been deleted, the resulting call to GetBits will have to rebuild the
data, causing a performance hit. Functions that implicitly call GetBits
are as follows:

• Rotational drawing functions (such as BltRotated)
• Stretch blit functions
• Palletize
• And any other function that makes a call to GetBits().

Thus for images that are stretched and rotated in real-time, you
should not purge their bits.

In other news, maintaining the graphics state such as the current
clipping area, color, drawing mode, scaling mode, and translation is
now easier through the inclusion of Graphics::PushState and
Graphics::PopState. This can be automated by the GraphicsAutoState
object, whereby a GraphicsAutoState can be constructed on the stack
of a graphics-related method where the state is pushed in the
GraphicsAutoState constructor and popped in the destructor. This
allows you to do the following:

void Board::DrawObject(Graphics* g, Object* theObject)
{

GraphicsAutoState anAutoState;

// Do whatever you want to the state of graphics here, because it
// will be restored by anAutoState's destructor when we exit

}

Another new graphics method is Graphics::SetClipRect and
Graphics::ClearClipRect, which give you more control over the
graphics clipping region.

Sound Changes

A few small sound changes have occurred, as well. First of all, oggs
and wavs are no longer cached out as wavs in the same directory as
the original sounds, but rather are created in a “cached” directory off
of the main game directory. This should make some things less
annoying such as making it easier to not include the cached sounds
when packaging builds.

Another sound change is allowing for dynamically allocated sounds.
Dynamic allocation is accomplished through the addition of
DSoundManager::LoadSound(theFileName). This will allocate the
next available channel, counting down from MAX_SOURCE_SOUNDS.
By allocating sounds from the highest channel down, we avoid
conflicting with sound channels that may be allocated by the resource
manager. Any allocated sound can be freed with
DSoundManager::ReleaseSound.

Other Small Fixes / Changes

• Fixed mVSyncUpdates problem with monitors running at over
100HZ

• Fixed crash bug in EditWidget for small text fields (< 10
characters visible)

• During crash in debug mode added “Debug” button to crash
dialog so the crash can be tranferred to a debugger (if not
already running in a debugger)

• Cursor widgets and transient widgets removed
• The update backlog is limited to 200ms instead of 1 second

