
http://www.littlecms.com

Copyright © 2020 Marti Maria Saguer, all rights reserved.

Fast floating point plugin 1.0
By Marti Maria

2 Introduction

Contents

Introduction .. 3

Licensing .. 3

Installation ... 3

Visual Studio .. 3

Linux/Unix/Mac ... 3

Formats ... 4

15 bit Photoshop format ... 6

Fast floating point processing ... 7

8-bit dither .. 7

Throughput increase guides .. 8

Sample ... 9

3 Introduction

Introduction

Little CMS floating point extensions is a customized plug-in. This add-on implements 4 features:

- Increased throughput for 8 bit transforms on gray, RGB and CMYK
- Support for internal Photoshop 1.15 fixed point format
- Increases throughput of 32 bit floating point color transforms
- Adds dithered 8-bit as output format for certain color spaces (Gray, RGB and CMYK)

Licensing

PLEASE NOTE the license of the plug-in is GPL V3.

https://www.gnu.org/licenses/gpl-3.0.en.html

 The requirements of this license are, among others, to release your project’s source code. If
this is not acceptable for your commercial product, an alternate commercial license is
available at a reasonable fee. Please contact me at sales@littlecms.com for a quote.

Installation

The plug-in comes in lcms2-2.10 standard distribution. The plug-in itself is contained in
“<lcms2root>\plugins” folder. Shared objects containing the plug-in (.DLL, .so, .dynlib, etc.) are
not supported.

Visual Studio

There is a Visual studio project ready to be included in solutions. The lcms2 included solution
also includes this project.

 <lcms2root>\plugins\fast_float\VC2019

Select the target (Release or debug) and build all.

Linux/Unix/Mac

The plug-in makefile does nothing. You have to add manually all plugin C files to your project.
This is done in such way to prevent including the plugin in projects that are not open source.

4 Formats

Formats

The following new formats are added by the plug-in.

TYPE_GRAY_15 Gray scale 1 channel
TYPE_GRAY_15_REV Gray scale, reversed polarity
TYPE_GRAY_15_SE Gray scale, swapped endianess
TYPE_GRAYA_15 Gray scale plus one alpha channel (ignored)
TYPE_GRAYA_15_SE Gray scale plus one alpha channel (ignored), swapped

endianess
TYPE_GRAYA_15_PLANAR Gray scale plus one alpha channel (ignored), planar
TYPE_RGB_15 RGB 3 channels
TYPE_RGB_15_PLANAR RGB 3 channels planar
TYPE_RGB_15_SE RGB 3 channels with swapped endianness
TYPE_BGR_15 RGB 3 channels reversed channel order
TYPE_BGR_15_PLANAR RGB 3 channels reversed channel order, planar
TYPE_BGR_15_SE RGB 3 channels reversed channel order, swapped endianness
TYPE_RGBA_15 RGB 3 channels plus one alpha channel (ignored),
TYPE_RGBA_15_PLANAR RGB 3 channels plus one alpha channel (ignored), planar
TYPE_RGBA_15_SE RGB 3 channels plus one alpha channel (ignored), swapped

endianness
TYPE_ARGB_15 RGB 3 channels plus one alpha channel (ignored)
TYPE_ABGR_15 RGB 3 channels reversed channel order plus one alpha channel

(ignored)
TYPE_ABGR_15_PLANAR RGB 3 channels reversed channel order plus one alpha channel

(ignored), planar
TYPE_ABGR_15_SE RGB 3 channels reversed channel order plus one alpha channel

(ignored), swapped endianness
TYPE_BGRA_15 RGB 3 channels reversed channel order plus one alpha channel

(ignored)
TYPE_BGRA_15_SE RGB 3 channels reversed channel order plus one alpha channel

(ignored), swapped endianness
TYPE_CMY_15 CMY 3 channels (no K)
TYPE_YMC_15 CMY 3 channels, reversed order
TYPE_CMY_15_PLANAR CMY 3 channels (no K), planar
TYPE_CMY_15_SE CMY 3 channels (no K), swapped endianness
TYPE_CMYK_15 CMYK 4 channels
TYPE_CMYK_15_REV CMYK 4 channels, reversed
TYPE_CMYK_15_PLANAR CMYK 4 channels, planar configuration
TYPE_CMYK_15_SE CMYK 4 channels, endianness of words is swapped (for big

endian platforms)
TYPE_KYMC_15 KYMC 4 channels
TYPE_KYMC_15_SE KYMC 4 channels, endianness of words is swapped (for big

endian platforms)
TYPE_KCMY_15 KCMY 4 channels
TYPE_KCMY_15_REV KCMY 4 channels, reversed
TYPE_KCMY_15_SE KCMY 4 channels, endianness of words is swapped (for big

endian platforms)
TYPE_GRAY_8_DITHER
TYPE_RGB_8_DITHER

Special formatters to activate dither (only meaningful on output
direction)

5

TYPE_RGBA_8_DITHER
TYPE_BGR_8_DITHER
TYPE_ABGR_8_DITHER
TYPE_CMYK_8_DITHER
TYPE_KYMC_8_DITHER

6 15 bit Photoshop format

15 bit Photoshop format

Photoshop internal format is 1.15 fixed point. This simplifies computation and speeds up some
operation. The lcms plug-in provides direct support for following 15 bits types. For further
reference to this format, refer to Adobe Photoshop SDK.

TYPE_GRAY_15
TYPE_GRAY_15_REV
TYPE_GRAY_15_SE
TYPE_GRAYA_15
TYPE_GRAYA_15_SE
TYPE_GRAYA_15_PLANAR
TYPE_RGB_15
TYPE_RGB_15_PLANAR
TYPE_RGB_15_SE
TYPE_BGR_15
TYPE_BGR_15_PLANAR
TYPE_BGR_15_SE
TYPE_RGBA_15
TYPE_RGBA_15_PLANAR
TYPE_RGBA_15_SE
TYPE_ARGB_15
TYPE_ABGR_15
TYPE_ABGR_15_PLANAR
TYPE_ABGR_15_SE
TYPE_BGRA_15
TYPE_BGRA_15_SE
TYPE_CMY_15
TYPE_YMC_15
TYPE_CMY_15_PLANAR
TYPE_CMY_15_SE
TYPE_CMYK_15
TYPE_CMYK_15_REV
TYPE_CMYK_15_PLANAR
TYPE_CMYK_15_SE
TYPE_KYMC_15
TYPE_KYMC_15_SE
TYPE_KCMY_15
TYPE_KCMY_15_REV
TYPE_KCMY_15_SE

7 Fast floating point processing

Fast floating point processing

The plug in intercepts float-to-float color transforms and provides extra throughput on certain
cases. Following conditions should be met in order to get an optimized color transform:

- Both input and output formats should be float.
- Optimizable color spaces are Gray, RGB, CMYK and Lab.

As long as those conditions are met, every single profile is prone to be optimized. The test bed
application shows the throughput increase obtained in a given platform. Please note that
unless both formats are float, the internal lcms2 math being used is 16 bits. This applies to
dither as well.

8-bit dither

Certain operations on image data like color conversion (e.g. transforming sRGB to printer
CMYK) are best done using 16 bpc precision, especially when lookup tables and interpolation
are involved. ICC profiles typically use 16 bpc precision, as do the transformation engines using
those profiles. Although true 16 bpc pipelines are being developed, and some are already
available as host software, most hardware pipelines today are limited to 8 bpc precision,
causing the result of color conversions to be truncated. This truncation to 8 bpc can cause
visible and objectionable “banding”, “contouring”, or “posterization” to occur in prints (large
areas of “flat” color with abrupt “jumps” in between, where the input shows only smoothly
varying gradients). Using true 16 bpc pipelines, the problem does not occur.

In order to minimize this effect a mechanism of error diffusion or “dither” has been
implemented in the plug-in. To enable this feature, any of those format specifiers should be
used for output only.

TYPE_GRAY_8_DITHER
TYPE_RGB_8_DITHER
TYPE_RGBA_8_DITHER
TYPE_BGR_8_DITHER
TYPE_ABGR_8_DITHER
TYPE_CMYK_8_DITHER
TYPE_KYMC_8_DITHER

8 Throughput increase guides

Throughput increase guides

- Avoid to use cmsChangeBuffersFormat(), Transforms that are polymorphic regarding formats
are not optimizable. If you need the same transform operating on 8 and 16 bits, consider
creating two transforms. Profiles data tables are already shared and the thoughput gain is
huge on 8 bits.

- Whenever possible, use the cmsDoTransformLineStride() to apply the color transforms. Use
image data blocks as big as possible. Starting the function is costly, but then it goes fast. It is
better to do a single call to this function for 10K scanlines that 10K calls for one scanline.

2.8

void cmsDoTransformLineStride(cmsHTRANSFORM Transform,
 const void* InputBuffer,
 void* OutputBuffer,
 cmsUInt32Number PixelsPerLine,
 cmsUInt32Number LineCount,
 cmsUInt32Number BytesPerLineIn,
 cmsUInt32Number BytesPerLineOut,
 cmsUInt32Number BytesPerPlaneIn,
 cmsUInt32Number BytesPerPlaneOut

This function translates bitmaps with complex organization. Each bitmap may contain several
lines, and every may have padding. The distance from one line to the next one is
BytesPerLine{In/Out}. In planar formats, each line may hold several planes, each plane may
have padding. Padding of lines and planes should be same across all bitmap. I.e. all lines in
same bitmap have to be padded in same way. This function may be more efficient that
repeated calls to cmsDoTransform(), especially when customized plug-ins are being used.

Parameters:
 hTransform: Handle to a color transform object.

InputBuffer: A pointer to the input bitmap
 OutputBuffer: A pointer to the output bitmap.
 PixelsPerLine: The number of pixels for line, which is same on input and in output.
 LineCount: The number of lines, which is same on input and output
 BytesPerLine{In,Out}: The distance in bytes from one line to the next one.

BytesPerPlaneIn{In,Out}: The distance in bytes from one plane to the next one inside a
line. Only applies in planar formats.

Returns:

None

9 Sample

Sample

// Sample usage for 15 bit formatters

// Add this include to access new functionality
#include "lcms2_fast_float.h"

// This is the sample from the tutorial, but adapted for the plug-in
int main(void)
{
 cmsHPROFILE hInProfile, hOutProfile;
 cmsHTRANSFORM hTransform;
 int i;
 cmsUInt16Number YourInputBuffer[3], YourOutputBuffer[3];

 //*** This is the one and only additional line you need in your whole app
 //*** to activate the plug-in
 //***

 cmsPlugin(cmsFastFloatExtensions());

 //***
 //***
 //***

 // Convert from AdobeRGB to sRGB in Photoshop internal format
 hInProfile = cmsOpenProfileFromFile("AdobeRGB1998.icc", "r");
 hOutProfile = cmsOpenProfileFromFile("sRGB Color Space Profile.icm", "r");

 hTransform = cmsCreateTransform(hInProfile,
 TYPE_RGB_15, // Note this format is new!
 hOutProfile,
 TYPE_RGB_15,
 INTENT_PERCEPTUAL, 0);

 cmsCloseProfile(hInProfile);
 cmsCloseProfile(hOutProfile);

 YourInputBuffer[0] = 0; YourInputBuffer[1] = 0; YourInputBuffer[2] = 0;
 // Or whatever. Note this is 1fixed15 encoded.

 for (i = 0; i < 10; i++)
 {
 cmsDoTransform(hTransform, YourInputBuffer, YourOutputBuffer, 1);
 }

 // Get rid of resources, etc.
 cmsDeleteTransform(hTransform);

 return 0;
}

