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Abstract. This paper presents the evolving objects library (EOlib), an
object-oriented framework for evolutionary computation (EC) that aims
to provide a flexible set of classes to build EC applications. EOlib design
objective is to be able to evolve any object in which fitness makes sense.
In order to do so, EO concentrates on interfaces; any object can evolve if
it is endowed with an interface to do so. In this paper, we describe what
features an object must have in order to evolve, and some examples of
how EO has been put to practice evolving neural networks, solutions to
the Mastermind game, and other novel applications.

1 Introduction

Evolutionary Algorithms (EAs) are stochastic optimization algorithms based on
a crude imitation of natural Darwinian evolution. They have recently become
more and more popular across many different domains of research, and people
coming from those “external” domains face a difficult dilemma: either they use an
existing EA library, and then have to comply to its limitation, or write their own,
which represent a huge work, and generally leads to ...some other limitations
that their authors are not even aware of, mainly because these scientists are not
closely related to recent EA research.

For instance, evolving any kind of objects, (e.g. Neural Networks), has been
a difficult matter, mainly due to the lack of flexibility of current evolutionary
computation libraries with respect to the representation used and the variation
operators that can be used on that representation. Most libraries (such as [41,
42]; see [19] for a comprehensive list) allow only a few predefined representations.

Evolving other types of data structures hence often has to start by flattening
them to one of the usual representations, such as a binary string, floating point
array or LISP tree. In the case of NNs, for instance, this representation has
to be decoded to evaluate the network (e.g. on a training set in the case of a
regression problem), but it sometimes lacks precision (e.g. in the case of binary
string representation), or expressive power: a string, whatever its shape, is a



serialization of a complex data structure, and evolution of a string using standard
string-based variation operators makes keeping actual building blocks together
more difficult than the evolution of a structure more closely representing neural
nets, such as two arrays of weights together with biases for 3-layer perceptrons,
or, more generally, an array of objects representing ...neurons.

Similarly, most existing libraries propose only a limited range of ways to apply
Darwinian operators to a population (e.g. limited to some proportional selection
and generational replacement), or/and generally a single method for applying
different kinds of variation operators to members of those population (e.g. limited
to sequentially applying to all members of the population one crossover operator
and one mutation operator, each with a given probability). However, there are
numerous other ways to go, and the strong interaction among all parameters of
an Evolutionary Algorithm makes it impossible to a priori decide which way is
best.

This paper presents EOlib, a paradigm-free evolutionary computation library,
which allows to easily evolve any data structures (objects) that fulfills a small set
of conditions. Moreover, algorithms programmed within EOlib are not limited to
basic existing EC paradigm like Genetic Algorithms, Evolution strategies, Evolu-
tionary Programming or Genetic Programming, be it at the level of population
evolution or variation operator application. Indeed, while all of the above do
exist in EO, original experiments can easily be performed using EOlib building
blocks.

The rest of the paper is organized as follows: section 2.1 briefly introduces
EAs and the basic terminology, and also presents the state of the art in EA
libraries. Section 3 presents Evolving Objects, a representation-independent,
paradigm-independent, object-oriented approach to Evolutionary Computation.
The rest of the paper discusses the EO class library structure in section 4 and
surveys some of the existing applications in section 5. Finally, section 6 concludes
the paper and presents future lines of work.

2 Introduction

2.1 Evolutionary Algorithms

This section will briefly recall the basic steps of an EA, emphasizing the inter-
dependencies of the different components. The problem at hand is to optimize
a given objective function over a given search space. A population of individuals
(i-e. a P-uple of points of the search space) will undergo some artificial Darwinian
evolution, in which the fitness of an individual is directly related to the values
the objective function takes at this point.

After a (generally random) intialisation of the population, the generation
loop of the algorithm is described in Figure 1

— Stopping criterion (and statistics gathering): The simplest stopping cri-
terion is based on the generation counter ¢ (or on the number of function
evaluations). However, it is possible to use more complex stopping criteria,



7

Initialisatio

Best individual

A
vt

Evaluation
LA

- ~

. \
’\ Generation

- 7 Crossover, |
prln% Mutation, ..

Variation operators: Representation dependent

Evaluation || -e—
TR

s

"Darwinism" (stochastic or determinist)
Main CPU cost

Checkpointing: stopping criterion and statistics

1
|

Fig. 1. Sketch of an Evolutionary Algorithm

which depends either on the evolution of the best fitness in the population
along generations (i.e., measurements of the gradient of the gains over some
number of generations), or on some measure of the diversity of the popula-
tion.

— Selection: Choice of some individuals that will generate offspring. Numer-
ous selection processes can be used, either deterministic or stochastic. All
are based on the fitness of the individuals, directly related to the objective
function. Depending on the selection scheme used, some individuals can be
selected more than once. At that point, selected individuals give birth to
copies of themselves, the genitors.

— Application of variation operators: To each one of these copies some
operator(s) are applied, giving birth to one or more offspring. These opera-
tors are generally stochastic operators, and one usually distinguish between
crossover (or recombination) and mutation operators:

e crossover operators are operators from E¥ (in most cases, k = 2) into E,
i.e., some parents exchange genetic material to build up one offspring®.
e mutation operators are (generally) stochastic operators from E into E.

— Evaluation: Computation of the fitnesses of all newborn offspring. As men-
tioned earlier, the fitness measure of an individual is directly related to its
objective function value. Note that in any real-world application, 99% of the
total CPU cost of an EA comes from the evaluation part.

! Many authors define crossover operators from E x E into E x E (two parents generate
two offspring), but no significant difference was ever reported between both variants.



— Replacement: Choice of which individuals will be part of next generation.
The choice can be made either from the set of offspring only (in which case
all parents “die”) or from both sets of offspring and parents. In either case,
the this replacement procedure can be deterministic or stochastic.

The components described above can be categorized into two subsets, that
relate to Darwin’s principles of natural evolution: the survival of the fittest and
small undirected variations.

— Selection and replacement, also termed evolution engine, describe the way
Darwinian evolution is applied to the population, The evolution engine is
only concerned with the fitness of the individuals, and is totally independent
of the representation (the search space).

— Initialisation and variation operators are representation-specific, but have (in
most cases) nothing to do with the fitness, following the idea that variations
should be undirected.

This basic classification already gives some hints about how to design an
evolutionary library, that will be one of the basis of EO design.

2.2 EA libraries

A look at the Genetic Algorithms newsgroup FAQ [19] shows scores of freeware
EA libraries; but another look at the GA newsgroups (such as news:comp.ai.genetic
also show that very few people actually use them. The rule is home-brew libraries.
Most libraries are too hard to use, too restrictive (for instance, restricted to only
one EC paradigm), or just plain bad products.

A product stands out among the rest: Matthew’s GALib [42], a widely used
evolutionary computation library, which includes several paradigms, several rep-
resentations, and a good deal of variation operators. However, it lacks flexibility
in a number of areas.

First, the choice of existing representations is also limited to arrays (of bits,
integers or floating point, or any combination), although it can be expanded
by sub-classing. However, evolving a neural network, for instance, would mean
squeezing it into an array.

Second, it only allows for two variation operators for each genome: mutation
and crossover (besides the initialization operator). Moreover, those operators
are always applied sequentially, and the only degree of freedom in that respect
are the probabilities of application. Hence, for instance, the popular experiment
involving an equidistributed random choice of several different mutations is not
straightforward. Similarly, there is no simple way to implement Evolution Strat-
egy operators (self-adaptive mutation, or global recombination [2].

Last but not least, only scalar fitness is implemented, which makes it difficult
to add constraint handling techniques in a generic way, and almost impossible
to do multi-objective optimisation.



3 Evolvable Objects

The library introduced in this paper, EQlib, has flexibility designed from the
ground up. This flexibility owns everything to the object-oriented design: every
data structure, every operator, every statistic computing routine is an object.

3.1 Data structures

Any data structure can be evolved, if at least one variation operator is provided
for such structures. A few pre-existing representations already exist, from the
humble bitstring, up to and including GP parse trees and multilayer perceptrons.

What features does a data structure need to be evolvable within EO? It
should be initialisable; selectable and replicable; and either mutable or
combinable. These properties will be used as computational analogs for the
three criteria for evolution outlined by Maynard-Smith [26], namely heredity,
variability and fecundity and will be examined in turn:

— Initialisability: This property, while essential in an EA, does not really have
a natural counter-part in any of the biological models of evolution (of course,
we don’t consider here creativism as a model for evolution!). It is generally
also given little attention in existing libraries, as standard procedures exist
for standard representations. However, even such standard procedures can
be questionable in some situations [21]. Whatever, in EQ, initialisers are
themselves objects, which allows one to use more than one initialisation
procedure, a common feature in GP for instance [3].

— Selectability: One of the main components of Darwinian evolution is nat-
ural selection, sometimes also seen as survival of the fittest. In EO, like in
all EA libraries, all objects are attached a fitness, and that fitness is used to
perform such a selection. However, fitnesses in EO are not limited to scalar
fitness (see section 3.2 below).

— Replicability It should be possible to obtain (possibly imperfect) copies of
an object, be it by itself or through the use of other objects (replicators).
This has a close analogy with the Criterion of Heredity. It should also be
possible to create objects from scratch, using object factories.

— Mutability It is the first possible implementation of Maynard-Smith’s Cri-
terion of Variability, that states that the genotype copying process has im-
perfections, thus offspring are not equal to the parent(s). Mutation increases
the diversity of a population. Mutation operators, or mutator, can change an
Evolving Object in one or several ways, but the inner workings of the mu-
tation need not be known from outside, neither a particular representation
will be needed in order to mutate. The client can only be guaranteed that
the object will change in some (generally stochastic) way.

— Combinability Another possible variation operator combine two or more
objects to create a new one (in a similar way to GA’s crossover). This is
not always possible, but when it is, the operation generally decreases diver-
sity, in the sense that it makes the objects in the population more similar to



each other (although in some cases, such as binary crossover non-respectful of
gene boundaries or the Distance Preserving Crossover of Merz and Freisleben
[16], it could increase diversity). As it happens with mutation, the exact inner
workings of recombination does not need to be known by the client. These
objects will usually be called combinators or maters. One way to ensure a
minimal meaningfulness of maters is to follow some of the rules of forma re-
combination [31]. Since in practice it’s generally impossible for combiners to
follow all of them [11], each combiner should follow at least one. Combinabil-
ity can thus serve both as a heredity component and a variability component,
this depending on the exact nature of the combination. Balancing heredity
and variability is known in the field of Evolutionary Computation as the
exploration/exploitation dilemma.

The good news is that most problems solved by computer can be implemented
in data structures having these characteristics, including evolutionary algorithms
themselves, which have been evolved already by Fogel and coworkers [15], Baeck
[1] and Grefenstette [17]; indeed, in the EO framework, algorithms can be just
another object, and multilevel evolutionary algorithm can be naturally fitted
within the EO framework.

3.2 Fitness function

The fitness in EAs is the only way to specify what represent the natural environ-
ment in natural evolution. In most EA libraries, unfortunately, fitness is limited
to one single scalar value, and natural selection hence ends up being based on
comparisons of those scalar values. However, such choice is very restrictive, and
does not make provision for other selection mechanisms, such as selection based
on constraints, based on several objectives, or more complex co-evolution pro-
cesses involving either one population of partial solutions [9] or several competing
or cooperating populations [30].

In EOlib, fitness can be of any type (more technically: all Evolutionary Ob-
jects are templatized over the fitness type), which opens the door to many other
types of EAs. Of course, scalar (real-valued) fitness is still the most widely used,
and most popular selections and replacements for real-valued fitness are avail-
able. But it is also possible to use fitnesses that are vectors of real numbers, and
to design multi-objective [12] or generic constraint-handling selectors [29]. For
instance, NSGAII selection [13] and adaptive segregated constraint handling [4]
are already implemented in EQO.

3.3 Variation operators

Variation operators in EQ are objects that exist outside the genotypes they act
on: hence any number of variation operators can be designed for the same evolv-
ing data structure. Besides, variation operators can take any number of inputs
and generate any number of outputs, allowing for instance easy implementation
of orgy operators [14] or ES global recombination operators [2]. Furthermore,



being separate objects, variation operators can own some private data: for in-
stance, a special selector for choosing the mate of a first partner can be given to
a crossover operator, allowing sexual preferences to be taken into account, as in
[36,20]; all these private parameters can then be modified at run-time, allowing
easy implementation of e.g. the standard deviation of Gaussian mutations in
Evolution Strategies, either following the well-known one-fifth rule [32] or using
self-adaptation mechanisms [2].

Variation operators can be combined in different ways. Two basic constructs
exist: the sequential combination, in which variation operators are applied one
after the other to the whole population with specific rates (as in Simple Genetic
Algorithms for instance); the proportional combination, that chooses only one
operator among the ones it knows, based on relative pre-defined weights. Fur-
thermore, those two ways of combining variation operators can be recursively
embedded. For instance, a very popular combination of operators is to mix differ-
ent crossovers and different mutations within the Simple GA framework — which
amounts to a sequential recombination of a proportional choice among the avail-
able crossovers and a proportional choice among the available mutations. Note
that these constructs, being themselves objects, can be evolved at run-time, e.g.
modifying the different rates based on past evolution.

3.4 Evolution

Evolution engines can be given in different ways: Of course, most popular engines
(e.g. Generational GA, Steady-State GA, EP, both ES+ and ES, strategies) are
available. But also, all parameters of an evolution engine can be specified in
great details: the selection operator and its parameters, the number of offspring
to generate, the proportion of strong elitism (best individuals are copied onto
the next generation regardless of offspring), the replacement procedure (whether
it involves the parents or not), the weak elitism (replace the worst individual in
the new population by the best parent if the best fitness is decreasing), ... Hence
new evolution engines can be defined simply by assembling existing EO building
blocks.

4 Technical description

All the EO ideas have been put in practice in the EOIlib class library, an Open
Source C++ library which is available from http://eodev.sourceforge.net, to-
gether with all facilities of open project in SourceForge: several mailing lists,
CVS access to the source tree, bug reporting, ... The current version is 0.9.1,
the leading zero in the version indicates that it is not yet complete. EOlib needs
an ANSI-C++ compliant compiler, such as the Free Software Foundation gcc
(in Linux, other Unix flavors or the CygWin environment for Win95/98 /NT);
most classes also work with commercial compilers such as Microsoft’s Visual
C++ 6.0.



Besides the “evolutionary classes” mentioned in the previous section, general
facilities for EC applications, such as check-pointing for stopping and restarting
applications, multiple statistics gathering, graphic on-line representation that
uses gnuplot in Linux are also provided. Moreover, EQIlib is open: using existing
tutorial template files, implementing one’s own new statistics and displaying it
on-line, for instance, is straightforward.

There are two ways to use EOlib. The most frequent case is when your repre-
sentation is already defined in EO (be it bitstrings, real-valued vector or parse-
trees), and you simply want to optimize a given fitness function. The only thing
that has to be programmed is that fitness computation function, and all other
components of the algorithm can simply be input as program parameters.

On the other hand, using an ad hoc representation requires coding the basic
representation-dependent parts of the algorithm: the definition of the represen-
tation, the initialisation and the variation operators (see section2.1) ...and the
fitness function, of course. Similarly, testing a new selection for instance can be
done by simply plugging it into an existing EO program, everything else be-
ing unchanged. Template files are provided in the tutorial section to help the
programmer write his/her own components.

One further plan is to provide an object repository, so that if something is
programmed using EQlib, the object classes can be immediately posted for every-
one to use them. One major outcome would be to improve the reproducibility
of EC results: whereas a paper is written using EOIlib, the source code of all
experiments would be available, and further research could actually use it as
a starting point. A link could be added with a paper repository, such as the
one the European Evolutionary Computation Network of Excellence, EvoNet, is
designing.

5 Applications

EQ, so far, has been applied to a number of different areas. The great flexibility of
the library has been used to implement complex representations (e.g. multi-layer
perceptron, Voronoi diagrams, ...), together with their specific variation op-
erators, multi-objective optimization, specific constraint handling mechanisms,
hybrid mutation operators, . ..

— Evolving multilayer perceptrons [8] no binary or floating point vector repre-
sentation was used; the objects that were evolved were the multilayer percep-
trons themselves. The EO class was used for the population-level operators,
but new diversity-generation operators had to be designed: add or eliminate
a hidden layer neuron, hidden layer crossover, and mutate initial weights.
The back-propagation training algorithm was also used as mutation operator
[7]. This application is available also from http://geneura.ugr.es/~pedro/G-
Prop.htm.

— Genetic Mastermind In the case of the game of Mastermind [27], a GA
was programmed to find the hidden combination, improving results ob-



tained in previous implementations.The subject of evolution were the mas-
termind solutions themselves. The variation operators were also adapted
to these objects: a permutation and a creep operator, which substituted
a number (color) by the next, and the last by the first. A huge improve-
ment was obtained; the algorithm explored only 25% of the space that
was explored before [5], that is, around 2% of the total search space, and
thus obtained solutions much faster. The game can be played online at
http://geneura.ugr.es/ " jmerelo/GenMM; the code can be downloaded from
the same site.

Evolution of fuzzy-logic controllers [33]: bidimensional fuzzy-logic controllers
were evolved to approximate two-variable functions; variation operators added
and subtracted row and columns, and changed values of precedents and con-
sequents. The evolved object approximated the function, and besides, found
a proper number of rows and columns for the controller.

Evolution of RBF neural nets [34]: data structures representing RBFs with
diverse radii in each dimension are evolved; variation operators add and
subtract RBFs, and change the position of the centers and the value of the
radii. Evolved RBFs are usually smaller and more accurate than other found
by trial-and-error or incremental procedures.

Evolutionary voice segmentation [28]: the problem consists in finding the
right division of a speech stream, so that different words, phrases, or phonemes
can be separated; EO evolves segmentation markers, with very good results.
In this case, the evolved data structure are deltas with respect to a linear
segmentation.

As a plug-in to EQlib, a visualization tools that uses Kohonen’s Self-Organizing
Map [25] has been presented in [35]. This tool presents, after training, a
two-dimensional map of fitness to the flattened, one-dimensional vector rep-
resentation of a chromosome, allowing to assess the evolutionary process by
checking that it has explored efficiently the search space.

A parallel version of EOlib using MPI and PVM is in development; the MPI
version has been tested on several benchmark problems [6].

EOlib has been applied to image segmentation in [39,40], which applies ge-
netic algorithms to a stripe straightening algorithm used to process and then
compress fruit fly embryo images.

A difficult problem of car engineering, in which the very costly objective
function has been replaced by a surrogate cheap model, has been recently
tackled using the a combination of multi-objective and constraint-handling
techniques (see [37], submitted to the same conference).

A hybrid surrogate mutation operator has been implemented and tested
for parametric optimization. The first results, also submitted to the same
conference, are very promising [38].

Topological optimum design of structures has been a long-time research of on
of the authors [24]. However, it was recently ported into EO framework [18]
as it is basically a multi-objective problem (minimizing both the weight of
the structure and the maximal displacement under a given loading). Within
EO, it has been possible to really compare both approaches, as they use



exactly the same representation and variation operators (including the way
they are applied).

— Adaptive Logic Programming [22] A variable length chromosome was used
to steer a path through a logic program in order to generate (constrained)
mathematical expressions. Using EQO, it was possible to compare the results
with a tree-based genetic programming approach [23].

6 Conclusion

In this paper, we had the ambitious objective of presenting a new framework for
evolutionary computation called EO, that would include all evolutionary compu-
tation paradigms as well as new ones, with novel data structures evolved, general
or particular variation operators, and any population-level change operators.

EO has a practical implementation in the shape of the EO class library, which
is public and freely available under the LGPL (FSF’s Library, or lesser, general
public license) from http://eodev.sourceforge.net. This library has already been
applied to problems in which, traditionally, binary or floating point representa-
tions were used, using instead as evolving object the same data structure one
want to obtains as a result, such as a neural net or a bidimensional fuzzy logic
controller.

As possible lines of future work, we will try the implementation of EOIib in
different OO languages, such as Java, and its interoperability with each other.
Another feature is an application generator, that will use high-level evolutionary
computation languages such as EASEA [10], and an operating-system indepen-
dent graphical user interface.
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